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Abstract—The Multi-objective Alliance Algorithm (MOAA),
a recently introduced optimization algorithm, is used for the
optimization of heterogeneous low-enriched uranium (LEU) +
mixed-oxide fuel (MOX) assemblies for pressurized water reac-
tors (PWRs). This is a constrained nuclear problem with two
objectives and a mixed-integer solution space. The efficacy of
the algorithm is demonstrated through comparisons with NSGA-
II for between 300 and 2000 function evaluations. Through
the epsilon and hypervolume indicators and the Kruskal-Wallis
statistical test, we show that the MOAA outperforms NSGA-II on
this problem. The MOAA was also able to find a set of solutions
that are better than the ‘expert solution’ for this problem.

I. INTRODUCTION

Nuclear reactors are complex systems necessary for the
initialization and the control of nuclear reactions. In nuclear
reactors, it is important to load the fuel such that the power
distribution across the reactor is as even as possible, while
balancing other objectives. This is a complex optimization
problem. Generally, the complexity of a system is related to
the difficulty of finding efficient solutions, and complex real-
world optimization problems are typically characterized by
several conflicting objectives. Deterministic approaches are not
particularly suitable for this typology of problems because the
objective space is constrained, many variables are involved,
and there are many local minima and non-linearities. One
possible way to overcome these problems is by using multi-
objective (MO) metaheuristic approaches. These methods have
already proven for complex MO problems, in many different
fields, to be more successful than deterministic gradient-based
methods. Some of the best-known algorithms in the state of the
art are based on Genetic Algorithms [7] such as NSGA-II [5],
SPEA2 [24] and MOEA/D [22]. These methods are generally
preferred because they use a population that can be naturally
tuned to solve MO problems by finding several Pareto-optimal
(PO) solutions in parallel; thus MO evolutionary approaches
are the most widely used [3], [4].

The Multi-objective Alliance Algorithm (MOAA) [14] is
an evolutionary approach based on the Alliance Algorithm
(AA) which is a relatively new single-objective optimization
algorithm that has been applied successfully to many different
typologies of problems [10], [2], [12], [17]. The first MO
version was compared with NSGA-II [5] and SPEA2 [24].
That study [14] revealed a certain complementarity because

the three approaches offered superior performance for different
classes of problems. Since then, a mixed-integer version of
the MOAA with hybrid components has been developed. This
was able to outperfom a hybrid version of NSGA-II on a
satellite constellation refueling optimization problem [18]. The
knowledge acquired in solving benchmark and complex real-
world problems led to the development of a new version of
the MOAA which has already been tested on MO benchmark
problems [15], the optimization of a supersonic airfoil [16]
and a benchmark aerodynamic optimization problem [13].

In this paper, the MOAA is used ‘out of the box’ and applied
to the optimization of CORAIL assemblies for nuclear reactors
to test whether the approach is able to perform well without
needing to tune its parameters or modify the algorithm.

The central goal of this work is to optimize the plutonium
(Pu) loading and the assembly power peaking in a PWR. This
is a constrained mixed-integer problem with two objectives.
Both NSGA-II and the MOAA are applied to this problem to
provide a good basis of comparison.

The remainder of this paper is structured as follows: Sect. II
introduces the nuclear optimization problem; Sect. III explains
the optimization framework; Sect. IV provides an overview
of how the MOAA works; Sect. V introduces the indicators
and statistical tests used for the evaluation of the algorithms;
Sect. VI reports on the MOAA’s performance on this problem,
comparing it with that of NSGA-II; Sect. VII discusses the
overall performance and compares the solutions found by the
algorithms with the expert solution; Sect. VIII concludes the
paper and proposes possible future work.

II. CORAIL ASSEMBLIES FOR PWRS

Nuclear reactors are typically fuelled with low-enriched
uranium (LEU) fuel. The fuel is usually disposed of after
a single pass through the reactor. However, it is possible to
reprocess it to produce plutonium (Pu), which can also be
used as a nuclear fuel when mixed with depleted or natural
U to create mixed-oxide fuel (MOX). It is more expensive
to fabricate MOX fuel than LEU fuel. Reactors are operated
containing some LEU and some MOX fuel assemblies [20].
An alternative is to place LEU and MOX pins within the same
assembly [8] (known as a ‘CORAIL’ assembly).
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The probability of Pu and U isotopes reacting with neutrons
(the ‘cross-section’) varies with neutron energy. A wide range
of neutron energies are present in the reactor. Pu and U
isotopes have substantially different reaction probabilities.
This leads to differences in neutron flux between LEU and
MOX pins, and consequentially can lead to an uneven power
distribution within the reactor [20]. This is undesirable as it
leads to higher fuel temperatures. To mitigate this, the Pu
loading in the MOX pins is often varied between pins in
different regions. For example, a MOX assembly surrounded
by LEU assemblies typically contains pins highly loaded with
Pu in the centre, and lower Pu loading at the periphery (Fig. 1).

The reference design for the CORAIL assembly from [8]
contains a single Pu loading, with Pu pins located at the
periphery of the assembly. As the purpose of MOX fuel is
generally to destroy Pu, while generating power, it is desirable
to maximize the Pu loading of the assembly. However, for a
core fuelled entirely with CORAIL assemblies, at least 50%
of the pins should be LEU to maintain acceptable safety
parameters [8]1.

The Pu loading of the CORAIL design of Fig. 1 is limited by
the power peaking constraint. For high Pu loadings, increasing
the Pu loading increases the reactivity of the MOX pins and
therefore their power relative to the LEU pins. By optimizing
the position of the MOX pins, and possibly by using different
Pu loadings in different MOX pins (as with the pure MOX
assembly), it may be possible to reduce the power peaking
for a given Pu loading, thereby improving the reactor thermal
margins. For this study, two Pu loadings are allowed. This
problem was recently investigated by [21].

III. OPTIMIZATION FRAMEWORK

It is desired to maximize the Pu loading and minimize
assembly power peaking 𝑃𝑜𝑤𝑒𝑟 𝑃𝑒𝑎𝑘 (i.e. the ratio of the
maximum to the average pin power) by changing the relative
locations of the MOX and LEU pins in the CORAIL assembly,
and changing the Pu loading in the MOX pins. The minimum
number of LEU pins is specified as half the total2. The LEU
enrichment is fixed at 5% and reactor-grade Pu is assumed.

Let 𝑊1 and 𝑊2 be the Pu loadings in MOX pin types 1 and
2. Let 𝑁1 and 𝑁2 be the number of MOX pins per assembly.
Let 𝑁3 be the number of LEU pins per assembly. As there are
264 fuel pins per assembly, 𝑁1+𝑁2+𝑁3 = 264. Using octant
symmetry, there are 39 unique fuel pin positions (Fig. 1); some
of these are weighted by 0.5 due to their position on symmetry
lines. These are assigned fuel types 1, 2 or 3, corresponding
to MOX types 1 and 2, and LEU fuel, respectively. There are
therefore 39 integer variables and 2 continuous variables (𝑊1

and 𝑊2), with 𝑁1, 𝑁2 and 𝑁3 being derived quantities.
The Pu loading (to be maximized) is defined as: 𝑀𝑂𝑋𝑇 =

𝑊1 ⋅𝑁1 +𝑊2 ⋅𝑁2.

1The reasons for this are beyond the scope of this paper, but cores
containing MOX fuel generally operate at reduced margins for some safety
parameters compared to LEU-only cores.

2As well as being a safety constraint, this prevents the algorithm converging
on a 100% MOX assembly.

Fig. 1. MOX assembly surrounded by LEU assemblies from [20] (top) and
CORAIL assembly with MOX pins at the assembly periphery adapted from
[8] (bottom).

The two objectives are: minimize 𝑃𝑜𝑤𝑒𝑟 𝑃𝑒𝑎𝑘 and mini-
mize −𝑀𝑂𝑋𝑇 .

The constraint is: 𝑁3 ≥ 16.5 (i.e. 264/8).
𝑃𝑜𝑤𝑒𝑟 𝑃𝑒𝑎𝑘 is calculated using the reactor physics code

WIMS 10 [19], which solves the neutron transport equation
to find the neutron flux, and therefore the pin power, for every
fuel pin in the assembly. The total fuel assembly power is fixed
and irrelevant: only the power peaking is considered here.
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Fig. 2 shows the optimization cycle: the algorithm creates
a new solution; the solution is given as input to WIMS; the
values of the two objectives are calculated; these are given
back to the algorithm. This cycle is repeated until a certain
number of function evaluations is reached.

Fig. 2. Optimization cycle.

IV. MULTI-OBJECTIVE ALLIANCE ALGORITHM

The MOAA is a metaheuristic optimization algorithm in-
spired by the metaphorical idea of a number of tribes strug-
gling to conquer an environment that offers resources that
enable them to survive. The tribes are characterized by two
features: the skills and resources necessary for survival. Tribes
try to improve skills by forming alliances, which are also
characterized by the skills and resources needed, but these
now depend on the tribes within the alliance. The two main
search elements of the algorithm are the formation of alliances
and the creation of new tribes. One MOAA cycle ends when
the strongest possible alliances of existing tribes have been
created. The algorithm then begins a new cycle starting with
new tribes whose creation is influenced by the previous
strongest alliances.

A tribe 𝑡 is a tuple (𝑥𝑡, 𝑠𝑡, 𝑟𝑡, 𝑎𝑡) composed of: a point
in the solution space 𝑥𝑡; a set of skills dependent on the
values of the 𝑁𝑆 objective functions evaluated at 𝑥𝑡; a set
of resource demands dependent on the values of the 𝑁𝑅

constraint functions; an alliance vector 𝑎𝑡 containing the 𝐼𝐷s
of the tribes allied to tribe 𝑡.

An alliance is a mutually disjoint partition of tribes. Each
alliance 𝑎 forms a new point 𝑥𝑎 in the solution space defined
by the tribes in the alliance. The sets of skills 𝑠𝑎 and resource
demands 𝑟𝑎 of the alliance consist of the objective and
constraint functions 𝑆 and 𝑅 evaluated at 𝑥𝑎.

A. Algorithm Steps

The procedure followed by the MOAA can be divided into
several steps. This version of the algorithm has been already
described in detail in other papers. For this reason, only a
general description (without equations) of the steps is provided
here. A detailed description of these steps can be found in [16].
A general definition of the framework is provided in [11], a
copy of which is available from the first author on request.

1) Solution Generation: In the MOAA’s first cycle the
tribes (solutions) are chosen randomly (with a uniform dis-
tribution). In subsequent cycles: some tribes are copies of
previously found PO solutions; others are modifications (using
a normal distribution with an adaptive standard deviation 𝜎)
of PO solutions.

An important feature is the adaptive nature of 𝜎: this param-
eter adaptively decreases in order to produce high diversity at
the start of the optimization and low diversity at the end. This
mechanism enhances the initial exploration of the solution
space and the final convergence of the solutions already found.

2) Verification: In this phase an alliance/tribe (A/T) tries
to forge an alliance (a point in solution space 𝑥𝑎) with
another tribe. When the alliance is created, 𝑥𝑎 is made up
of components drawn from the tribes within the alliance
plus some variation. Thus, the new point is created by using
uniform recombination between all the tribes of the alliance
with variation applied randomly to some of the variables.

The standard deviation for the variation depends on the
difference between the highest and lowest values of the
corresponding variable among the tribes within the alliance;
the variation for an alliance of tribes that are close together is
small (local search) and for far-apart tribes it is large (global
search). Generally at the start of an optimization the tribes
within an alliance are far apart and then they start to come
closer together. This behavior can be viewed as an initial
global search followed by progressively more localized search.

The new alliance will only be confirmed if at least one
skill in 𝑠𝑎 of 𝑥𝑎 is better than one skill in 𝑠𝑡1 of the solution
representing the A/T seeking to forge the alliance and one skill
in 𝑠𝑡2 of the tribe chosen to become an ally.

The resource function 𝑅(𝑥) is used to handle the constraint
𝑁3 ≥ 16.5.

3) Alliance and Data Structure Update: There are two
possible outcomes from the Verification Phase: the chosen
tribe joins the A/T, forming a new alliance, or the tribe does
not join and the new alliance is not confirmed. Next there is an
update of the data structures necessary for the low level system
to function (all the tribes need to be informed of any change
in the environment). The cycle termination conditions are also
checked. The cycle finishes when each A/T has tried to form
a new alliance with every other tribe and remains unchanged.
If this condition is not met, the algorithm continues to try to
form new alliances.

4) Selection of the Strongest Alliances and Termination: At
the end of the interactions between tribes, many alliances will
have been formed but only the strongest A/Ts will conquer
the environment. Therefore the A/Ts selected are the non-
dominated points in objective space. These correspond to the
best solutions to the problem found thus far. They can be used
as the input to another MOAA cycle or, if the algorithm has
ended, they represent the final results.

There is a limit 𝑛 to the number of best solutions saved in
the archive of PO solutions. If the number of non-dominated
solutions exceeds this, then all the solutions with at least one
neighbor within a neighborhood distance 𝑑 (in objective space)
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are eliminated. The initial value of 𝑑 is 0 and then changes
adaptively. This formulation recognizes that 𝑑 should depend
on: the previous value of 𝑑, the current number of solutions,
the number of function evaluations that can be afforded, and
the actual ranges of the Pareto front.

The MOAA is terminated when a specified limit 𝐸𝑡𝑜𝑡 on
the number of solution evaluations is reached. The algorithm
output is then the best solutions and the Pareto front found.

5) Extended Archive: The MOAA also uses an Extended
Archive which saves some dominated solutions that could help
maintain diversity among solutions and the convergence of
the algorithm. It accomplishes this task essentially by finding
every large gap in the Pareto front (larger than the average
gap between solutions multiplied by a factor 𝑑𝑓 ) in all the
dimensions of the objective space and saving all the non-
dominated solutions (and solutions that nearly satisfy the
constraints) found in these gaps.

The factor 𝑑𝑓 changes adaptively, increasing over time,
as the gaps between the solutions become smaller, reaching
similar values: by increasing its value only large gaps (in
comparison with the average) are taken into consideration.

V. INDICATORS AND STATISTICAL TEST

The performance measures chosen to evaluate the algo-
rithms are the epsilon and hypervolume indicators provided in
the PISA package [1]. The epsilon indicator [25] makes use of
the Pareto-dominance concept and measures, given a reference
set of points (ideally the true Pareto front, if available), the
minimum amount 𝜖 necessary to translate all the points of
the found Pareto front to weakly dominate the reference
set. The hypervolume indicator [9] calculates the difference
between the hypervolume of the space dominated by the found
Pareto front and the hypervolume of the space dominated by
a reference set (again, ideally the true Pareto front). This
indicator needs a reference point which is dominated by all
the found points in order to bound the hypervolume.

The statistical test chosen for the evaluation of results is the
Kruskal-Wallis test, provided in the PISA package [1]. This is
a non-parametric rank-based test that can be used to compare
two independent sets of sampled data. It outputs p-values that
estimate the probability of rejecting the null hypothesis of the
study question when that hypothesis is true. Here the p-values
can be interpreted as the probability that the MOAA is superior
to NSGA-II only by chance.

VI. RESULTS

MOAA and NSGA-II were tested for runs with limits of
300, 1000, 1600 and 2000 function evaluations. Each test was
repeated 20 times. The small number of function evaluations
is justified by the considerable computational cost necessary
to solve the neutron transport equation to find the neutron
flux. The parameters used for NSGA-II are specified in [5].
The MOAA parameters used are shown in Table I. These
parameters have already proven their effectiveness in other
studies with standard benchmark functions [15], such as the

ZDT [23] and DTLZ [6] families, and also with real-world
optimization problems [16], [13].

The PO solutions found in each of the 20 runs for all four
tests are shown in Fig. 3, while the PO solutions amongst all 20
runs are shown in Fig. 4. The figures show how the MOAA is
able to gradually outperform NSGA-II. In the 300 evaluation
tests, the MOAA and NSGA-II solutions are mixed. In this
case NSGA-II is more consistent and is able to find similar
Pareto fronts, while the MOAA finds different types of Pareto
front. The 1000 evaluation tests show a visible improvement
in the MOAA’s solutions: the algorithm begins to find more
solutions than NSGA-II and most of these solutions have better
quality. The other two evaluation tests (1600 and 2000) show
a gradual improvement of the MOAA Pareto fronts: these
solutions are well-spaced, well-spread and generally have
equal or better convergence. In contrast, NSGA-II presents
clusters of solutions in only a few focused areas and many
other areas of the Pareto fronts are almost empty.

Figure 4 shows that the best PO solutions found by the
MOAA generally dominate all the PO solutions found by
NSGA-II: in some cases there is an evident gap between the
two Pareto fronts. The graphs also show that the MOAA finds
more well-spaced solutions with better convergence, while the
NSGA-II Pareto fronts have many gaps, and in some areas the
Pareto front seems disconnected. However, the MOAA results
show that the Pareto front clearly is connected.

Results from each of the 20 runs were used to compute the
mean and standard deviation of the epsilon and hypervolume
indicators along with their corresponding p-values. Lower
values of these metrics are indicative of better performance.
The reference set for these comparisons was composed of the
PO solutions found by both algorithms.

Table II shows the mean and standard deviation of the
epsilon indicator. Comparable performance for both algorithms
is observed for 300 function evaluation runs. However, for the
other cases, the mean gradually increases for NSGA-II and
decreases for the MOAA. The increase of the mean for NSGA-
II might seem counterintuitive but it is related to the creation of
clusters: this mechanism gradually improves the convergence
of localized areas of the Pareto front but the solutions outside
these clusters become quickly dominated and parts of the
Pareto fronts are sometimes lost. The result of this behavior is
an increase in the values of both the indicators because they
take into account how the solutions are distributed and if parts
of the Pareto front (especially the edges) are missing.

The standard deviation is also, in general, smaller for the
MOAA results. This shows that the MOAA is able to gradually
find qualitatively better solutions than NSGA-II.

The hypervolume indicator metrics are shown in Table
III. NSGA-II exhibits better performance for 300 function
evaluation runs. Thereafter, the mean hypervolume values
decrease for the MOAA and tend to increase for NSGA-II
for the reasons explained above. Again, the standard deviation
is also, in general, smaller for the MOAA results.

These two indicators show that with increasing function
evaluations the MOAA steadily outperforms NSGA-II in terms
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of both convergence and diversity of solutions.
The 20 values of the epsilon and hypervolume indicators

obtained in all the tests by the MOAA (the blue circles) and
NSGA-II (the red squares) sorted from best to worst are shown
respectively in Fig. 5 and Fig. 6. In all the graphs, except
the ones for 300 function evaluation runs, there is a clear gap
between the MOAA and NSGA-II lines. This confirms visually
the values previously indicated in the tables.

To quantify the efficacy of these two metrics in char-
acterizing their relative success, we compute the p-values
obtained using the Kruskal-Wallis statistical test. Lower p-
values indicate that one algorithm is better than the other.
These values are shown in Table IV. In this case we compute
the probability that the MOAA provides a better set of PO
solutions than NSGA-II purely by chance. For the 300 function
evaluation runs the null-hypothesis is satisfied for both the
epsilon and hypervolume indicators: this essentially means that
it is unclear which algorithm performs better, and confirms
the figures and tables previously shown. In the other cases, it
is possible to observe a gradual improvement in the p-values:
they decrease towards 0, meaning that the MOAA improves its
performance in comparison to NSGA-II. These results, again,
confirm all the values and graphs previously shown. Thus, for
higher function evaluation runs on this problem, it may be
concluded that the MOAA outperforms NSGA-II.

TABLE I
MOAA PARAMETERS

Parameter Value Description
𝑁 6 Number of tribes
𝑃1 0.5 Probability 1 for the creation of tribes
𝑃2 0.2 Probability 2 for the creation of tribes

𝜎𝑖𝑛𝑖𝑡 0.3 Initial standard deviation
𝜎𝑒𝑛𝑑 0.01 Final standard deviation
𝑃3 2/𝑉 Probability for the creation of alliances
𝜎𝑎 0.1 Standard deviation for the creation of alliances
𝑁𝑡𝑜𝑡 100 Total number of PO solutions
𝑁𝑓 10 Factor for evaluation neighborhood

TABLE II
COMPARISON WITH EPSILON INDICATOR

𝐸𝑡𝑜𝑡 MOAA NSGA-II
Mean Std Mean Std

300 0.3656 0.1178 0.3228 0.1001
1000 0.3640 0.1379 0.4597 0.1166
1600 0.3363 0.1391 0.5024 0.1622
2000 0.3318 0.1379 0.5226 0.1553

TABLE III
COMPARISON WITH HYPERVOLUME INDICATOR

𝐸𝑡𝑜𝑡 MOAA NSGA-II
Mean Std Mean Std

300 0.3171 0.1432 0.2563 0.0551
1000 0.2452 0.0795 0.3575 0.0591
1600 0.2375 0.0814 0.3569 0.1213
2000 0.2239 0.0818 0.3536 0.1191

TABLE IV
KRUSKAL-WALLIS STATISTICAL TEST

𝐸𝑡𝑜𝑡 p-value (MOAA better than NSGA-II by chance)
Epsilon Hypervolume

300 H0 H0
1000 2.04 ⋅ 10−2 6.00 ⋅ 10−6

1600 6.74 ⋅ 10−4 2.59 ⋅ 10−4

2000 1.18 ⋅ 10−4 1.98 ⋅ 10−5

VII. DISCUSSION

Looking at the clear trade-off found between 𝑃𝑜𝑤𝑒𝑟 𝑃𝑒𝑎𝑘
and 𝑀𝑂𝑋𝑇 , as expected, the power peaking increases with
increasing Pu loading when the Pu loading is high. For
𝑀𝑂𝑋𝑇 = ∼2, the power peaking is low as the reactivity
of the MOX and LEU pins is very similar. The power peaking
of ∼1.06 is similar to pure LEU assemblies, i.e. assemblies
with [−𝑀𝑂𝑋𝑇,𝑃𝑜𝑤𝑒𝑟 𝑃𝑒𝑎𝑘,𝑁3] = [0, 1.06, 33] which are
dominated by the [−2, 1.06,∼16.5] solutions, such that solu-
tions with 𝑃𝑜𝑤𝑒𝑟 𝑃𝑒𝑎𝑘 < 1.06 are generally not found.

Raising 𝑀𝑂𝑋𝑇 to ∼4 results in a power peaking of ∼1.2.
This is around the maximum likely to be acceptable [8].

The MOAA generally converged on a single distribution of
pin types throughout the Pareto front (with only 2 pin positions
changing type in any of the PO solutions). For low power
peaking solutions, the Pu loadings were 5–10% different,
implying that a single Pu loading is sufficient to achieve a
near-optimal power distribution. This is advantageous as the
fuel fabrication cost is expected to increase with the number of
different Pu loadings. This is consistent with the conclusions of
[21], where the optimization converged on a single Pu loading
by reducing the number of type 1 pins.

The pin types are, in general, quite well mixed in PO
solutions, although there is a grouping of LEU pins towards the
edge of the assembly. However, as the MOX loading increased,
the relative difference in Pu loading between type 1 and type
2 pins generally increased to ∼20–30%. This implies that the
pin positions may be sub-optimal in some cases. This is a
consequence of the small number of function evaluations used
on this complex problem: the adaptive parameters force the
algorithm to an early convergence, exploiting the best area
found, without allowing it to better explore the solution space.
The pin distribution for a solution from the Pareto front found
by the MOAA is shown in Fig. 7.

The expert design from Fig. 1 [8] achieved a power peaking
of 1.16 and MOX loading of 2.55 (with 𝑁3 = 22.5). Figure
8 shows an enlargement of the best Pareto front found by
the MOAA and NSGA-II, with a power peak in the range
1.06–∼1.2, and the expert design vector. It is interesting
to observe that the expert solution is only dominated by
solutions found by the MOAA. This is a further example of
the superiority of the MOAA’s performance with increasing
function evaluations: the algorithm is able to find solutions
that are better than solutions found by an expert. In particular:
∙ Given the 𝑀𝑂𝑋𝑇 value obtained for the expert solution,

the MOAA is able to find solutions with up to ∼4–4.5%
improvement in 𝑃𝑜𝑤𝑒𝑟 𝑃𝑒𝑎𝑘.
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Fig. 3. Comparison of the results from 20 runs in the four tests. MOAA
solutions are shown in blue; NSGA-II solutions in red. From top to bottom:
300, 1000, 1600, 2000 evaluations.

∙ Given the 𝑃𝑜𝑤𝑒𝑟 𝑃𝑒𝑎𝑘 value obtained for the expert
solution, the MOAA finds solutions with up to ∼23.5–
24% improvement in 𝑀𝑂𝑋𝑇 .

∙ The set of PO solutions found by the MOAA that improve
both the objectives yield an improvement of 10–19.5% in
𝑀𝑂𝑋𝑇 and 1–3.5% in 𝑃𝑜𝑤𝑒𝑟 𝑃𝑒𝑎𝑘.

This variety of solutions allows the decision-maker to
choose the most suitable trade-off solution. The MOAA was
able to find such solutions, in part, due to a reduction in
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Fig. 4. Comparison of the non-dominated solutions found in the four tests.
MOAA solutions are shown in blue; NSGA-II solutions in red. From top to
bottom: 300, 1000, 1600, 2000 evaluations.

the number of LEU pins (𝑁3) towards the constraint, which
increases the number of MOX pins and hence the Pu loading
for a given power peaking. Again, this is consistent with the
findings of [21].

VIII. CONCLUSIONS

In this paper, the MOAA was applied to the optimization
of CORAIL assemblies for PWRs in order to maximize the
Pu loading (minimize −𝑀𝑂𝑋𝑇 ) and minimize the assembly
power peaking. This was a constrained mixed-integer problem
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Fig. 5. Comparison of epsilon indicator values for all the tests. MOAA
values are shown in blue; NSGA-II values in red. From top to bottom: 300,
1000, 1600, 2000 evaluations.

with 39 integer variables and 2 continuous variables. The
results were compared with those given by NSGA-II and with
an expert solution for this problem. The following are the key
conclusions of this study:

1) The results obtained by the MOAA and NSGA-II for 300
function evaluations were similar but with more function
evaluations the MOAA increasingly outperforms NSGA-
II. This is confirmed by the p-values for the epsilon and
hypervolume indicators which demonstrate the MOAA’s
efficacy on longer runs.

2) The Pareto front found by the MOAA is better spread,
well-distributed, with increasingly better convergence,
and more solutions are found. In contrast, NSGA-II finds
fewer solutions, and there is a tendency for these to
cluster, leading to several gaps in the Pareto front.
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Fig. 6. Comparison of the hypervolume indicator values for all the tests.
MOAA values are shown in blue; NSGA-II values in red. From top to bottom:
300, 1000, 1600, 2000 evaluations.

3) The Pareto front found by the MOAA contains solutions
that fully dominate the expert solution for this problem;
this is not true for the solutions found by NSGA-II.

4) The usage of the MOAA ‘out of the box’, without
performing any modification or parameter tuning, has
demonstrated the validity of this approach as a general
problem solver.

In future work, the performance of the MOAA will be in-
vestigated for other variants of this problem with increased
numbers of variables and contraints in order to understand the
robustness and scalability of this approach for this category
of problem. Moreover, further analysis of the optimal solution
found by the MOAA will be undertaken to check whether the
pin positions are, in fact, insensitive to the value of 𝑀𝑂𝑋𝑇 ,
as indicated by the MOAA results.
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Fig. 7. Optimal pin distribution for a CORAIL assembly found by the
MOAA. Type 2 pins are more highly loaded than type 1 pins.

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5

1.1

1.15

1.2

1.25

−MOXT

P
ow

er
 P

ea
k

Fig. 8. Comparison of the MOAA (blue) and NSGA-II (red) solutions with
the expert design (asterisk).

IX. ACKNOWLEDGEMENT

We would like to acknowledge the ANSWERS team at
AMEC for providing access to and guidance on the use of
WIMS.

REFERENCES

[1] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler. PISA—A plat-
form and programming language independent interface for search al-
gorithms. In Conference on Evolutionary Multi-Criterion Optimization
(EMO 2003), Faro, Portugal, 2003.

[2] V. Calderaro, V. Galdi, V. Lattarulo, and P. Siano. A new algorithm for
steady state load-shedding strategy. In 12th International Conference on
Optimization of Electrical and Electronic Equipment (OPTIM), pages
48–53, Brasov, Romania, 2010.

[3] C. A. Coello Coello, G. B. Lamont, and D. A. V. Veldhuizen. Evolu-
tionary Algorithms for Solving Multi-Objective Problems (Genetic and
Evolutionary Computation). Springer-Verlag, Secaucus, NJ, USA, 2006.

[4] K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms.
Wiley, Chichester, UK, 1 edition, June 2001.

[5] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist
multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput.,
6(2):182–197, 2002.

[6] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable test
problems for evolutionary multi-objective optimization. TIK Report 112,
Computer Engineering and Networks Laboratory (TIK), Swiss Federal
Institute of Technology (ETH), July 2001.

[7] J. H. Holland. Adaptation in Natural and Artificial Systems: An In-
troductory Analysis with Applications to Biology, Control and Artificial
Intelligence. MIT Press, Cambridge, MA, USA, 1992.

[8] T. K. Kim. Assessment of CORAIL-Pu multi-recycling in PWRs.
Technical Report ANL-AAA-018, Argonne National Laboratory, 2002.

[9] J. Knowles, L. Thiele, and E. Zitzler. A tutorial on the performance
assessment of stochastic multiobjective optimizers. TIK Report 214,
Computer Engineering and Networks Laboratory (TIK), Swiss Federal
Institute of Technology (ETH), February 2006.

[10] V. Lattarulo. Application of an innovative optimization algorithm for
the management of energy resources. BSc thesis, University of Salerno,
2009.

[11] V. Lattarulo. Multi-Objective Alliance Algorithm. Technical Report
CUED/C-EDC/TR.157, Department of Engineering, University of Cam-
bridge, 2011.

[12] V. Lattarulo. Optimization of biped robot behaviors by ‘alliance
algorithm’. Master’s thesis, University of Hertfordshire, 2011.

[13] V. Lattarulo, T. Kipouros, and G. T. Parks. Application of the Multi-
objective Alliance Algorithm to a benchmark aerodynamic optimization
problem. In International Conference on Evolutionary Computation
(CEC), Cancun, Mexico, 2013.

[14] V. Lattarulo and G. T. Parks. A preliminary study of a new multi-
objective optimization algorithm. In International Conference on Evo-
lutionary Computation (CEC), Brisbane, Australia, 2012.

[15] V. Lattarulo and G. T. Parks. Testing of Multi-Objective Alliance
Algorithm on benchmark functions. In GECCO 2013, Amsterdam, The
Netherlands, 2013.

[16] V. Lattarulo, P. Seshadri, and G. T. Parks. Optimization of a supersonic
airfoil using the Multi-Objective Alliance Algorithm. In GECCO 2013,
Amsterdam, The Netherlands, 2013.

[17] V. Lattarulo and S. G. van Dijk. Application of the “Alliance Algorithm”
to energy constrained gait optimization. In 15th Annual RoboCup
International Symposium, Istanbul, Turkey, 2011.

[18] V. Lattarulo, J. Zhang, and G. T. Parks. Application of the MOAA
to satellite constellation refueling optimization. In Evolutionary Multi-
Criterion Optimization (EMO 2013), Sheffield, UK, 2013.

[19] T. Newton, G. Hosking, L. Hutton, D. Powney, B. Turland, and E. Shut-
tleworth. Developments within WIMS10. In Proc. Physics of Reactors
Topical Meeting (PHYSOR 2008), Interlaken, Switzerland, 2008.

[20] OECD Nuclear Energy Agency. Plutonium management in the medium
term – a review by the OECD/NEA working party on the physics of
plutonium fuels and innovative fuel cycles (WPPR). Technical Report
NEA44517, 2003.

[21] Z. Yang. PWR heterogeneous fuel assembly optimisation. Master’s
thesis, Cambridge University Engineering Department, 2013.

[22] Q. Zhang and H. Li. MOEA/D: A multiobjective evolutionary algorithm
based on decomposition. IEEE Trans. Evol. Comput., 11(6):712–731,
December 2007.

[23] E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective
evolutionary algorithms: Empirical results. Evol. Comput., 8(2):173–
195, June 2000.

[24] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the
Strength Pareto Evolutionary Algorithm for multiobjective optimization.
In Evolutionary Methods for Design Optimization and Control with
Applications to Industrial Problems, pages 95–100, Athens, Greece,
2001.

[25] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. Grunert
da Fonseca. Performance assessment of multiobjective optimizers: An
analysis and review. IEEE Trans. Evol. Comput., 7(2):117–132, 2003.

1420




