
GEAS: A GA-ES-Mixed Algorithm for Parameterized Optimization
Problems - Using CLS Problem as an Example

Xing Zhou, Wei Peng and Bo Yang

Abstract— Parameterized optimization problems (POPs) be-
long to a class of NP problems which are hard to be tack-
led by traditional methods. However, the relationship of the
parameters (usually represented as k) makes a POP different
from ordinary NP-complete problem in designing algorithms.
In this paper, GEAS, an evolutionary computing algorithm (also
can be seen as a framework) to solve POPs is proposed. This
algorithm organically unifies genetic algorithm (GA) framework
and the idea of evolutionary strategy (ES). It can maintain
diversity while with a small population and has an intrinsic
parallelism property:each individual in the population can solve
a same problem that only has a different parameter. GEAS is
delicately tested on an NP-complete problem, the Critical Link
Set Problem. Experiment results show that GEAS can converge
much faster and obtain more precise solution than GA which
uses the same genetic operators.

I. INTRODUCTION

PARAMETERIZED optimization problems are easy to be
found in daily life. For example, the knapsack problem

that one should choose at most k objects from n objects, put
them into a bag to maximize the total profit, while the total
volume of these objects can’t exceed the volume of the bag.
In this problem the parameter is k. This type of POP can be
stated as below:

maximize/minimize M(x)
subject to f(x) = g(k)

x ∈ Ω
(1)

where M is the objective function for the problem, f and g
are functions. Line 3 in equation (1) gives the variable space
of the problem. However, Line 2 means that only those points
which satisfy the equality should be considered, that is to
say the variable space is further reduced by Line 2. Line 2
contains the parameter, so equation (1) defines a POP with
parameter equaling to k.

Taking the k-objects knapsack problem as an example to
illustrate equation (1): x can be a binary string with length
n. M is the profit function on x. f could be the hamming
weight function, i.e., f(x) counts the number of bit 1s in x.
g is the identity function in this example and Ω = {0, 1}n.

The critical link set problem (CLS) emerging from com-
plexity network research is a POP too. CLS with parameter
k, asks how much destruction can be caused at most, if
we delete k links (edges) in a network. These k edges

Xing Zhou, Wei Peng and Bo Yang are with the College of comput-
er, National University of Defense Technology, Changsha, China(email:
{zhouxing, wpeng, yangbo}@nudt.edu.cn)

This work was partly funded by the research project of National Univer-
sity of Defense Technology, and National Natural Science Foundation of
China under grant No.61070199, 61100223 and 61272010.

that destruct most consist of the set named critical link
(edge) set. A lot of other problems in complexity network
research resemble the CLS problem, such as the critical node
set problem[9], the maximum prohibited flow in complex
networks[10]. So, they are also parameterized optimization
problems.

Almost all these parameterized optimization problems are
NP-complete [1] [2]. Hence, it’s unlikely that there is polyno-
mial time exact algorithms to solve these problems.Branch-
and-bound search is one approach to get the optimal solution.
But it’s hard to get the optimal solution efficiently for the
combinatorial explosion and gigantic enumeration.

Sometimes, dynamic programming techniques can gen-
erate a pseudo-polynomial time exact algorithm for a NP-
complete problem, like the ordinary knapsack problem. But
dynamic programming requires a problem two features: du-
plicate subproblems and optimal substructure [3]. It’s difficult
to design a dynamic programming algorithm to the men-
tioned POP problems, because (1) What is the subproblem?
how can we divide current problem to similar subproblems?
(2) These optimization problems seems have no optimal
substructure feature, too. For example, optimal critical link
set of size k − 1 don’t have to be a part of CLS of size k.

For their practical importance, a lot of efforts have been
devoted to these problems, trying to find a good way to
get the optimal solution, or even near-optimal solutions.
Approximation algorithms is a choice if we cannot get the
exact optimal solution within a bearable time. We can accept
an approximation algorithm if its result is not far from the
optimal one, say at most two times bigger (smaller) than
that of exact algorithms. The LP relaxing is one approach
to produce approximation solutions: at first formulate a
optimization problem as an integer linear program (ILP);
then relax the ILP to linear programm (LP) by cancelling
the integer restriction of the variables; then, solve the LP
model by Simplex[4] method to get real number solution;
finally round the real number solution to integer solution
according to some appropriate strategy. It seems a good
way to get near-optimal solutions, but it’s difficult for the
solution to remain good quality after the rounding stage, and
unappropriate rounding strategy may bring wide gap solution
or even invalid solution.

What’s more, theoretically been proven, some of the
problems are hard to be approximated within a constant
times’ gap to the optimal solution. For example, the CLS
problem has been proved that it’s hard to be approximated
within ratio of Ω(n−k

nε) in polynomial time, where k is the
number of deletions and ε < logn2.

888

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

Previous works were mainly focused on single parame-
terized problem and approximation algorithms were often
derived from Linear Programming. Previous works have not
utilized the relationship of the parameters in POP. By instinct,
POPs with different k (can effect each other. A POP with
certain parameter can be greatly effected by the same POP
but with other parameters. Thus we can use this properties
and approximate these problems using evolutionary comput-
ing, solving them on an algorithm (framework) we propose
that mixes the framework of GA [5] and the idea of ES [6].

GEAS firstly generates a small population randomly or
using problem-specific knowledge. Each individual in the
population represents a valid solution to the POP with
certain parameter (called ”a problem”). There are at least
one individual corresponding to the problem with parameter
equaling to k. After the initialization, at each generation an
individual mates with another one and produce an offspring.
An individual can also mutate to evolve. Each individual
keeps the best solution for its problem (i.e. for certain
parameter) found so far. After the evolutionary procedure,
each individual in the population expresses a near-optimal
solution to its problem. At last we get an approximate
solution to the problem with parameter k, and a bunch of
solutions to the same problem but with other parameters (in
some circumstance, we are seeking these solutions, too. so
this algorithm will especially bring us loads of convenience
and save us a lot of time in that case). This algorithm has
the following features.

• This algorithm can get more accurate solutions than
similar GA. This algorithm is less likely to be trapped
to local optimality than GA. Its population constituent,
crossover and mutation pattern can help escape from
local optimality.

• Intrinsic parallelism property. The algorithm betters off
every individual without bias, so each individual will
be an good approximate solution to the corresponding
parameterized problem at the end of evolution. These
problems are slightly different from each other only in
parameter.

• It has a small population, and each individual is an elite
since the beginning of the evolution. The superiority
gene for each problem is kept in the corresponding elite
individual. The diversity for each problem with certain
parameter is reserved in the corresponding individual
and in other individuals, too.

• The running time on this algorithm is less than that
on the basic genetic algorithm framework owing to its
small niche. Because of the well maintained superiority
and diversity, the framework converges quickly.

• The selection procedure involves no fitness function.

We choose the CLS problem as an experimental subject
in this paper. The convergency, accuracy and time difference
between the basic GA framework and GEAS are systemati-
cally compared/analysed.

The paper is organized as follow. Section II is the prelimi-
nary knowledge of CLS, introduction to basic GA framework

and ES. Section III describes GEAS. Section IV is the
algorithmic implementation for CLS on both GEAS and GA,
including the design of crossover operator and the mutation
operators. Section V shows the experimental results and the
analysis. Section VI concludes this paper.

II. PRELIMINARY

A. critical link set problem

The critical link set problem is to find a certain number
of links whose removal will destruct the connectivity of a
network to the maximal extent. It is a fundamental problem
in the evaluation of the vulnerability or robustness of a
network because a network’s performance highly depends
on its topology. In a typical attacking scenario, the attacker
first figures out the weak part of a network, e.g., some key
communication links. The attacker then tries to disrupt the
links or to bring them down. The connectivity or performance
of the targeted network will be degraded once the links fail.
The critical link set problem is defined as: find at most k
links in a network whose removal will degrade the network
performance to the maximum extent.

A lot of metrics have been applied to measure the topo-
logical performance of a network [7]. To well measure the
vulnerability of a network, like the communication network,
the pairwise connectivity [8] –the total number of connected
node pairs–is used. By its definition, we know, the pairwise
connectivity of a connected component with n nodes is
C2

n. And the total pairwise connectivity of a graph is the
summation of its components’. For convenience, we denote
critical link set problem as CLP, pairwise connectivity as PC.
Figure 1 shows a simple instance of a network. For CLS
problem with parameter k = 1 in this network, the critical
link set={(0,1)}, and the PC after deletion is 3. If k = 2, the
critical link set={(0,2),(0,3)}, and the PC is 2.

0

1

2

3

Fig. 1. a simple network

A graph (or component) G is k− edge− connected if the
removal of any k−1 edges will not make G disconnected, but
there exists a removal of k edges that does. Sometimes, it’s

889

called k−connected for short. k−connected−components
means a set of nodes together with the edges linking them.
In Fig. 1, edge (0,1) and node 0, node 1 is 1 − connected,
while edge (0,2), (0,3), (2,3) and node 0,2,3 is 2−connected.
In the following text, a k − connected− components only
means the edge set because the edge set determines the nodes
that relate to it. we call 2−connected is ”higher” connected
than 1 − connected for convenience in following. The k −
connected conception will be used in initialization part of
GEAS.

A bridge edge, also called a bridge, is an edge whose
deletion will disconnect a connected component (graph). In
Fig. 1, edge (0,1) is an bridge edge. If the parameter of the
CLS problem we are solving is 1, then a bridge will be a
good solution. If there exists many bridges, we can choose
the best one by comparing the remaining PC after the bridge
is removed. We will use the concept of bridge in the mutation
operator (Descendor) in later.

B. genetic algorithm

A genetic algorithm (GA) [5] is a search heuristic that
imitate the process of natural selection. This heuristic is
often used to generate satisfiable solution to optimization
and search problems. In a GA, a population of candidate
solutions (individuals) are generated and evolved toward
better direction. Each individual has a set of chromosomes or
genotypes that can be mutated and altered. The chromosome
representation is called a code scheme. It is a binary string of
0s and 1s at the early history, but other encoding are possible
now.

The evolution stage is a iterative process, with each
iteration called a generation. In each generation, the fitness
(goodness) of each individual is calculated. The fitness is a
number indicating our content degree toward a individual.
The larger the fitness, the more content we are. The higher
fit individuals are selected out to reproduce new individuals
(recombination or mutation) to form the new population.
The new population is then used in the next iteration. The
algorithm ends when satisfactory solution has been found or
it reached the maximum generation.

C. evolutionary strategies

Evolutionary strategies (evolution strategies, ES) use nat-
ural problem-dependent and mainly mutation and selection
as search operators. These operators are applied in a loop
as the GA is. The selection in ES is deterministic and only
based on the fitness rankings, not on the real fitness value.
The simplest ES operates on the current point (parent) is to
mutate it to a mutant. Only if the mutant’s fitness is better
than the parent one, it replace the parent. Otherwise, the
mutant is abandoned. This is a (1 + 1)-ES. Moreover, if λ
mutants can be generated and compete with the parent, this
is (λ+ 1)-ES. There are also many other strategies.

As the development of evolutionary computing, the differ-
ence between GA and ES is smaller and smaller.

III. GEAS ALGORITHM

The inspiration of GEAS comes from this observation:
although a POP with parameter k has no direct impact on
problem with larger parameters, and is not directly impacted
by problem with smaller parameters, but these problems are
implicitly affected by each other via parameters, so we can
design evolutionary algorithms based on parameters.

We now give the algorithm (framework) GEAS in Algo-
rithm 1.

Algorithm 1 GEAS
Input:

essential input: M , Ω, f , g, k as mentioned in equation
(1);
non-essential input: the maximum generation MAXGEN,
the population size pop;

Output:
the best x in Ω and M(x);

1: Generate pop individuals randomly or using problem-
specific knowledge, there should exist at least one indi-
vidual λ such that f(λ) = g(k);

2: old=this population;
3: for each i ∈ old do
4: fitnessi = compute fitness(i)
5: end for
6: while process not stop do
7: for each i ∈ old do
8: Select a mate mi for i randomly or intentionally;
9: if crossover condition fits then

10: crossover i and mi to get newi;
11: else
12: copy i to newi;
13: end if
14: if mutation condition fits then
15: mutate on newi;
16: end if
17: end for
18: for each newi do
19: if (temp = compute fitness(newi)) > fitnessi

then
20: replace i ∈ old with newi;

fitnessi = temp;
21: end if
22: end for
23: end while
24: Further improve the solution and output it.

As can be seen, it has a skeleton of basic GA framework.
But

(1) the initialization part (Line 1) decides the feature of
GEAS and is quite different from GA. In GA, its initialization
will only generate individuals whose f value equals to g(k)
for optimization problem with parameter k. But in GEAS, we
generate individuals that are invalid and appear ”irrelevant”
to optimization problems with parameter k. Line 1 is critical
to GEAS, because it utilizes the properties of optimization

890

problems: individual λ such that f(λ) = g(k) can be
positively affected by other individuals whose f value equals
to, say, g(k − 1),g(k + 3). The initialization part produces
the constituent of the population, and this kind of constituent
makes GEAS quite different from GA.

(2) selection in Line 8 is not fitness based. By ”intentional-
ly”, we mean ”strategically randomly ”. The fitness computed
in Line 4 is only used for comparison in Line 19, but not in
selection. Though selection in Line 8 is not fitness based, the
principle that select high quality parents to reproduce high
potential offspring is the same as selection in basic GA.

(3) the substitution part (Line 18 to Line 22) resembles
ES. Each individual represents a solution corresponding to a
problem with certain parameter. For each problem, we only
reserve the better individual between the parent and the son.
It is like a (1+1)-ES.

More explanation on GEAS:

• The input is classified to two categories. The essential
category defines an optimization problem with parame-
ter k. This tells us what problem to solve, so it’s neces-
sary. The non-essential input is mainly for controlling
the algorithm, such as the size of the population, the
arguments for evolution, etc. These arguments are set
by users themselves. The population can be very small
in GEAS, containing only dozens of individuals.

• the initial population have impact on GEAS. So a
problem-specific generating method is suggested. If no
relative knowledge to use, randomly generating will be
ok.

• compute fitness() is a function on individuals. It
returns a quantitative measure for a individual. The large
the fitness, the more we want the individual.

• Line 10 is the crossover operator. Various operators can
be designed according to problems. But at least one of
the parent should be i, because i has the superiority gene
for the corresponding problem, or else the offspring may
lost the advantage gene to the corresponding problem.

• Line 15 is the mutation operator. GEAS is flexible to
include elegant mutation operators. In our simulation
for CLS, we designed two mutators: Swappor() and
Descendor(), both will be described later.

• Line 24 is to further improve the final solution. We
can improve it using common sense or problem-specific
properties. This improvement may not cost us much
time, but can bring us some additional profits.

Following we will introduce the detailed implementation
of CLS on both GEAS and GA framework that uses the same
genetic operators. After that, we will make comparisons.

IV. IMPLEMENTATION OF GEAS AND GA

A. GEAS

CLS has been introduced in section 1. It is to find k edges
so that their deletion makes a network’s pairwise connectivity
(PC) minimize.

1) Encoding scheme: Each individual in the population
encodes a possible deletions, so we use a set ”x” to encode
the deletions. Elements in a set should not repeat, and this
is what we are looking to for solving the problem. A set can
also easily to count its number of elements–the size of the
set. For example x = {(0, 2), (0, 3)} is a 2-deletion to the
network in Figure 1. Because the network we considering is
undirected, so edge (0,2) is also (2,0). Be careful to ensure
(0,2) and (2,0) not appear in x at the same time.

2) Initialization: This part is Line 1 to Line 2.
According to our previous introduction to k−connected−

components, an edge in low connected components should
more be likely to be deleted than in high connected compo-
nents (but it’s not absolute).

So, we first identify each edge, how high connected
components it can belong to. We then assign a value to the
edge to indicate its probability for being chosen to delete.
Thanks to [11], the authors proposed a polynomial time
algorithm that can complete such task. That algorithm takes
Stoer’s minimum cut algorithm on undirected graph [12]
as a base. In our implementation, if an edge belongs to
m− connected− components, its value is 1.0/m.

Then, to generate an individual for the problem with
parameter k, we randomly draw out k edges from the
network according to the probability distribution. At least
one individual for parameter k must be generated. And we
generating other individuals for problems with parameters in
range [k − pop/2, k − 1], [k + 1, k + pop/2], i.e., the whole
population incorporates pop+ 1 individuals with continuing
parameters and k is in the middle. This population style is
good for obtaining diversity to solve CLS problem.

3) Fitness: The fitness is the preciousness of an individu-
al. Since we want to minimize the PC, the fitness can define
fitness = PCoriginal − PCremaining . The fitness will not
be used in the selection process, so we can have different
and simple definition, for example we can replace PCoriginal

with a reasonably large integer. To count the PCremaining

after the deletion of edges of a individual, we only need to
have a traversal (DFS, BFS, etc.) to the remaining graph.

4) Selection: This is in Line 8. If we do not want to
bother finding a highly suitable mate for i, we can randomly
choose an individual as mi. mi should not be too close to i,
especially in the later stage of evolution, because too close
means too similar, which may cause local optimality.

5) Crossover operator: Suppose we have two individuals
a, b, their corresponding problems are with parameters ka
and kb. We want to generate a child c with parameter kb.
Firstly we let c = a ∩ b, and the size of c will not be
greater than b because of the property of intersection set.
If c require additional edges to become a set of size kb, we
randomly choose extra edges from a∪b−a∩b. This operator
well reserves the superiority of the gene for problem with
parameter kb, and also generates diversity.

6) Mutation operator: One of our mutation operator is
the Swappor(). Let x be a deletions. Let e be an edge in
x, and e′ be a neighbour of e but not in x. A neighbour
edge of e means this edge has a common endpoint with e. If

891

containing e′ in the critical link set is better than containing e
we can replace e with e′. The Swappor is a recursive process
as below:

Algorithm 2 Swappor Operator
1: Swappor(individual x){
2: for each edge e ∈ x do
3: if compute fitness((x − e) ∪ e′) >

compute fitness(x) then
4: x = (x− e) ∪ e′ ;
5: Swappor(x);
6: break;
7: end if
8: end for
}

Another mutation operator is called Descendor(). In our
implementation on GEAS, the individuals represent problems
with parameter varies from k − pop/2 to k + pop/2. For
any two adjacent individuals, the latter one should have less
or equal PC than the former one, because one more edge is
deleted in the latter one. That’s to say all the PCs of these in-
dividuals form a descending (non-ascending) order sequence.
When the mutation operator Descendor() operates, it scans
the PC sequence of the individuals from head to tail. where
the descending order is broken, Descendor repairs the order
as this: Replace the latter individual with a copy of the former
one. Then in order to be valid, the latter one should delete
one more edge. If there exist bridges in the remaining graph
for the latter one, we can delete any bridge in it. Tarjan’s
algorithm [13] [14] is an effective way to find all bridges in
a graph. In fact, we can terminate Tarjan’s algorithm in an
early stage once a bridge has been found. Certainly, if you
find out all the bridges and choose the optimal bridge (see
Preliminary), it will be better. If there exists no bridge edges,
we randomly choose an edge from the remaining graph to
delete.

The Descendor() can’t apply to GA, because all the
individuals in GA are for problem with same parameter k,
rather like GEAS for parameters in a range.

B. GA

1) Encoding scheme: Encode a deletion of k edges in a
set. The same as GEAS’s.

2) Initialization: Generating pop + 1 individuals, but in-
dividuals are only valid to the problem with parameter k.
For each individual, we use the probability distribution as
GEAS’s to draw out k edges to form a individual.

3) Fitness: The selection on GA is fitness-based. But our
previous definition of fitness for GEAS can still work here,
i.e. fitness = PCoriginal − PCremaining.

4) Selection: Use the ordinary wheel method to choose a
mate.

5) Crossover operator: As GEAS.

Fig. 2. the terrorists’ network

6) Mutation operator: This algorithm has no descending
order property, so Descendor can’t be applied. But we can
still use Swappor. To be fair during the comparison between
the two algorithms, we do not use Descendor. However, when
GEAS compares to GEAS itself, Descendor can be used.

7) Elitism: The ES ingredient in GEAS has elitism. To
fairly compare GEAS, we use elitism in basic GA too. We
choose the best individual(s) in old generation to replace the
worst individual(s) in new generation if the old one(s) is
better than the young one(s).

V. RESULTS AND ANALYSIS

Our experiments are carried on the 9•11 terrorists network,
which is compiled by Krebs. The network has 43 nodes each
presenting a terrorist and 139 edges, the contacts between
terrorists. The network is shown as Fig. 2.

GEAS has the skeleton of GA. The genetic operators in
both GEAS and GA need same time cost. So the complexity
of the two algorithms are close, except that GEAS’s selection
has a constant-time low complexity, while GA has an O(pop)
complexity. Overall, GEAS has a complexity one order less
than GA.

Fig. 3 shows the comparison between GEAS and GA. The
maximum generation are both 1000 and population size =
100. Actually, the population of GEAS can be smaller than
GA, but for clarity reason, we generate two population of
same size. For fair comparison, we did not use Descendor
in GEAS but use elitism in both. The solutions are nearly
the same at two ends, that’s because when k is too large or
too small, both algorithms can find optimal solution for k, so
we have not show these results in figures. The results show
GEAS has prominent advantages over GA.

892

20 40 60 80 100 120
0

100

200

300

400

500

600

number of edges deleted (k)

P
C

GEAS
basic GA

Fig. 3. the final result of basic GA and GEAS

Without special declaration, the maximum generation is set
to be 1000 and population size is set to be 100 in following
context.

In order to get a near-optimal solution for problem with
parameter k, we ran the program ten times and choose the
minimum solution. We experimented two running style of
GEAS. The first one, called ”ten times for each”: we can
run ten times for each parameter k, finds out the minimum
PC that has got; then, we change to k+ 1 (i.e., let k+ 1 be
in the middle of the population), run the program ten times,
and get the minimum PC... Another one, called ”ten times
for straight”: as mentioned before, the algorithm of GEAS
optimizes all the individuals at the same time (the parallelism
property), so after one running pass, we get the minimum PC
for all the parameters in range. We run this ten times, and
find the minimum PC for every parameter k. The former
style is more troublesome the latter.

Fig. 4 shows result of the two running style. We can see
that there is only slight difference between them. Since there
is not too much difference, we will use the ”ten times for
straight” style for its convenience in the following.

Fig. 5 researches the effect of pop . We tested pop=20, 60,
and 100 of ”ten times for straight” style. It can be seen that
only in particular point that the solutions differ. So dozens
of individuals is sufficient for GEAS, this is the reason why
GEAS is said to have a small population.

We also simulated how fast convergent the program of
GEAS can be. We printed out the temporary solution during
the evolution, in Fig. 6. The data are printed after initializa-
tion, 10% to 50% generation evolved and the final solution.
After 10% generations are evolved, the solutions are very
close to the final solutions. Fast convergency is different from
early-ripe, because the 10% generation’s solution is almost
equal to final solutions, and final solutions are better than
GA’s.

Fig. 7 shows the results of GEAS with and without
mutation operator Descendor. We can see, the Descendor
wipes off the mountain peaks and improves the solutions.

20 40 60 80 100 120
0

100

200

300

400

500

600

number of edges deleted (k)

P
C

ten times for all
ten times for straight

Fig. 4. different running style

20 40 60 80 100 120
0

100

200

300

400

500

600

number of edges deleted (k)

P
C

20 individuals
60 individuals
100 individuals

Fig. 5. the effect of population size

20 40 60 80 100 120
0

100

200

300

400

500

600

700

800

900

1000

number of edges deleted (k)

P
C

initialization
10%
20%
30%
40%
50%
100%

Fig. 6. the solutions during evolution

893

20 40 60 80 100 120
0

100

200

300

400

500

600

number of edges deleted (k)

P
C

without Descendor
with Descendor

Fig. 7. effect of Descendor

VI. CONCLUSION

In this paper, a new algorithm (framework) that has the
features of GA and ES has been proposed. This algorithm
is an effective arms to deal with a class of parameterized
optimization problems. By systematically testing its conver-
gency, speed and accuracy, it outperforms GA with same
genetic operators. More over, it can optimize a lot of similar
problems but with other parameters concurrently.

REFERENCES

[1] M. Cesati.Compendium of parameterized problems. Dept. Computer
Science, Systems, and Industrial Eng., University of Rome Tor Vergata,
2006.

[2] Y. Shen, N. P. Nguyen, Y. Xuan, et al. On the discovery of critical
links and nodes for assessing network vulnerability. 2012.

[3] C. E. Leiserson, R. L. Rivest, C. Stein.Introduction to algorithms. The
MIT press, 2001.

[4] C. W. Churchman, R. L. Ackoff, E. L. Arnoff. Introduction to
operations research. 1957.

[5] D. E. Goldberg, J. H. Holland. ”Genetic algorithms and machine
learning”. Machine learning, 3(2): 95-99, 1988.

[6] I. Rechenberg. Evolutionsstrategie–Optimierung technisher Systeme
nach Prinzipien der biologischen Evolution. 1973.

[7] L. D. F. Costa, F. A. Rodrigues, G. Travieso,et al. ”Characterization of
complex networks: A survey of measurements. ” Advances in Physics,
56(1), 167-242, 2007.

[8] T. N. Dinh, Y. Xuan, M. T. Thai, et al. ”On new approaches of assess-
ing network vulnerability: hardness and approximation.” Networking,
IEEE/ACM Transactions on, 20(2), 609-619, 2012.

[9] Y Shen., T. N. Dinh, M. T. Thai. ”Adaptive algorithms for detecting
critical links and nodes in dynamic networks”//MILITARY COMMU-
NICATIONS CONFERENCE, 2012-MILCOM 2012. IEEE, pp 1-6,
2012.

[10] T. C. Matisziw, T. H. Grubesic, J. Guo. ”Robustness elasticity in
complex networks”. Plos one, 7(7): e39788, 2012.

[11] R. Zhou, C. Liu, J.X. Yu, et al, ”Finding Maximal k-Edge-Connected
Subgraphs from a Large Graph.” In: EDBT 2012, Berlin, Germany,
2012.

[12] M. Stoer, F. Wagner, ”A Simple Min-cut Algorithm.” J. ACM, 44(4),
585–591, 1997.

[13] R. Tarjan, ”Depth-Frist Search and Linear Graph Algorithms.” SIAM
J. Comput., 1(2), 146–160, 1972.

[14] J. Hopcroft, R. Tarjan, ”Efficient Algorithms for Graph Manipulation.
” Communications of the ACM, 16(6),372–378, 1973.

[15] V. E. Krebs, ”Uncloaking terrorist networks. First Monday”. 7(4),
2002.

894

