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Abstract—In this paper we investigate the performance of
cooperative co-evolutionary (CC) algorithms on large-scale fully-
separable continuous optimization problems. We have shown
that decomposition can have significant impact on the perfor-
mance of CC algorithms. The empirical results show that the
subcomponent size should be chosen small enough so that the
subcomponent size is within the capacity of the subcomponent
optimizer. In practice, determining the optimal size is difficult.
Therefore, adaptive techniques are desired by practitioners. Here
we propose an adaptive method, MLSoft, that uses widely-used
techniques in reinforcement learning such as the value function
method and softmax selection rule to adapt the subcomponent
size during the optimization process. The experimental results
show that MLSoft is significantly better than an existing adaptive
algorithm called MLCC on a set of large-scale fully-separable
problems.

I. INTRODUCTION

Cooperative co-evolutionary (CC) algorithms [1] have been
widely used for function optimization [2]–[14]. A CC frame-
work is appealing, especially for solving large-scale complex
problems. Many such techniques have been used for large-scale
global optimization [3], [5], [7]–[11], [15]. CC algorithms
use a divide-and-conquer approach to decompose a large-scale
problem into a set of lower dimensional problems which are
easier to optimize.

The main challenge of using a CC framework is finding
an optimal decomposition. It is clear that a problem of a
certain size can be decomposed in many different ways.
Among all possible decompositions, the one that results in the
highest optimization performance is desirable. Such an optimal
decomposition varies from problem to problem and depends
on many factors. Variable interaction is an important factor
that can significantly affect the performance of a particular
decomposition. Variable interaction is loosely defined as the
degree to which the fitness of one variable is influenced by
the values taken by other variables. Variable interaction is also
known as epistasis or non-separability [16], [17]. A class of
problems known as partially-separable [18] problems consists
of several groups of interacting (non-separable) variables with
no interaction between groups. When a CC framework is used
to optimize a partially-separable problem, it is important to
use a decomposition that takes the variable interaction into

account. The optimization performance degrades significantly
if interacting variables are placed in different subcomponents.

In some problems the interaction structure is known, but
in many problems the optimization algorithm has to auto-
matically identify the underlying interaction structure of the
decision variables. Several algorithms have been proposed for
automatic identification of variable interaction [10], [12], [19].
Differential grouping [10] is the state-of-the-art decomposi-
tion algorithm that can identify non-separable and separable
variables with high accuracy. Most of the studies that deal
with variable interaction emphasize the importance of optimal
decomposition of non-separable variables, and often neglect
the importance of proper decomposition of separable variables
and their impact on the performance. It should be noted that
a partially-separable problem may contain a fully-separable
subcomponent which is completely independent of other non-
separable subcomponents. Consequently, proper subdivision
of a fully-separable subcomponent of a partially-separable
problem can directly lead to the improvement of the overall op-
timization performance. Therefore, focusing on fully-separable
problems allows us to investigate the effect of subcomponent
size that can be extended to partially-separable functions. In
particular, the aim of this paper is to answer the following
questions:

• How various decompositions of a fully-separable
problem can affect the performance of a CC algo-
rithm?

• What is an effective decomposition for a fully-
separable problem?

• How an algorithm can automatically find a suitable
decomposition in the course of optimization?

In a fully-separable problem there is no interaction between
any pair of variables. Therefore, no particular decomposi-
tion is imposed due to variable interaction. It may appear
that the best decomposition for such cases is to break the
problem into a set of 1-dimensional problems. However, in
a CC framework the more subcomponents there are, the more
computational resources (fitness evaluations) are required in
each co-evolutionary cycle. This means that the simplification
of a problem by means of decomposition comes at the expense
of using more computational resources. The other extreme

1305

2014 IEEE Congress on Evolutionary Computation (CEC) 
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE



decomposition is to group all variables in one subcomponent.
This decomposition uses the least amount of resources in each
co-evolutionary cycle, but makes the search space extremely
large. In this paper, we show that a more effective decom-
position of a fully-separable problem lies in between these
two extreme cases. In particular, we show that the rule of
thumb for selecting a subcomponent size is to choose it small
enough so that it is within the capacity of the subcomponent
optimizer, but it should not be made any smaller. In short, the
subcomponent should be made as small as possible, but not
smaller1. It should be noted that the capacity of an optimizer is
not always known, and finding the optimal subcomponent size
requires elaborate empirical studies. A more practical approach
is to adapt the subcomponent size during the optimization.
Multilevel cooperative co-evolution (MLCC) [5] is such a
method that uses a probabilistic approach to adapt the sub-
component sizes during optimization. In this paper, we show
that the problem of adapting the subcomponent size for a fully-
separable problem can be seen as a reinforcement learning [20]
problem. We also show that a simple reinforcement learning
technique called the value function method and the softmax
action selection rule [20] can be used to significantly improve
the performance of MLCC.

The organization of the rest of this paper is as follows.
Section II describes a general CC framework, and the MLCC
algorithm. Section III describes the proposed method for adapt-
ing the subcomponent size based on action value method and
softmax. Experimental results and their analysis are provided
in Section IV. Finally, Section V concludes the paper and
outlines possible future extensions.

II. BACKGROUND

A. Cooperative Co-evolution

Cooperative Co-evolution (CC) [1] has been proposed as
a means of breaking a complex problem down into a set
of smaller subproblems. Once the problem is decomposed,
subcomponents are co-adapted in a round-robin fashion. There
are many different ways of decomposing a problem. An
optimal decomposition is governed by the underlying inter-
action structure of the decision variables. Algorithms such as
differential grouping [10] automatically identify the interaction
structure of variables and returns a decomposition that can
be used in a CC framework. The subcomponents returned
by such algorithms are usually of different sizes, but for
simplicity in this section we assume equal subcomponent
sizes. Algorithm 1 shows the general framework of a CC
algorithm. The function grouping can be any grouping
procedure such as differential grouping [10]. Lines 4-11 show
the main loop of the CC framework. The inner loop (lines 5-
10) iterates over all subcomponents and optimizes them using
the optimizer function for a predetermined number of iter-
ations. The optimizer can be any evolutionary algorithm.
In this paper we use SaNSDE [21] which is a variant of
differential evolution (DE) [22] with neighborhood search that
adapts the crossover rate and the scaling fact of DE. In this
paper the grouping function subdivides a n-dimensional
problem into s d-dimensional subcomponents and the order of

1“everything should be made as simple as possible, but not simpler”. Source:
of unknown origin, but often attributed to Albert Einstein.

Algorithm 1: CC(func, lbounds, ubounds, n)

1. groups← grouping(f, lbounds, ubounds, n) ⊲ grouping stage.

2. pop← rand(popsize, n) ⊲ optimization stage.

3. (best, best val)← min(f(pop))
4. for i← 1 to cycles do

5. for j ← 1 to size(groups) do

6. indicies← groups[j]
7. subpop← pop[:, indicies]
8. (subpop, best, best val)← optimizer(f, best, subpop, FE)
9. pop[:, indicies]← subpop

10. end for

11. end for

the decision variables is fixed during a run. Here we abbreviate
a CC framework with SaNSDE as its optimizer to DECC. It
should be noted in Algorithm 1 the groups do not change
during the optimization and they are determined only once
prior to the optimization phase.

B. Multi-level Cooperative Co-evolution

Multilevel cooperative co-evolution (MLCC) [5] uniformly
decomposes a problem into s d-dimensional problems. MLCC
maintains a list of several common subcomponent sizes (also
known as decomposers) and assigns a performance score to
each decomposer based on their performance in each co-
evolutionary cycle. Finally, it uses a probabilistic approach
to select a decomposer to subdivide a large-scale problem
in each cycle. In order to increase the probability of placing
two interacting variables in a common subcomponent, MLCC
randomly rearranges the decision variables at the beginning
of each cycle. MLCC has been initially designed to deal with
non-separable problems. However, it is now superseded by al-
gorithms such as differential grouping [10] that can identify the
interaction structure of variables with high accuracy. Although
MLCC is not the most efficient method for dealing with non-
separable variable, its way of adapting the subcomponent size
can be used for decomposing fully-separable problems.

Major steps of the MLCC algorithm are as follows:

1) The initial random population is created and evalu-
ated.

2) The vector of subcomponent sizes is initialized to the
values provided by the user: S = (s1, . . . , sk), where
si is the ith decomposer, and k is the number of
available decomposers.

3) A vector is created for maintaining the performance
of each subcomponent: R = (r1, . . . , rk). The per-
formance records ri is initialized to 1.

4) A decomposer is randomly chosen from S with a
probability drawn from the following distribution:

pi =
e7ri∑k

j=1 e
7rj

, (1)

where the constant 7 is suggested based on empirical
results.

5) Once a decomposer si is chosen, the decision vari-
ables are first randomly reordered and then are di-
vided into groups of size si.

6) Each subcomponent is optimized for a predetermined
number of iterations.
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7) The performance record of the ith decomposer is
updated as follows:

ri =
(f − f ′)

|f |
, (2)

where f is the objective value of the best individual
in the current cycle and f ′ is the objective value of
the best individual in the previous cycle.

8) Go back to step 4 until a stopping criterion is met.

On CEC’2008 [23] benchmark problems, MLCC has
shown significant improvement over random and static de-
composition techniques [5]. However, the experimental results
reported in [5] suggest that the performance of MLCC is close
to other methods on fully-separable functions. We speculate
that the improvement in performance is largely attributed to the
decomposition of non-separable variables and MLCC performs
poorly on fully-separable functions. In this paper, we compare
the performance of MLCC with 10 different static approaches
and show that MLCC is not effective when dealing with large-
scale fully-separable functions. In the next section we show
how value action method and softmax action selection rule can
be used to improve the performance of MLCC on separable
problems.

III. PROPOSED ALGORITHM

In this section we propose a simple modification to the
MLCC algorithm that can significantly improve its perfor-
mance. We apply some simple methods taken from reinforce-
ment learning – called action value method and softmax action
selection rule [20] – to improve the performance of MLCC.

Broadly speaking, every reinforcement learning problem
has the following major components [20]:

• policy: determines how an agent behaves in an envi-
ronment;

• reward function: assigns a reward to a given action.
In other words, it measures the desirability of a given
action;

• value function: unlike a reward function that measures
the immediate utility of an action, a value function
measures the long-term utility of an action;

• model: a model of the environment helps an agent
determining the next state and its reward given a
state and action. Models are used for planning and
predicting the future.

The main goal of reinforcement learning is to find a policy so
that an agent, in an uncertain environment, can maximize its
long-term reward. In the context of optimizing fully-separable
functions, this translates into finding a strategy for selecting
a decomposition over the course of evolution in order to
maximize the overall optimization performance.

In MLCC the selection policy is determined probabilisti-
cally by Equation (1). In the context of reinforcement learning
the softmax action selection method uses a Gibbs distribution
which is very similar to Equation (1) and has the following
general form:

pi =
eVt(i)/τ∑k

j=1 e
Vt(j)/τ

, (3)

where Vt(i) is the value function that determines the long-
term value of ith action, and the parameter τ determines the
balance between exploration and exploitation. A larger value of
τ makes all actions almost equiprobable, whereas when τ → 0
the algorithm greedily chooses the action that it perceives to
be the best. A typical way of estimating the value of an action
is to take the arithmetic mean of all rewards received when a
particular action was taken.

Vt(i) =
r1i + · · ·+ rqi

qi
, (4)

where rji is the reward received when ith action was taken at
jth time step for j ∈ {1, . . . , q}.

Equation (2) can be regarded as a reward function that
measures the immediate utility of the ith decomposer at an
arbitrary iteration (time step). It is clear that MLCC uses the
reward function in place of the value function. This makes
MLCC very greedy as it only uses the immediate rewards
for action selection (selecting a decomposer). MLSoft on the
other hand uses action values as determined by Equation (4)
for assigning probabilities to decomposers. In order to avoid
keeping an archive of rewards for all decomposers, the value
function can be incrementally updated as follows:

Vt+1(i) =
r1i + · · ·+ r(qi+1)

(qi + 1)
=

qiVt(i) + r(qi+1)

(qi + 1)
. (5)

High-level steps of the MLSoft algorithm can be summa-
rized as follows:

1) The initial random population is created and evalu-
ated.

2) The vector of subcomponent sizes is initialized to the
values provided by the user: S = (s1, . . . , sk), where
si is the ith decomposer, and k is the number of
available decomposers.

3) A vector is created for maintaining the performance
of each subcomponent: R = (r1, . . . , rk). The per-
formance records ri are initialized to 0. This results
in a uniform distribution for the first iteration.

4) A decomposer is randomly chosen from S with a
probability drawn from a Gibbs distribution defined
in Equation (3).

5) Once a decomposer si is chosen, the decision vari-
ables are divided into groups of size si.

6) Each subcomponent is optimized for a predetermined
number of iterations.

7) The performance record of the ith decomposer is
updated according to Equation (2), and the value
function is updated according to Equation (5).

8) Go back to step 4 until a stopping criterion is met.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section we compare the performance of MLCC
against DECC with different subcomponents sizes. We show
empirically how an effective subcomponent size for a CC
framework can be determined. Finally, we compare the per-
formance of MLCC with MLSoft which is proposed in this
paper.
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TABLE I. A LIST OF FULLY-SEPARABLE AND SCALABLE BENCHMARK PROBLEMS.

Function Equation Domain Optimum

Sphere Function f1(x) =

n
∑

i=1

x
2

i
[−100, 100]n x

∗ = 0, f1(x
∗) = 0

Quadratic Funciton f2(x) =

n
∑

i=1

ix
4

i
+N (0, 1) [−100, 100]n x

∗ = 0, f2(x
∗) = 0

Elliptic Function f3(x) =

n
∑

i=1

10
6

i−1

n−1 x
2

i
[−100, 100]n x

∗ = 0, f3(x
∗) = 0

Rastrigin’s Function f4(x) =

n
∑

i=1

[

x
2

i
− 10 cos(2πxi) + 10

]

[−5, 5]n x
∗ = 0, f4(x

∗) = 0

Ackley’s Function f5(x) = −20 exp



−0.2

√

√

√

√

1

n

n
∑

i=1

x2

i



− exp

(

1

n

n
∑

i=1

cos(2πxi)

)

+ 20 + e [−32, 32]n x
∗ = 0, f5(x

∗) = 0

Schwefel’s Function f6(x) = 418.9829n−

n
∑

i=1

xi sin(
√

|xi|) [−512, 512]n x
∗ = 1, f6(x

∗) = 0

Sum of Different Powers f7(x) =
n
∑

i=1

|xi|
i+1

[−1, 1]n x
∗ = 0, f7(x

∗) = 0

Styblinski-Tang Function f8(x) =
1

2

n
∑

i=1

(x
4

i
− 16x

2

i
+ 5xi) + 38.16599n [−5, 5]n x

∗ = −2.903534× 1

f8(x
∗) = 0

TABLE II. MEDIAN OF 25 INDEPENDENT RUNS. BEST RESULTS ARE HIGHLIGHTED (PAIR-WISE MWW WITH HOLM CORRECTION USING α = 0.05).

s× d 1000× 1 100× 10 10× 100 1× 1000 200× 5 20× 50 2× 500 500× 2 50× 20 5× 200 MLCC

f1 4.25e-02 3.98e-05 4.52e-13 5.17e+00 2.16e-04 5.12e-11 1.92e-04 3.79e-05 7.73e-07 3.86e-11 1.76e-02

f2 1.07e+02 2.78e+01 6.35e+00 1.15e+05 4.34e+01 1.08e+01 4.90e+01 6.71e+01 1.97e+01 4.16e+00 9.33e+01

f3 3.14e+03 3.05e+00 2.24e-08 9.58e+03 1.54e+01 3.10e-06 1.48e+00 2.56e+00 5.58e-02 2.33e-06 1.55e+03

f4 1.24e+00 6.95e+02 1.44e+03 1.37e+03 7.04e+01 1.66e+03 1.09e+03 5.06e-02 1.35e+03 1.08e+03 7.46e-01

f5 8.93e-03 2.59e-04 4.89e-08 1.17e+01 5.93e-04 3.14e-07 7.63e+00 2.57e-04 3.83e-05 2.52e+00 5.51e-03

f6 1.93e+00 9.80e+00 5.94e+04 1.20e+05 1.87e-01 4.61e+04 8.76e+04 1.57e-02 3.31e+03 4.93e+04 1.05e+00

f7 1.72e-05 1.64e-15 1.50e-30 6.42e-24 9.94e-11 4.19e-30 1.40e-25 3.41e-08 6.80e-23 2.77e-28 1.09e-03

f8 3.45e-03 2.52e-05 7.21e+02 4.75e+03 3.41e-05 8.48e+01 3.82e+03 3.24e-06 6.45e-06 1.99e+03 1.59e-03

A. Benchmark Problems and Parameter Settings

The experimental results in this paper are based on eight
fully-separable functions which are listed in Table I. Functions
f1 and f2 are from De Jong suite [24], and the remaining
are commonly used functions for benchmarking continuous
optimization algorithms [18], [25], [26]. Functions f1, f3
and f7 are unimodal and the remaining five functions are
multi-modal. The scalability of these functions make them
ideal for the purposes of this study. The total number of
fitness evolutions FE used in this study is set to 3e + 6.
Various decomposers that is used in this study are as follows
S = {1, 2, 5, 10, 20, 50, 100, 200, 500, 1000}. These values
that represent low, medium and high dimensional subcompo-
nent sizes allow us to approximately determine the optimal
subcomponent size.

B. Results and Analysis

Table II shows the median of the final results obtained by
25 independent runs of DECC with different subcomponent
sizes and MLCC. For testing the statistical significance of
the results, first the Kruskal-Wallis one-way ANOVA [27] is
used to find out if there is any significant difference between
the algorithms. If a significant difference is detected, then a
series of pair-wise Mann-Whitney-Wilcoxon (MWW) tests are
conducted with Holm correction [27] in order to find the best
performing algorithm. Holm correction is a simple technique
for controlling the family-wise error rate. Family-wise error
rate is the accumulation of type I errors when more than
one pair-wise comparison is used to rank a set of results.
All statistical tests are based on 5% significance level. For
each function, the statistically best results are marked in bold.

From the table, one can see that 100 is the best subcomponent
size 2, which led to statistically best results on 4 from a total 8
functions. On function f2 subcomponent size of 200 is the best
performing subcomponent size, followed by the subcomponent
size of 100 (4.16e+00 versus 6.35e+00). The subcomponent
size of 2 comes next, showing statistically best performance
on 3 functions. On f7 three different subcomponent sizes (50,
100 and 200) resulted in statistically similar results. However,
the subcomponent size of 100 still has the best median value.
Overall, on the eight benchmark functions, one can see that the
best subcomponent size is either 100 or 2. Figure 1 shows the
convergence curves of the median of the compared algorithms
on all the benchmark functions. From the figure, one can see
that the convergence curve of the best subcomponent size is
not always the lowest throughout the entire search process. For
example, on f1, the convergence curve of the best DECC with
10×100 is above a number of other compared algorithms (even
including 1000 × 1) before 5000th iteration. This indicates a
potential to adaptively change the subcomponent size (e.g.,
1 for the first 5000 iterations and 100 afterwards for f1) to
further enhance the performance of the algorithm.

Table II shows that the best subcomponent size is not con-
sistent over all the benchmark functions. Thus, it is necessary
to investigate the factors that may affect the best subcomponent
size. One intuitive factor is the behavior of the subcomponent
optimizer, which is problem dependent and largely determines
the performance of the overall CC framework. Since SaNSDE
was selected as the subcomponent optimizer for this study,
we investigated its behavior on the benchmark functions and
derive its relationship with the best subcomponent size shown

2best among the available subcomponent sizes defined in S.
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Fig. 1. Convergence plots of different algorithms on fully-separable functions using 3e6 fitness evolutions. Each iteration is equal to 100 fitness evolutions.
Each point is the median of 25 independent runs.
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in Table II. To this end, a performance metric normalized by
the dimension of problem is required for a fair comparison of
SaNSDE’s performance on various dimensions.

Normalized performance φ: Assuming that the number
of fitness evaluations required for an algorithm to solve a given
1-dimensional optimization problem to an acceptance level
(e.g., an average deviation of 10−10 from the global optimum)
is c, then the normalized performance φ of the algorithm on
the corresponding n-dimensional fully-separable optimization
problem is defined as the performance (e.g., mean and median)
given c × n fitness evaluations. This can be considered as
optimizing n independent 1-dimensional problems. Therefore,
c×n is an approximation to the number of fitness evaluations
required. It should be noted that this linear approximation
is accurate for small n where the problem size does not
significantly affect the search efficiency of the algorithm and
thus more fitness evaluations may lead to better results through
more comprehensive exploitation. However, it is known that
the relationship is nonlinear due to the issue of scalability when
n becomes large. In other words, for large n the assumption
that the number of required fitness evolutions for solving a
problem grows linearly with respect to n becomes invalid,
and we expect to see a significant increase in the value of
φ for large values of n. Therefore, when we plot the value
of φ with respect to n we expect to see an initial decrease
in the value of φ as n is increased followed by a relatively
sharp increase in φ for larger values of n. The plots shown in
Figure 2 are constructed using this method and the behavior
mentioned above can be clearly seen. This figure can be
used to approximately find the optimal dimension size that
an optimizer can solve most efficiently. More specifically, the
size (n) for which φ is minimum are the best subcomponent
sizes for a give problem.

In the DECC framework on fully-separable functions, the
overall fitness evaluations are uniformly allocated to each
of the equally-sized subcomponents. The number of fitness
evaluations assigned to each subcomponent is thus dependent
on the number of subcomponents, or the size of each sub-
component. Supposing that the original n-dimensional decision
vector are decomposed into s d-dimensional subcomponents
(n = s × d), then the number of fitness evaluations assigned
to each subcomponent is FE

s
= FE×d

n
, where FE is the

overall fitness evaluations. It is clear that the performance
of DECC on fully-separable functions mainly depends on the
performance of the subcomponent optimizer given the assigned
fitness evaluations of FE×d

n
. Such performance is consistent

with the defined normalized performance φ by setting c = FE
n

.

To make φ consistent with the performance of DECC, it is
specifically defined as follows:

φmedian = s× median

(
FE × d

n
, 25

)
(6)

where median(FE×d
n

, 25) is the median of the final results

over 25 independent runs given FE×d
n

fitness evaluations. This
is because the final result obtained by DECC is the sum of the
results of all the subcomponents, which can be approximated
by s times the result of each subcomponent.

Figure 2 shows φmedian of SaNSDE for different dimen-
sions of all the benchmark functions. It can be seen that for

TABLE III. MEDIAN OF 25 INDEPENDENT RUNS. COMPARISON WITH

MLCC AS THE CONTROL GROUP USING PAIR-WISE MWW (α = 0.05).

MLCC
MLSoft MLSoft MLSoft DECC’s Best

(τ = 0.05) (τ = 0.5) (τ = 10) Performing Decomposer

f1 1.76e-02 4.16e-05 1.65e-03 3.02e-04 4.52e-13 (10× 100)

f2 9.33e+01 6.51e+01 8.74e+01 6.97e+01 4.16e+00 (5× 200)

f3 1.55e+03 4.19e+02 1.23e+02 1.82e+01 2.24e-08 (10× 100)

f4 7.46e-01 7.49e-01 3.85e-01 3.45e-01 5.06e-02 (500× 2)

f5 5.51e-03 5.56e-03 1.33e-03 6.30e-04 4.89e-08 (10× 100)

f6 1.05e+00 7.62e-02 1.39e-01 5.14e-02 1.57e-02 (500× 2)

f7 1.09e-03 2.18e-07 1.91e-09 3.53e-11 1.50e-30 (10× 100)

f8 1.59e-03 2.96e-03 1.61e-04 4.92e-05 3.24e-06 (500× 2)

all of the benchmark functions, there is an obvious trend that
φmedian first decreases and then increases with the increase
of dimension of the function. The only exception is f2, for
which φmedian keeps constant up to 200 dimensions, and
then increases. More importantly, the best subcomponent size
shown in Table II is highly consistent with the bottom of the
curve. For almost all functions, the best or the second best
performing dimensions in Figure 2 match the best performing
subcomponent size in Table II (100 for f1, f3, f5 and f7;
2 for f4 and f6). The only exception is f8 for which the
best subcomponent size of 2 is far away from the bottom of
the curve which occurs at 50. It is noteworthy that according
to Table II, the subcomponent size of 50 is the second best
performing subcomponent size. Such inconsistency might be
caused by large variance of the final results for problems with
higher number of dimensions.

In summary, the above analysis shows that when apply-
ing DECC to solve large-scale fully-separable optimization
problems, an effective subcomponent size is neither too small
nor too large, and is dependent on the performance of the
subcomponent optimizer SaNSDE normalized by the problem
dimension, φmedian, as defined in Equation (6). However, in
practice, such performance of subcomponent optimizer is not
often known in advance. In this case, adaptively identifying an
effective subcomponent size during the optimization process
becomes desirable, thereby the MLSoft approach is proposed.

Table III shows the median of the results of MLCC and
MLSoft with different τ ’s over 25 independent runs, along with
the state-of-the-art results obtained by the best subcomponent
size shown in Table II. For each version of MLSoft, the
results that are statistically better than the results of MLCC
are marked in bold. Here the Holm correction is not required
because all algorithms are compared with MLCC as a control
group. The last column is included for reference and was
not included in the statistical tests. The table clearly shows
that all versions of MLSoft outperform MLCC. MLSoft with
τ ∈ {0.5, 10} performed the best, obtaining significantly better
results on almost all benchmark functions. Although MLSoft
with τ = 0.05 performed significantly better than MLCC
on only two functions, most of its median values are lower
than MLCC. The reason for this behavior can be attributed to
higher variance of the results when τ = 0.05. This is intuitive
because a lower value of τ results in a more exploitative
behavior which can potentially increase the standard deviation
of the final results. It was mentioned previously that MLCC
uses the reward function in place of the value function. This
means that MLCC behaves greedily and tries to maximize
the immediate reward that may not result in a high long-
term reward. According to Equation (2) the parameter τ for
MLCC is 1

7 ≈ 0.15. From the results of Table III we see that
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Fig. 2. Scalability plots of SaNSDE on different fully-separable functions. Each point on the plots is calculated based on the normalized performance φ as
defined in Equation (6) where FE = 3e6 using 25 independent runs.

higher values of τ which results in higher exploratory power
generally perform better. However, MLCC with τ ≈ 0.15
performs worse than MLSoft with τ = 0.05. This shows that
using a proper value function in order to estimate the long-term
rewards is essential. Finally, the table shows that although three
versions of MLSoft outperformed MLCC, they still perform
worse than DECC with best obtained subcomponent size. The
reason for this behavior might be related to the non-stationary
nature of the problem. In general, a non-stationary problem is
the one in which the true values of its actions change over time.

In this context non-stationary means that the performance of
different decomposers changes over time. This is evident from
the convergence plots shown in Figure 1. The technique of
averaging (Equation (4)) is suitable for stationary problems.
For a non-stationary problem it is more intuitive to assign a
higher weight to more recent rewards. Finding better methods
for dealing with non-stationary nature of this problem requires
a separate study. Nevertheless, we have shown in this paper
that reinforcement learning techniques have great potential for
adapting the subcomponent size for fully-separable problems.
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V. CONCLUSION

In this paper we have shown that different subcomponent
sizes can have significant impact on the performance of a
CC framework on large-scale fully-separable continuous op-
timization problems. We have shown empirically that the two
extreme decompositions i.e. n×1 and 1×n are often the worst
performing decompositions and should be avoided in a CC
framework. We have seen that, in general, the subcomponents
should be neither too small nor too large. The empirical results
suggest that the rule of thumb for selecting a subcomponent
size is to choose it small enough so that it is within the
capacity of the subcomponent optimizer, but it should not
be made any smaller. It should be noted that in practice the
capacity of the subcomponent optimizer on various problems
is often unknown. Therefore, adaptively identifying the an
effective subcomponent size during the optimization process
is desirable, thereby the MLSoft approach has been proposed.
The comparative study with MLCC has shown that algorithms
with higher exploratory power generally perform better. We
have also seen that the use of a value function for estimating
long-term rewards also significantly improves the performance
of MLSoft. However, due to non-stationary nature of the
problem there is a large gap between the performance of
MLCC and the best performing decomposer. Finding better
value functions for dealing with the non-stationary aspect of
the problem is the subject of our future investigations.
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