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Abstract—Though there are numerous approaches developed
currently, exploring the practical applications of estimation of
distribution algorithm (EDA) has been reported to be one
of the most important challenges in this field. This paper is
dedicated to extend EDA to solve one of the most active research
problems – stock trading, which has been rarely revealed in
the EDA literature. A recent proposed graph-based EDA called
reinforced probabilistic model building genetic network program-
ming (RPMBGNP) is investigated to create stock trading rules.
With its distinguished directed graph-based individual structure
and the reinforcement learning-based probabilistic modeling, we
demonstrate the effectiveness of RPMBGNP for the stock trading
task through real-market stock data, where much higher profits
are obtained than traditional non-EDA models.

I. INTRODUCTION

In recent years, there has been a significant development
of Estimation of Distribution Algorithm (EDA) [1], [2], [3],
[4]. Different from the traditional evolutionary computation
(EC) techniques which simulate the biological evolution for
generating the new population stochastically, EDA focuses on
building a probabilistic model from the perspective of machine
learning (ML). The probabilistic model estimates the probabil-
ity distribution of the current population, and is used to sample
the new population. Currently, it has been demonstrated that
EDA is capable of realizing significant speed-up of evolution
efficiency comparing with traditional EC techniques when
applying to solve many problems, i.e., function optimization
[5], [6], bioinformatics [7], [8], multiobjective optimization
[9], [10], scheduling [11], dynamic problems [12], continuous
optimization [13], [14], program generation [15], [16], [17],
[18], [19], information retrieval [20], etc.

Recently, a new type of EDA techniques called probabilistic
model building genetic network programming (PMBGNP)
[21], [22], [23] has been developed. Different from the existing
EDA techniques which apply the concept of probabilistic
modeling into bit-string structure based GA [24] and tree
structure based GP [25], PMBGNP is dedicated to estimate the
probability distribution of a more complex solution structure –
graph structure. Accordingly, it can be viewed as a graph-based
EDA. PMBGNP applies a recent proposed EC technique, i.e.,
genetic network programming (GNP) [26], [27], [28], as the
base model to construct its individuals. Following the research
directions of EDA, the univariate [22], pairwise [29] and
continuous PMBGNP [30] were proposed previously, which
have also been studied in both theory [31] and applications
[32], [33]. Different from the conventional EDA techniques,

PMBGNP is dedicated to solve a different sort of problems,
that is, the intelligent agent control. In the previous research, it
has been successfully applied to the benchmark problems [23]
of the intelligent agent control, as well as the real mobile robot
control [34], [35], where its superiority has been demonstrated
in comparison with the traditional state-of-the-art techniques.

Beyond the much success of EDA in the past studies, it
has been reported and accepted that one of its most important
challenges is to explore its applications to solve wider range
of problems [36], especially its real-world practical usage.
Particularly, there have been numerous studies in applying
the soft computing techniques to the stock trading task, such
as GA [37], GP [38], [39], GNP [40], neural network (NN)
[41], etc., which soon becomes one of the most active research
problems. However, this problem has been rarely addressed in
the EDA literature, where a gap remains to be filled.

In this paper, we are dedicating to develop an EDA-
based stock trading model using PMBGNP. Particularly, an
advanced version of PMBGNP called Reinforced PMBGNP
(RPMBGNP) [23], [42] is utilized as the base technique to ef-
ficiently evolve the stock trading rules. RPMBGNP developed
a reinforcement learning (RL)-based probabilistic modeling
approach to estimate the probability distribution of its directed
graphs, which showed efficient evolution ability for generating
compact programs with decision-making rules.

The fundamental basis of the proposed model arises from
that when developing an intelligent trading system, a large
number of technical indices should be considered to track the
movement of the real stock market which sometimes causes
the dramatic expansion of the search space. However, due to
its efficient scalability and evolution ability under large search
space, EDA may provide significant improvement of evolution
efficiency when comparing with standard EC techniques.

In the next section, the basic framework of the stock trading
task is described. Section III introduces the proposed stock
trading model based on RPMBGNP. The experimental studies
using the real stock data are carried out in section IV. Finally,
the conclusions are drawn in section V.

II. BASIC FRAMEWORK OF STOCK TRADING

Generally, the stock trading task has been focused on in
two different aspects. One is the fundamental analysis, which
focuses on analyzing the stock prices based on the overall state
of macroeconomic markets. Another is the technical analysis
which assumes that any factor that truly influences the market
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will immediately show up in the movement of the stock prices.
Though there are some theories addressing that no investor
can achieve more than average trading advantages based on
the historical information, i.e., the efficient-market hypothesis
[43], it has been empirically verified that analyzing a large
amount of historical data based on the technical indices can
relatively capture the movement of the market [44], [45].
In this paper, we are focusing on the technical analysis to
determine the timing of buying/selling signals of the stocks
by creating trading rules using RPMBGNP.

A. Technical Indices

The foundation of the technical analysis arises from the
technical indices, each of which is a series of data points that
are derived by applying a mathematical equation to the price
data of the real market. The public price data of the stock
market generally includes the following 5 types, that is, each
day’s open price, close price, high price, low price and the
volume of trades. The technical indices are capable of offering
different perspectives from which the underlying movement of
prices is analyzed. Among many available choices, this paper
applies 9 major technical indices for the stock trading task
based on the empirical experience.

1) Rate of deviation (BIAS): BIAS is the rate of deviation
from the average price over a period of time, which can esti-
mate the possible correction or rebound of the price volatility.
It can be calculated by

𝐵𝐼𝐴𝑆(𝑛) =
(
𝑝−𝑀𝐴(𝑛)

)/
𝑀𝐴(𝑛), (1)

where 𝑝 is today’s close price, and 𝑀𝐴(𝑛) is the moving
average of the last 𝑛 days computed by 𝑀𝐴(𝑛) = (𝑝+𝑝−1+
...+ 𝑝−(𝑛−1))/𝑛, and 𝑝−𝑖 is the close price of 𝑖 days before.

2) Relative strength index (RSI): RSI focuses on capturing
how strongly the stock is moving towards its current direction

𝑅𝑆𝐼(𝑛) =

𝑛−1∑
𝑗=0

𝑝
′

−𝑗

𝑛−1∑
𝑖=0

∣∣∣𝑝−𝑖 − 𝑝−(𝑖+1)

∣∣∣ , (2)

where

𝑝
′
−𝑗 =

{

(𝑝−𝑗 − 𝑝−(𝑗+1)) 𝑝−𝑗 > 𝑝−(𝑗+1)

0 otherwise

3) Rate of change (ROC): ROC measures the speed at
which the stock price is changing

𝑅𝑂𝐶(𝑛) = 𝑝/𝑝−𝑛. (3)

4) Volume ratio (VR): VR is a powerful metric to identify
whether or not the stock is under accumulation

𝑉 𝑅(𝑛) =

𝑛−1∑
𝑗=0

𝑣
′

−𝑗

/ 𝑛−1∑
𝑖=0

𝑣−𝑖, (4)

where 𝑣−𝑖 is the volume of 𝑖 days before, and

𝑣
′
−𝑗 =

⎧



⎨



⎩

𝑣−𝑗 𝑝−𝑗 > 𝑝−(𝑗+1)

𝑣−𝑗/2 𝑝−𝑗 = 𝑝−(𝑗+1)

0 𝑝−𝑗 < 𝑝−(𝑗+1)

5) Rank correlation index (RCI): RCI focuses on the rank-
ing and date of the stock prices to determine whether it is low
or high. Let 𝑑−𝑖 denotes the differences between the rank of
the stock price of 𝑖 days before and its date over a period of
time, we can compute

𝑅𝐶𝐼(𝑛) = 1−
6
𝑛−1∑
𝑖=0

𝑑2−𝑖

𝑛(𝑛2 − 1)
. (5)

6) Stochastic: Stochastic shows the location of each day’s
close price relative to the high-low range over several periods

𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐(𝑛) =
(
𝐾0(𝑛) +𝐾−1(𝑛) +𝐾−2(𝑛)

)/
3, (6)

where 𝐾−𝑖(𝑛) = (𝑝−𝑖 − 𝐿𝑂𝑊 )/(𝐻𝐼𝐺𝐻 − 𝐿𝑂𝑊 ). 𝐿𝑂𝑊
and 𝐻𝐼𝐺𝐻 are the lowest and highest price of period from 𝑖
days before to 𝑖+ 𝑛 days before.

7) Golden/Dead cross: It uses two MAs of the short-term
and long-term periods to indicate the significant signals of
buying and selling.

8) Moving average convergence and divergence (MACD):
MACD is one of the most famous indices to spot the changes
in the strength, direction and momentum of the price trend.

9) Candlestick chart: Candlestick chart has been widely
used to indicate the fluctuation of the stock prices, which is
utilized by the candles. 8 candlestick chart patterns introduced
in [46] are utilized in this paper, which have shown attractive
performance to predict the movement of the stock prices.

B. Problem Formulation

The objective of the stock trading task is to maximize the
profits by a given initial fund.

The input can be represented by the above described tech-
nical indices, while the output is the buying or selling action.

The target of this paper is to develop an intelligent trading
model to recommend the most remunerative action for an
perceived market situation. In other words, we are dedicating
to provide the appropriate timing of buying and selling signals,
where the recent advanced EDA named RPMBGNP is applied
to construct and evolve the model.

III. RPMBGNP-BASED STOCK TRADING MODEL

Inspired by original GNP, RPMBGNP represents the can-
didate stock trading models by its individuals with directed
graph structures, which are subject to evolution to find the
optimal ones to maximize the profits.

A. Individual Structure

One of the main features of RPMBGNP different from
traditional EDA techniques is its individual structures, where
a distinguished directed graph of GNP is utilized.

The directed graph ensures strong expression ability to allow
RPMBGNP to efficiently model the complex systems. The
directed graph is composed of two kinds of nodes
∙ Judgment nodes: simulate the sensory functions to judge

the environment.
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Fig. 1: Directed graph structure

∙ Processing nodes: include the processing functions for
the action determination.

Each node 𝑖 includes a set of parameters: 𝑁𝑇𝑖 ∈ {0, 1} is
the node type (0 for judgment nodes and 1 for processing
nodes); 𝑁𝐹𝑖 denotes the node function read from a problem
specific LIBRARY; 𝐶𝑖1, 𝐶𝑖2, ... denotes the connected node
from branch 1, 2,... of node 𝑖; 𝑇𝐷𝑖 and 𝑡𝑑𝑖 represents the time
delays spent on executing node 𝑖 or transiting its branches,
respectively.

Each judgment node consists of multiple branches, each
of which corresponds to a specific input perceived from
the environment, while processing node does not consist of
conditional branches, in other words, with only 𝐶𝑖1.
𝑇𝐷 and 𝑡𝑑 play the roles to model the agents with human

like brain that needs the time for thinking. With time delays,
the program can count the needed time units of executing its
directed graph. In this paper, 𝑇𝐷 = 5 or 1 for judgment or
processing nodes, respectively, and 𝑡𝑑 = 0. A trading day
ends when 5 or more time units reached. In other words,
the programs can execute “5 judgment nodes” or “less than 5
judgment nodes with 1 processing node” per each trading day.

B. LIBRARY (Judgment/Processing Functions)

In order to develop the stock trading model, the LIBRARY
is prepared to define the judgment and processing functions
based on the descriptions of section II.

The judgment functions are defined based on the listed 9
technical indices. However, as for the first 6 technical indices,
𝑛 is set to 5, 13 and 26 to track the relatively short-, medium-,
and long-term movements of the stock prices, respectively. The
number of branches in judgment nodes are determined based
on the corresponding judgment functions and their perceived
sensory results from the stock prices. Accordingly, they are
total 21 judgment functions as listed in Table I.

Two processing functions are existed in the model, corre-
sponding to the actions of buying or selling, respectively.

C. Performance Component (Workflow of the Directed Graph)

Each stock trading model, represented by a directed graph,
works as an intelligent agent. Initially, the model starts its
execution from a predefined start judgment node, and the
transition of the model continues depending on the judgment
results and node connections.

When a judgment node is executed, it applies its judgment
function to judge the current situation of the stock prices, and
transits to another node by selecting a branch based on the

TABLE I: Judgment functions for stock trading

Function Symbol #. branches Contents of branches

𝐽1–𝐽3 BIAS with 𝑛 = 5, 13, 26 5 [−1,−0.1], (−0.1,−0.05], (−0.05, 0.05],
(0.05, 0.1], (0.1,∞)

𝐽4–𝐽6 RSI with 𝑛 = 5, 13, 26 3 [0, 0.2], (0.2, 0.8], (0.8, 1]
𝐽7–𝐽9 ROC with 𝑛 = 5, 13, 26 3 [0, 0.9], (0.9, 1.1], (1.1,∞)
𝐽10–𝐽12 VR with 𝑛 = 5, 13, 26 3 [0, 0.3], (0.3, 0.7], (0.7, 1]
𝐽13–𝐽15 RCI with 𝑛 = 5, 13, 26 3 [−1,−0.7], (−0.7, 0.7], (0.7, 1]
𝐽16–𝐽18 Stochastic with 𝑛 = 5, 13, 26 3 [0, 0.3], (0.3, 0.7], (0.7, 1]
𝐽19 Golden/Dead cross 3 golden cross, dead cross, the others
𝐽20 MACD 3 golden cross, dead cross, the others
𝐽21 Candlestick chart 8 8 candlestick chart patterns

perceived value matching with Table I. After a number of
judgment nodes, a processing node might be executed, leading
to the trading behavior. During the transition of the directed
graph, the time units are incrementally counted based on the
time delays, which simulates the stream of trading days. The
model is terminated if the final trading day arrives. Afterwards,
the fitness value can be evaluated.

1) Importance Index: Since different technical indices have
different ranges, Importance Index (IMX) [47] is used to
transform the returned judgment values of the technical indices
to a normalized interval [−1, 1]. The IMX functions for each
technical index used in this paper is based on the ones
described in [47].

2) Creating trading actions: The processing nodes consist
of the candidate trading actions, i.e., buying and selling, which
are executed based on the node transitions and judgment
results.

Each processing node 𝑖 consists of a processing function
𝑁𝐹𝑖 and a numerical variable 𝑣𝑖. 𝑁𝐹𝑖 could be 1 (buying) or
2 (selling), while 𝑣𝑖 denotes the trading signal of node 𝑖.

When processing node 𝑖 is transited, the strategy of stock
trading of our model is carried out as follows:

1) First, we calculate the average IMX value 𝐴 of the
judgment nodes transited from the previous processing
node to the current processing node 𝑖 (the set of these
judgment nodes is denoted by 𝐼). That is,

𝐴 =
∑
𝑗∈𝐼

𝐼𝑀𝑋(𝑗)
/
∣𝐼∣. (7)

2) Second, if 𝑁𝐹𝑖 = 1 (buying),

∙ if 𝐴 ≥ 𝑣𝑖, buy stocks as much as possible.
∙ otherwise, just do nothing.

3) But, if 𝑁𝐹𝑖 = 2 (selling),

∙ if 𝐴 < 𝑣𝑖, sell stocks as much as possible.
∙ otherwise, just do nothing.

D. Evolution Space

Each directed graph is encoded with set 𝑁𝑗 of judgment
nodes and set 𝑁𝑝 of processing nodes, where the nodes can
be connected arbitrarily to model complicated combinations
of judgment and processing. In other words, it searches the
optimal combination of technical indices to construct the stock
trading model generated by a sequence of decision-making
trading rules.
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In this problem, evolution bias is applied to evolve the node
connections and trading signal of each processing node. In
other words, 𝐶𝑖1, 𝐶𝑖2, ... for each node 𝑖 ∈ 𝑁𝑗 ∪ 𝑁𝑝 and 𝑣𝑗
for each processing node 𝑗 ∈ 𝑁𝑝 are subject to evolution to
determine the optimal stock trading models. Accordingly,

Definition 1: The number of search variables Θ of GNP is
defined by

Θ = ℬ + 𝒱. (8)

where ℬ is the total number of branches of the directed graph,
and 𝒱 is the number of processing nodes, that is, ∣𝑁𝑝∣.

It is clear that the ℬ variables are discrete ones, while 𝒱
variables are in a continuous range, which result in a mixed
optimization problem.

E. Evolving ℬ by RPMBGNP

In order to evolve the ℬ discrete variables, a reinforcement
learning (RL)-based EDA proposed in [23] is utilized. The
proposed technique, named Reinforced PMBGNP (RPMBGN-
P), is dedicated to learn knowledge/experience, i.e., 𝑄 values,
using RL [48] to measure the quality of node connections of
the directed graph, where the 𝑄 values are used to construct
the probabilistic model of EDA to estimate a precise model
with implicit multivariate interactions.

In RPMBGNP, each candidate stock trading model, i.e., a
directed graph, is viewed as a policy of RL, where the node
transitions are defined as an episode. We define a branch of the
directed graph as the state of RL, where the action of RL is
denoted as the selection of a node to be connected by a given
branch (state). Accordingly, each model can be factorized by
a sequence of state-action pairs (node connections)

(𝑆,𝐴) = {(𝑠1, 𝑎1), (𝑠2, 𝑎2), ..., (𝑠𝐿, 𝑎𝐿)} , (9)

where 𝐿 is the length of the episode.
Each candidate model 𝑛 can be substituted to the above

form (𝑆,𝐴)𝑛 of state-action pairs after its execution. An on-
policy RL technique called Sarsa Learning (Sarsa) is applied to
update the 𝑄 values of state-action pairs. Suppose the current
state and action at time step 𝑡 are 𝑏(𝑖) and 𝑗, respectively,
which means the current state-action pair (𝑠𝑡, 𝑎𝑡) is formed
by node connection (𝑏(𝑖), 𝑗) 1, and the state-action pair in the
next time step is (𝑠𝑡+1, 𝑎𝑡+1) = (𝑏(𝑗), 𝑘). Then, the 𝑄 value
of (𝑏(𝑖), 𝑗) is updated by:

𝑄(𝑏(𝑖), 𝑗)← 𝑄(𝑏(𝑖), 𝑗) + 𝛼 [𝑟𝑗 + 𝛾𝑄(𝑏(𝑗), 𝑘)−𝑄(𝑏(𝑖), 𝑗)] ,
(10)

where,
𝛼, 𝛾: learning rate and discount factor.
𝑟𝑗 : reward of choosing node 𝑗 at branch 𝑏(𝑖) of node 𝑖, and,

1) In the case of judgment nodes, 𝑟𝑗 = 0.
2) In the case of processing nodes, 𝑟𝑗 is given after pro-

cessing node 𝑗. Particularly, 𝑟𝑗 is given when a selling
action is carried out,

𝑟𝑗 = selling price− buying price, (11)

1𝑏(𝑖) denotes branch 𝑏(𝑖) of node 𝑖, and 𝑗 is 𝐶𝑖𝐵(𝑖) based on the
description of individual structure.

Algorithm 1 Updating of 𝑄 values

1: 𝑛← 1;
2: for 𝑛 ≤ 𝑁 do
3: execute candidate model 𝑛, and obtain the episode

(sequence of state-action pairs) (𝑆,𝐴)𝑛;
4: update the corresponding 𝑄 values of (𝑆,𝐴)𝑛 using

Eq. (10);
5: 𝑛← 𝑛+ 1;
6: end for

which shows the profit of one buying-selling pair. If the
selling action is not executed, 𝑟𝑗 = 0.

The procedure of updating 𝑄 values in each generation is
shown in Algorithm 1. The 𝑄 values are updated based on the
execution of the best individuals (truncation selection with size
𝑁 ). As a result, we can collect the experience of the promising
individuals into one 𝑄 table which consists of all 𝑄(𝑆,𝐴)
values. It is expected that the good state-action pairs will be
rewarded with high 𝑄 values, and vice-versa. Accordingly, the
quality of node connections can be explicitly captured, which
is used to estimate the probabilistic model of RPMBGNP.

RPMBGNP constructs its probabilistic model by a set of
connection probabilities. For example, 𝑃 (𝑏(𝑖), 𝑗) denotes the
probability that branch 𝑏(𝑖) is connected to node 𝑗. As a result,
the optimal directed graph structures can be sampled if we
learn the accurate connection probabilities. Each 𝑃 (𝑏(𝑖), 𝑗) is
calculated by

𝑃 (𝑏(𝑖), 𝑗) =
exp

(
𝑄(𝑏(𝑖),𝑗)

𝑇

)
𝑍(𝑏(𝑖))

. (12)

The normalization function 𝑍(𝑏(𝑖)) is calculated by

𝑍(𝑏(𝑖)) =
∑

𝑗′∈𝑁𝑗∪𝑁𝑝

exp

(
𝑄(𝑏(𝑖), 𝑗′)

𝑇

)
, (13)

and temperature parameter 𝑇 is obtained by Eq. (14).

𝑇 =
𝜏

𝑡+ 1
, (14)

where 𝜏 is a coefficient, and 𝑡 is the current generation number.

F. Evolving 𝒱 by Continuous RPMBGNP

As for the trading signals 𝒱 in the processing nodes with
continuous intervals, the continuous RPMBGNP proposed in
[30] is applied. In our model, Gaussian distribution is used
to model the continuous variables, where each trading signal
𝑣𝑖 is represented by a unidimensional Gaussian distribution
𝒩 (𝜇𝑖, 𝜎

2
𝑖 ). The mean value 𝜇𝑖 and standard deviation 𝜎2

𝑖

of each 𝑣𝑖 is subject to evolution. Continuous RPMBGNP
develops a RL-based probabilistic modeling approach using
Actor-Critic (AC) technique [48] combined with gradient
search to evolve the probability density function (pdf) of each
𝑣𝑖.

In order to update the pdf of each trading signal 𝑣𝑖, the
following steps are carried out sequentially.
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Step 1: Calculate gradients
Lemma 1: Given a sampled value 𝑥𝑖 of trading signal 𝑣𝑖,

the gradients of 𝜇𝑖 and 𝜎𝑖 are calculated by

∇(𝜇𝑖;𝑥𝑖) = 𝑥𝑖 − 𝜇𝑖, (15)

∇(𝜎𝑖;𝑥𝑖) =
(𝑥𝑖 − 𝜇𝑖)

2

𝜎2
𝑖

− 1. (16)

The proof of Lemma 1 can be found in [30]. The gradients
denote the updating directions of 𝜇𝑖 and 𝜎𝑖 given a sampled
value 𝑥𝑖.

Step 2: Calculate scalar reinforcement signal
After obtaining the gradient of each parameter, continuous

RPMBGNP incorporates a RL technique named AC to guide
the updating direction.

Similarly to the concept of RL in discrete RPMBGNP, the
quality of sampled value 𝑥𝑖 from a given variable 𝑣𝑖 can be
measured by RL. In this case, we define a trading signal of
a processing node, i.e., 𝑣𝑖, as the state, where the action is
represented by a sampled value from the pdf of 𝑣𝑖, i.e., 𝑥𝑖.
Accordingly, we are capable of incorporating AC efficiently,
where the Gaussian distribution is known as the actor since it
is used to select actions, and the state-value function can be
formulated as the critic.

Each time processing node 𝑖 is executed, AC evaluates the
next new processing node 𝑗 to determine whether the current
sampled value is better or worse than expected. The evaluation
is formulated by a temporal-difference (TD)-error 𝛿 as

𝛿𝑖 = 𝑟𝑖 + 𝛾𝐴𝐶𝑉 (𝑗)− 𝑉 (𝑖), (17)

where,
𝑉 (𝑖): state value function of processing node 𝑖.
𝛾𝐴𝐶 : discounted factor of AC.

After obtaining the TD-error, it is sent back to update the
state-value function 𝑉 by:

𝑉 (𝑖)← 𝑉 (𝑖) + 𝛼𝐴𝐶𝛿𝑖, (18)

where 𝛼𝐴𝐶 is the learning rate of AC.
If 𝛿𝑖 is positive, it suggests that the tendency to sample 𝑥𝑖

should be strengthened, and vice-versa. Accordingly, 𝛿𝑖 can be
used to formulate a scalar reinforcement signal 𝜃𝑖 to indicate
whether the updating direction of this sampled value should
be strengthened or weakened.

𝜃𝑖 =

⎧⎨
⎩
−1, for 𝛿𝑖 < 0
0, for 𝛿𝑖 = 0
1, for 𝛿𝑖 > 0

(19)

Step 3: Update the Gaussian distribution
Combining the scalar reinforcement signal with the gradient

search, continuous RPMBGNP updates the pdf of Gaussian
distribution for each variable as follows

𝜇𝑖 ← 𝜇𝑖 + 𝛼𝜇∇(𝜇𝑖;𝑥𝑖)𝜃𝑖, (20)

𝜎𝑖 ← 𝜎𝑖 + 𝛼𝜎∇(𝜎𝑖;𝑥𝑖)𝜃𝑖, (21)

where 𝛼𝜇 and 𝛼𝜎 are the learning rates.

IV. EXPERIMENTAL STUDY

The proposed RPMBGNP-based stock trading model is
applied to 9 real stock data obtained from the Tokyo Stock
Exchange market. The stock data is divided into two periods:
training and testing. The training data are used to evolve
the stock trading models represented by the directed graph
of RPMBGNP, while the best model obtained in the last
generation of the training period is applied to the testing data.
The experimental data used in this paper are as follows

∙ Training data: January 4, 2001 – December 30, 2003
∙ Testing data: January 5, 2004 – December 30, 2004

Initial funds with 5 million Japanese Yen are provided to
the trader, where the final fitness value for each candidate
model is the total profits obtained during the training period.
All the results reported in this paper are the average values of
30 independent experiments.

A. Parameter Settings

Since our purpose is to demonstrate the effectiveness of
EDA for the stock trading task, the comparisons are mainly
carried in comparison with the EC techniques with standard
crossover and mutation, i.e., standard GNP [40].

The directed graph of RPMBGNP is defined as follows:
∣𝑁𝑗 ∣ = 42 (2 nodes for each judgment function listed in Table
I), and 𝑁𝑝 = 10 (5 nodes for each processing function, i.e.,
buying/selling).

In standard GNP, uniform crossover and mutation with
their rates of 𝑝𝑐 = 0.1 and 𝑝𝑚 = 0.02 are performed.
On the other hand, RPMBGNP neglects these parameters of
genetic operators. Instead, the parameters of RPMBGNP for
its probabilistic modeling are defined as follows: 𝛼 = 0.2 and
𝛾 = 0.9 for Sarsa; 𝜏 = 1000; 𝛼𝐴𝐶 = 0.1 and 𝛾𝐴𝐶 = 0.9 for
AC; 𝛼𝜇 = 0.05 and 𝛼𝛾 = 0.05 for Gaussian distribution. The
population size of GNP is set at 300 with 1 elite individual,
120 crossover individuals and 179 mutation individuals. On the
other hand, RPMBGNP requires a relatively large population
size in order to avoid its local convergence [23]. Therefore,
the population size of 1500 is used in this paper. Truncation
selection with size 𝑁 = 750 is used. The terminal condition
for each experiment is based on the maximal number of fitness
evaluations, where 450, 000 is used in this paper.

B. Experimental Results in the Training Period

1) Evolution efficiency: The fitness curves of RPMBGNP
for the training period are plotted in Fig. 2 for the comparison
with standard GNP, which are represented by the profits
obtained by the best individuals at each generation. It is found
that the directed graph is suitable for constructing the stock
trading model, where high profits can be obtained through
evolution. On the other hand, the results of 9 studied stocks
confirm that RPMBGNP can achieve the significant improve-
ment of the evolution efficiency to find better stock trading
models than standard GNP with crossover and mutation.
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(a) Fuji (b) Toyota (c) Sony

(d) Meiji Seika (e) Shin-Etsu (f) NEC

(g) Mitsubishi (h) KDDI (i) Tokyo Gas

Fig. 2: Comparison of fitness (profit) curves over 9 selected stocks in the training period

2) Statistical analysis: Two-tailed/paired 𝑡-test is applied to
analyze the fitness values obtained by GNP and RPMBGNP
in the training period. We calculate the 𝑝-values between the
two algorithms for the 9 stocks, where the 𝑝-value smaller
than 0.05 indicates a statistically significant difference between
them. Fig. 2 includes the 𝑡-test result calculated for each stock.
It is confirmed that RPMBGNP outperforms the standard GNP
in all experiments with statistical meaning.

3) Change of holding funds: In a micro-level aspect, Fig.
3 shows the typical trajectories of the change of the holding
funds during the training period of Mitsubishi stock. The
dramatic decrease of holding funds indicates a buying action,
while the significant increase of holding funds is caused by the
selling action. It is shown that RPMBGNP has different buy-
ing/selling timing when comparing with GNP, which causes
the different profits obtained in the final trading day.

C. Experimental Results in the Testing Period

1) Amount of profits: After the training period, the best
model obtained in the last generation of the evolution is

(a) GNP (b) RPMBGNP

Fig. 3: Typical trajectories of holding funds on each trading
day in the training period (Mitsubishi stock)

applied to make trading in the testing period. Table II reports
the profits obtained by different algorithms2. The testing profits
demonstrate that RPMBGNP can evolve better stock trading

2GA and Buy&Hold are selected as the baselines to evaluate this study.
GA denotes the method that applies GA to evolve the continuous variables
𝒱 , while Buy&Hold is a strategy that buys as much stocks as possible on the
start day and sells them all on the last day.

736



TABLE II: Profits (unit: yen) obtained in the testing period (profit rate [unit:%])

Stock RPMBGNP GNP GA Buy&Hold

Fuji −122, 000 (−2.4) −140, 000 (−2.8) 173, 000 (3.5) −189, 000 (−3.8)
Toyota 407, 000 (8.1) 640, 000 (12.8) 507, 000 (10.1) 520, 000 (10.4)
Sony 138, 000 (2.8) −36, 000 (−0.7) 112, 000 (2.2) 150, 000 (3.0)
Meiji Seika 180, 000 (3.6) 287, 000 (5.7) −185, 000 (−3.7) 451, 000 (9.0)
Shin-Etsu 156, 000 (3.1) 54, 000 (1.1) −539, 400 (−10.8) −264, 000 (−5.3)
NEC −164, 000 (−3.3) −292, 000 (−5.8) −531, 000 (−10.6) −1, 026, 000 (−20.5)
Mitsubishi 832, 000 (16.6) 551, 000 (11.1) 174, 000 (3.5) 664, 000 (13.3)
KDDI −53, 000 (−1.1) −103, 000 (−2.1) −273, 000 (−5.5) −576, 000 (−11.5)
Tokyo Gas 362, 000 (7.2) 225, 000 (4.5) 729, 850 (14.6) 372, 000 (7.4)

Total profits 1, 736, 000 1, 186, 000 167, 450 102, 000

(a) GNP (b) RPMBGNP

Fig. 4: Change of holding funds on each trading day in the
testing period (Mitsubishi stock)

models than the other compared algorithms. Comparing with
standard GNP, RPMBGNP can obtain higher profits, though
in some stocks, i.e., Toyota and Meiji Seika, worse results are
obtained which might be due to the overfitting problem.

2) Change of holding funds: Fig. 4 shows the change of the
holding funds during the testing period of Mitsubishi stock,
which shows that RPMBGNP has different buying/selling
timing when comparing with GNP to obtain higher profits in
the final trading day.

3) Timing of buying/selling: Fig. 5 shows a typical example
of the buying/selling timing made by RPMBGNP which is
plotted in the stock movement of the testing period. It is found
that in most cases, RPMBGNP can buy stocks at lower prices
and make selling decision at relatively higher prices.

Considering the results of the training and testing periods
as a whole, we demonstrate the effectiveness of the proposed
RPMBGNP-based stock trading model comparing with the
other non-EDA models, which clarifies the superiority of the
EDA-based probabilistic modeling in this problem.

V. CONCLUSIONS AND FUTURE WORK

In this paper, an EDA-based stock trading model has
been proposed, where a recent proposed algorithm called
RPMBGNP is applied. With its directed graph structure and
RL-based probabilistic modeling, RPMBGNP shows attractive
expression and evolution ability to create stock trading rules.
The experimental results clarified that the proposed model
can obtain better evolution efficiency and higher profits when
comparing with the traditional non-EDA models. In the future,
further improvements of the research using variable size GNP

Fig. 5: Timing of buying/selling recommended by RPMBGNP
in the testing period (Mitsubishi stock)

[49], [50] and rule-based systems [51], [52] will be studied.
Self-adaptive method to reduce the parameters is also an
another direction.
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