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Abstract— In this paper, we describe a hybrid approach based
on the use of genetic algorithms for solving the Clustered Vehicle
Routing Problem, denoted by CluVRP. The problem studied in
this work is a generalization of the classical Vehicle Routing
Problem (VRP) and is closely related to the Generalized Vehicle
Routing Problem (GVRP). Along with the genetic algorithm,
we consider a local-global approach to the problem that is
reducing considerably the size of the solutions space. The
obtained computational results point out that our algorithm
is an appropriate method to explore the search space of this
complex problem and leads to good solutions in a reasonable
amount of time.

I. INTRODUCTION

The classical Vehicle Routing Problem can be generalized
in a natural way by considering a related problem relative
to a given partition of the nodes of the graph into node sets
(clusters), while the feasibility constraints are expressed in
terms of the clusters. This generalized problem belongs to
the class of generalized network design problems, known as
well as generalized combinatorial optimization problems. For
more information on generalized network design problems
we refer to [1].

In the literature, there are considered three versions of the
problem:
• one in which we are interested in designing optimally

delivery or collection routes, from a given depot to
a number of predefined, mutually exclusive and ex-
haustive clusters (node sets), visiting exactly one node
from each cluster and subject to capacity restrictions.
This problem is called the generalized vehicle routing
problem (GVRP) and have been introduced by Ghiani
and Improta [2].

• the second one is the problem of designing the optimally
delivery or collection routes including at least one vertex
from each cluster. This version of the problem was
introduced by Baldacci et al. [3].

• the third one is the problem of designing the optimally
delivery or collection routes such that all the nodes
of each cluster must be visited consecutively. This
problem is called the clustered vehicle routing problem
(CluVRP) and have been introduced by Sevaux and
Sörensen [4].
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From the described three versions, GVRP has generated a
considerable interest in the last period, especially due to its
practical applications. Efficient transformations of the GVRP
into classical combinatorial optimization problems, for which
exist heuristics, approximation algorithms or optimal solution
methods, have been developed: Ghiani et al. [2] considered
an transformation of the GVRP into Capacitated Arc Routing
Problem (CARP), while Pop et al. [5] considered an efficient
transformation of the GVRP into classical VRP. Integer
programming formulations have been developed by Pop et al.
[6]: a so called node formulation and a flow based formula-
tion and Bektas et al. [7]: two based on multicommodity flow
and the other two based on exponential sets of inequalities.
The latter authors have proposed as well some branch-and-
cut algorithms based on two of their models. The difficulty
of obtaining optimum solutions for the GVRP has led to
the development of some metaheuristic approaches. The first
such algorithms were: a genetic algorithm based heuristic
developed by Pop et al. [8], an adaptive large neighborhood
search proposed by Bektas et al. [7], an incremental Tabu
Search developed by Moccia et al. [9], a hybrid algorithm
using a powerful local search procedure was described by
Pop et al. [10].

The current literature on clustered vehicle routing problem
is rather scarce: the initial motivation was a real world
application involving parcel deliveries presented by Sevaux
and Sörensen [4], a Simulated Annealing algorithm was
described by Barthelemy et al [11] and Pop et al. [6]
extended the integer programming formulations of the GVRP
to CluVRP. Recently, Battarra et al. [12] described two
exact solution algorithms and presented an application of
the problem in the context of solid waste collection in urban
areas. The same authors showed how is possible to transform
an instance of CluVRP into an equivalent GVRP.

In this paper we confine ourselves to the clustered vehicle
routing problem. The aim of the paper is to develop an
efficient hybrid approach based on genetic algorithms for
solving the CluVRP.

The remainder of this article is organized as follows: in
Section II we provide the formal definition of the CluVRP,
in Section III we describe in detail the components of our
hybrid approach based on genetic algorithms and Section IV
presents the obtained computational results. Finally, Section
V concludes our work and provides some future work
directions.
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II. DEFINITION OF THE CLUSTERED VEHICLE ROUTING
PROBLEM

In this section we give a formal definition of the Clustered
Vehicle Routing Problem as a graph theoretic model. Let
G = (V,A) be a directed graph with V = {0, 1, 2, ...., n} as
the set of vertices and the set of arcs

A = {(i, j) | i, j ∈ V, i 6= j}.

We have two kinds of arcs: the set intra-cluster arcs is
defined by the vertices belonging to the same clusters and
the set of inter-cluster arcs defined by vertics belonging to
different clusters. The graph G must be strongly connected
and in general it is assumed to be complete.

Vertices i ∈ {1, ..., n} correspond to the customers and the
vertex 0 corresponds to the depot. The entire set of vertices is
partitioned into k + 1 mutually exclusive nonempty subsets,
called clusters, V0, V1, ..., Vk, i.e. the following conditions
hold:

1. V = V0 ∪ V1 ∪ ... ∪ Vk
2. Vl ∩ Vp = ∅ for all l, p ∈ {0, 1, ..., k} and l 6= p.
The cluster V0 has only one vertex 0, which represents

the depot, and remaining n vertices are belonging to the
remaining k clusters.

A nonnegative cost cij is associated with each arc (i, j) ∈
A and represents the travel cost spent to go from vertex i to
vertex j.

Each customer i (i ∈ {1, ..., n}) is associated with a known
nonnegative demand di to be delivered and the depot has
a fictitious demand d0 = 0. Given a cluster Vp ⊂ V , let
d(Vp) =

∑
i∈Vp

di the total demand of the cluster Vp, p ∈

{1, ..., k}.
There exist m identical vehicles, each with a capacity Q

and to ensure feasibility we assume that di ≤ Q for each
i ∈ {1, ..., n}. Each of the vehicles may perform at most
one route.

The clustered vehicle routing problem (CluVRP) consists
in finding a collection of simple circuits (each corresponding
to a vehicle route) visiting all the clusters with minimum cost,
defined as the sum of the costs of the arcs belonging to the
circuits and such that the following constraints hold:

i) each circuit starts and ends at the depot vertex;
ii) all the vertices of each cluster must be visited consec-

utively by a circuit;
iii) the sum of the demands of the visited vertices by a

circuit does not exceed the capacity of the vehicle, Q.
An illustrative scheme of the CluVRP and a feasible tour

is shown in the Figure 1.
A feasible solution of the CluVRP consists of a collection

of routes, each visiting the depot and all the vertices from
each cluster consecutively. We will call such a route a
generalized clustered route. The order of visiting the clusters
will be called global route. In the example presented in
Figure 1, 0−3−2−1−4−5−0 and 0−11−10−9−8−7−6−0

Fig. 1. A feasible solution of the CluVRP

are generalized clustered routes and V0 − V1 − V2 − V0 and
V0 − V5 − V4 − V3 − V0 are global routes.

The CluVRP reduces to the classical capacitated Vehicle
Routing Problem (VRP) when all the clusters are singletons.

The CluVRP is NP -hard because it includes the classical
capacitated Vehicle Routing Problem as a special case when
all the clusters are singletons.

III. THE HYBRID APPROACH BASED ON GENETIC
ALGORITHMS FOR SOLVING THE CLUSTERED VEHICLE

ROUTING PROBLEM

We present in this section a hybrid algorithm for solving
the CluVRP obtained by combining a genetic algorithm with
a local-global approach to the problem.

A. The local-global approach to the Clustered Vehicle Rout-
ing Problem

Based on the definition of the generalized combinatorial
optimization problems, a natural approach that takes advan-
tages between them and their classical variants, is the local-
global approach introduced by Pop [1] for the first time in the
case of the generalized minimum spanning tree problem. This
original approach opened new directions of research, several
exact, heuristic, metaheuristic and hybrid algorithms being
proposed based on it for several generalized combinatorial
optimization problems.

The local-global approach aims at distinguishing between
global connections (connections between clusters) and local
connections (connections between nodes belonging to differ-
ent clusters).

We denote by Gg = (V g, Ag) the graph obtained from
G after replacing all the nodes of a cluster Vi with a
supernode representing Vi, ∀i ∈ {1, ..., k}, the cluster V0
(depot) consists already of one node. We will call the graph
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Gg the global graph. In this graph the set of nodes is
V g = {V0, V1, ..., Vk} and the set of arcs

Ag = {(Vi, Vj) | ∃(u, v) ∈ A ∧ u ∈ Vi ∧ v ∈ Vj}.

Figure 2 presents the global routes associated to the
feasible solution shown in Figure 1.

Fig. 2. An example of global routes

We consider now a feasible solution in the global graph,
i.e. a collection of r global routes of form (V0, Vk1 , ..., Vkp)
in which the clusters are visited. Each global route on Gg

represents the set of all feasible generalized clustered routes
on G which contains for each arc (Vkl , Vkl+1

) ∈ Ag a path
of the form (i1, i2, ..., it, j) with i1, i2, ..., it ∈ Vkl and j ∈
Vkl+1

. Such a set of generalized clustered routes on G that a
particular global route represents is in general exponentially
large with respect to the number of nodes.

Our aim to find the best feasible solution of the CluVRP
(w.r.t. cost minimization), i.e. a collection of r generalized
clustered routes visiting the clusters according to the given
sequence.

In order to show a generalized clustered route visiting
the clusters according to a given sequence (V0, Vk1 , ..., Vkp)
we construct a layered network (LN) with p + 2 layers
corresponding to the clusters V0, Vk1 , ..., Vkp and in addition
we duplicate the cluster V0.

The layered network contains all the nodes of the clusters
V0, Vk1 , ..., Vkp plus an extra node 0′ ∈ V0 and the arcs are
defined as follows: there is an arc (0, i) for each i ∈ Vk1
with the cost c0i, an arc (iu, iv) for each iu, iv ∈ Vkl , l ∈
{1, ..., p} with the cost ciuiv , an arc (i, j) for each i ∈ Vkl
and j ∈ Vkl+1

(l = 1, ..., p − 1) having the cost cij and an
arc (i, 0′) for each i ∈ Vkp having the cost ci0′ .

In Figure 3, we present the constructed layered network
and we point out a generalized clustered route visiting the
clusters according to the given sequence (V0, Vk1 , ..., Vkp).

Fig. 3. Example showing a generalized clustered route visiting the clusters
V0, Vk1

, ..., Vkp in the constructed layered network LN

B. The Genetic Algorithm

1) Genetic Encoding: In our algorithm we used the fol-
lowing genetic representation of the solution domain: an
individual is represented as a list of clusters

(V
(1)
l1
, V

(1)
l2
, ..., V

(1)
lp
, V0, ..., V0, V

(r)
l1
, V

(r)
l2
, ..., V

(r)
lt

)

representing a collection of r global routes V0−V (1)
l1
−V (1)

l2
−

...−V (1)
lp
−V0,..., V0−V (r)

l1
−V (r)

l2
− ...−V (r)

lt
−V0, where

p, t ∈ N with 1 ≤ p, t ≤ k.
For example in the case of Figure 1, an individual is:

(1 2 0 5 4 3) and represents the collection of 2 global routes,
which is passing through the clusters in the following order:

(V0 V1 V2 V0 V5 V4 V3 V0).

The values {1, ..., 5} represent the clusters while the depot
denoted by {0} is the route splitter. The number of route
splitters needed for m vehicles is m− 1. Besides the depot
stops added by the splitters in the solution, the first and
last route receive the depot in the first and last position
respectively in the global routes. In the example presented,
route 1 begins at the depot then visits the clusters V1 − V2
and returns to the depot. Route 2 starts at the depot and visits
the clusters V5 − V4 − V3 returning then to the depot.

The collection of global routes needs several collections
of generalized routes which are created as follows: for
each cluster, the shortest path between any two nodes is
determined considering solely the distance between the nodes
in the cost function; next, the best (in terms of minimizing the
total distance) from these shortest paths is selected specifying
in this way a starting node and a terminal node to enter
and respectively exit each cluster. These nodes complete
the layered network described in the previous section and
are further needed in determining the overall cost for all
generalized clustered routes. The following three distance
types will contribute to the fitness:

(i) the distance between the depot and the starting node of
a cluster,

(ii) the distance between the terminal node of a cluster and
the starting node of the next cluster, and
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(iii) the distance between the terminal node of a cluster and
the depot.

The example represented in Figure 1 uses the following
pairs of starting, terminal nodes for each cluster: 3, 1 ∈ V1,
4, 5 ∈ V2, 6, 6 ∈ V3, 10, 7 ∈ V4 and 11, 11 ∈ V5. These
starting and terminal nodes correspond to the best with regard
to cost minimization for the collection of generalized routes.

We can see that our described representation allows empty
routes by simply placing two route splitters together without
clients between them. Some routes in the chromosome may
cause the vehicle to exceed its capacity. When this happens,
in order to guarantee that the interpretation is always a valid
candidate solution, we perform the following modification:
the route that exceeds the vehicle capacity is split at the
cluster that causes the violation of capacity restrictions and
the rest of clusters in that route are distributed among the
other routes at random as long as all restrictions are met.

2) The fitness value: The fitness function is defined over
the genetic representation and measures the quality of the
represented solution. In our case, the fitness value of a
feasible solution, i.e. a collection of global routes, is given
by the cost of the best corresponding collection of general-
ized routes (with regard to cost minimization) obtained by
constructing the layered network and determined by solving
a given number of shortest path problems. For each cluster,
the shortest path between any two nodes is predetermined in
an exact way. From these shortest paths of each cluster, the
best one in terms of distance is selected as the local route
inside the cluster.

3) Initial population: The construction of the initial pop-
ulation is of great importance to the performance of GA,
since it contains most of the material the final best solution
is made of. Experiments were carried out with the initial
population generated randomly and with an initial population
of structured solutions. In order to generate the population of
structured solutions we used a Monte Carlo based method.
However, from the experiments carried out it turned out that
the Monte Carlo method of generating the initial population
has not brought any improvements. The initial population
generated randomly having the advantage that is representa-
tive from any area of the search space.

4) Genetic operators: Crossover
The crossover operator combines two or more parents in

order to generate the possibility of getting a better offspring.
Two parents are selected from the population by the

binary tournament method. Offspring are produced from two
parent solutions using the following 2-point order crossover
procedure: it creates offspring which preserve the order and
position of symbols in a subsequence of one parent while
preserving the relative order of the remaining symbols from
the other parent. It is implemented by selecting two random
cut points which define the boundaries for a series of copying
operations.

The recombination of two collections of global routes
requires some further explanations. First, the symbols be-
tween the cut points are copied from the first parent into

the first offspring. Then, starting from the first position,
the symbols are copied from the second parent into the
first offspring, omitting any symbols that were copied from
the first parent and skipping the positions between the two
cut points which are already filled. The second offspring is
produced by swapping round the parents and then using the
same procedure.

Next, we present the application of the proposed 2-point
order crossover in the case of a problem consisting of
8 clusters and the depot. We assume two well-structured
parents chosen randomly, with the cutting points between
nodes 2 and 3, respectively 5 and 6:

P1 = 6 8 | 1 0 2 | 7 0 5 4 3
P2 = 8 2 | 1 6 0 | 0 4 3 5 7

Note that the length of the two individuals is the same
while the number of routes for individual P1 is 3 (i.e. 0 −
6− 8− 1− 0, 0− 2− 7− 0 and 0− 5− 4− 3− 0) and the
number of routes for P2 is only 2 (i.e. 0− 8− 2− 1− 6− 0
and 0−4−3−5−7−0) due to the two consecutive positions
occupied by the route splitter.

The sequences between the two cutting-points are copied
into the two offspring:

O1 = x x | 1 0 2 | x x x x x
O2 = x x | 1 6 0 | x x x x x

The nodes of the parent P1 are copied into the offspring
O2 if O2 does not contain already the clusters of P1. If
the current position in P1 contains a route splitter then
this is copied only if the offspring O2 has not reached the
maximum allowed number of splitters (i.e. an individual
can not contain more routes than the available number of
vehicles). Therefore, the offspring O2 is:

O2 = 8 0 | 1 6 0 | 2 7 5 4 3

Then the nodes of the parent P2 are copied into the
offspring O1 in the same manner. The nodes of the clusters
not present in O1 are copied into the remaining positions:

O1 = 8 6 | 1 0 2 | 0 4 3 5 7
The new generated individuals are validated against vehi-

cle capacity restrictions and a similar repair procedure as the
one performed in the population initialization is applied if
necessary.

Mutation

We use in our genetic algorithm the following random
mutation operator called the inter-route mutation operator
which is a swap operator: it picks two random locations in the
solution vector and swaps their values. Let the parent solution
be (6 8 1 | 0 2 7 | 0 5 4 3), then the inter-route mutation
operator picks two random clusters, for example V8 and V5
and swaps their values obtaining the new chromosome:

(6 5 1 | 0 2 7 | 0 8 4 3).
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5) Selection: Selection is the stage of a genetic algorithm
in which individuals are chosen from a population to undergo
a new generation. The selection process is deterministic.

In our algorithm we investigated and used the properties
of (µ, λ) selection, where µ parents produce λ (λ > µ)
offspring and only the offspring undergo selection. In other
words, the lifetime of every individual is limited to only
one generation. The limited life span allows to forget the
inappropriate internal parameter settings. This may lead to
short periods of recession but it avoids long stagnation phases
due to unadapted strategy parameters.

6) Genetic parameters: The genetic parameters are very
important for the success of the algorithm, equally important
as the other aspects, such as the representation of the
individuals, the initial population and the genetic operators.
The most important parameters are: the population size µ
has been set to 10 times the number of clusters and the
intermediate population size λ was chosen twenty times the
size of the population: λ = 20 · µ. Therefore, crossover
was applied λ times for two inidividuals randomly selected
from the population of size µ. Each offspring generated after
crossover undergoes mutation with a probability of 20%. The
number of generations used in our algorithm was set to 2000.

IV. NUMERICAL EXPERIMENTS

Computational experiments are performed for several
CluVRP instances which consider different number
of nodes, clusters and vehicles which have been
adapted from the 20 large-size CVRP instances
described by Golden et al [14] and available at
http://www.rhsmith.umd.edu/faculty/bgolden/vrp data.htm.

Originally the set of nodes in these problems were not
divided into clusters. Fischetti et al. [15] proposed in the case
of the generalized traveling salesman problem a procedure
to partition the nodes of the graph into clusters, called
CLUSTERING. This procedure sets the number of clusters
s = [nθ ], identifies the s farthest nodes from each other and
assigns each remaining node to its nearest center.

This procedure was used in order to adapt the CVRP
instances to the CluVRP case with θ ∈ {5, ..., 15}. The
number of clusters in the corresponding CluVRP instances
are ranging from 17 to 97, the total number of nodes are
ranging from 241 to 481 and the number of nodes within a
cluster are varying from 1 to 71.

However, the solution approach proposed in this paper is
able to handle any cluster structure.

The testing machine was an Intel Dual-Core 1,6 GHz
and 1 GB RAM. The operating system was Windows XP
Professional. The algorithm was developed in Java, JDK 1.6.

The proposed evolutionary approach to CluVRP has been
implemented and 30 runs of the algorithm based on the
parameter setting given in the previous section have been
performed. The best and the average solution from these runs
are presented in Table 1. The first column in the table gives
the name of the instances, the second column provides the
number of the clusters and the third column contains the
total number of nodes. The next two columns contains the

values of the best solutions respectively the average solutions
obtained using our hybrid genetic algorithm.

Analyzing the computational results, we observed that the
best solutions were reached quite in the early phases of
the generations, therefore we plan to maintain the diversity
in order to avoid premature convergence by varying the
population size and by changing the selection pressure. In
addition we plan to use local search optimization in order to
refine the solutions explored by the proposed hybrid genetic
based algorithm.

TABLE I
THE EXPERIMENTAL RESULTS

Pb. instance No. of No. of Best Average
name clusters nodes solution solution

Golden1 C17 N241 17 241 5403.37 5425.32
Golden1 C18 N241 18 241 5373.88 5409.30
Golden1 C19 N241 19 241 5426.37 5461.08
Golden1 C21 N241 21 241 5355.10 5396.02
Golden1 C22 N241 22 241 5470.34 5506.15
Golden1 C25 N241 25 241 5525.57 5585.07
Golden1 C27 N241 27 241 5588.96 5631.01
Golden1 C31 N241 31 241 5903.34 5971.26
Golden1 C35 N241 35 241 6113.88 6199.17
Golden1 C41 N241 41 241 6042.80 6163.40
Golden1 C49 N241 49 241 5946.17 6066.17
Golden2 C22 N321 22 321 8389.73 8419.28
Golden2 C23 N321 23 321 8394.82 8434.97
Golden2 C25 N321 25 321 8627.21 8695.93
Golden2 C27 N321 27 321 8551.32 8664.17
Golden2 C30 N321 30 321 8488.67 8605.71
Golden2 C33 N321 33 321 8517.26 8668.53
Golden2 C36 N321 36 321 8545.55 8689.74
Golden2 C41 N321 41 321 8795.87 8918.46
Golden2 C46 N321 46 321 9089.30 9266.23
Golden2 C54 N321 54 321 9492.89 9646.24
Golden2 C65 N321 65 321 9345.89 9574.47
Golden3 C27 N401 27 401 11709.19 11780.66
Golden3 C29 N401 29 401 11658.50 11857.91
Golden3 C31 N401 31 401 11793.87 11928.24
Golden3 C34 N401 34 401 11783.44 11959.50
Golden3 C37 N401 37 401 11755.18 11977.78
Golden3 C41 N401 41 401 11651.00 11912.38
Golden3 C45 N401 45 401 11738.27 11996.54
Golden3 C51 N401 51 401 11866.68 12209.38
Golden3 C58 N401 58 401 12404.23 12708.65
Golden3 C67 N401 67 401 12650.62 12980.77
Golden3 C81 N401 81 401 12471.52 12898.42
Golden4 C33 N481 33 481 15372.88 15608.98
Golden4 C35 N481 35 481 15388.20 15575.91
Golden4 C37 N481 37 481 15398.51 15571.08
Golden4 C41 N481 41 481 15354.81 15621.26
Golden4 C44 N481 44 481 15652.27 15865.84
Golden4 C49 N481 49 481 15825.10 16110.58
Golden4 C54 N481 54 481 15909.72 16275.88
Golden4 C61 N481 61 481 15909.49 16351.40
Golden4 C69 N481 69 481 16184.54 16632.87
Golden4 C81 N481 81 481 16547.82 17026.52
Golden4 C97 N481 97 481 16498.83 16977.09

V. CONCLUSIONS

The Clustered Vehicle Routing Problem is an extension of
the classical Vehicle Routing Problem and consists in finding
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a minimum cost collection of routes such that all the nodes
from a given number of predefined, mutually exclusive and
exhaustive clusters are visited consecutively.

We described an approach to the CluVRP based on distin-
guishing between global connections (connections between
clusters) and local connections (connections between nodes
from different clusters). Based on this approach to the
problem, we presented a novel efficient hybrid algorithm.
The proposed computational model to approach the problem
is genetic algorithm applied with respect to the global graph,
reducing in this way substantially the size of the solutions
space.

In the future, we plan to combine our algorithm with a
local search optimization procedure in order to refine the
solutions explored by our hybrid GA. The potential benefits
of an elitist strategy will also be investigated. In addition,
we will need to asses the generality and scalability of the
proposed hybrid heuristic by testing it on more instances
and comparing it with other schemes such as Simulated
Annealing and swarm intelligence techniques.
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