
Grammar-Based Genetic Programming with
Bayesian Network

Pak-Kan Wong∗, Leung-Yau Lo∗, Man-Leung Wong† and Kwong-Sak Leung∗
∗Department of Computer Science and Engineering
The Chinese University of Hong Kong, Hong Kong
†Department of Computing and Decision Sciences

Lingnan University, Tuen Mun, Hong Kong

Abstract—Grammar-Based Genetic Programming (GBGP) im-
proves the search performance of Genetic Programming (GP) by
formalizing constraints and domain specific knowledge in gram-
mar. The building blocks (i.e. the functions and the terminals) in
a program can be dependent. Random crossover and mutation
destroy the dependence with a high probability, hence breeding
a poor program from good programs. Understanding on the
syntactic and semantic in the grammar plays an important role to
boost the efficiency of GP by reducing the number of poor breed-
ing. Therefore, approaches have been proposed by introducing
context sensitive ingredients encoded in probabilistic models. In
this paper, we propose Grammar-Based Genetic Programming
with Bayesian Network (BGBGP) which learns the dependence
by attaching a Bayesian network to each derivation rule and
demonstrates its effectiveness in two benchmark problems.

I. INTRODUCTION

Many real world problems can be formulated as optimizing
a given objective function over a constrained search space.
When analytic solutions are not available and exhaustive
search is computationally infeasible due to the size of search
space, search heuristics become the only way. Genetic Algo-
rithms (GA) [1] and Genetic Programming (GP) [2] are search
heuristics inspired by natural selection. GA and GP maintain
a population of chromosomes as candidate solutions, and op-
timizes the objective function through crossover, mutation and
reproduction of chromosomes over a number of generations.
While the chromosomes in GA are usually fixed-length binary
strings, in GP they are usually trees of variable sizes, so the
genetic operators in GP operate on sub-trees. One requirement
of canonical GP is the closure property (i.e. the domain of the
inputs is the same as the domain of the outputs for a sub-tree)
on the terminal set and the function set. This property is strong
in most problems. For example, when GP is used to build an
image classifier from pixels, the pixels and the class labels are
in two different domains, hence violating the closure property.

GP can still be done without the closure property if a gram-
mar for the solution is defined and the genetic operators are de-
fined to respect the given grammar. The grammar contains the
rules for constructing any syntactically correct solutions. This
new heuristic, namely Grammar-Guided Genetic Programming
[3][4] or Grammar-Based Genetic Programming (GBGP) [5],
marks a new era in the study of GP. It established the
connection between GP and grammar. GBGP [6] formalizes
constraints during the evolution with grammar. The advantages

of GBGP over canonical GP include declarative search space
restriction, flexibility in expressing problem structure, homol-
ogous operators, and flexible extension. GP is a special case
of GBGP in which all the terms in GP are of one type.

In contrast to canonical GA, GP or GBGP, Probabilis-
tic Model-Building Genetic Algorithm (PMBGA) [7] and
Probabilistic Model-Building Genetic Programming (PMBGP)
[8] focus on estimating a probabilistic distribution of good
solutions. In each generation, individuals are generated from
the current estimate of the distribution, then a subset of
them is selected based on fitness, to update the estimate of
the distribution. Therefore, at the end of evolution, not only
is a good solution found, but also a good estimate of the
distribution of good solution, which gives more insights into
the problem nature.

One big issue in GP and GBGP is the high degree of de-
pendence among sub-trees of an individual. In some problems,
the optimal sub-tree at one position depends on the choice
of sub-tree at another position, and the fitness is high only
when the correct sub-trees are chosen at both positions. In
PMBGP, dependence could be handled by using a probabilistic
distribution representation that explicitly models dependence,
e.g. Bayesian networks and probabilistic grammar. However,
since the trees in GP may have a large number of nodes, mod-
elling the global dependence of these nodes causes difficulty
in estimating the distribution from limited samples. Besides,
in the grammar model based approaches, the dependence and
the non-terminals are often unknown. It may also require a
complex grammar to specify the relations. Thus, there is a
need of automatic dependence learning.

In this paper, a new GBGP, namely Grammar Based Genetic
Programming with Bayesian Network (BGBGP) is proposed
to cope with the challenge of dependence. It makes use of
Bayesian networks to model the local dependence among
the non-terminals in each rule and therefore the dependence
between sibling sub-trees. It is scalable to large problem and
supports partial order in choosing the non-terminals for a rule.

This paper is structured as follows. In the next section,
we introduce the existing algorithms of PMBGP and review
the basics of Bayesian network. After a formal description
of the proposed grammar model in Section III, Section IV
outlines the structure of our BGBGP system and discusses
the whole system in detail. In Section V, we evaluate our
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approach on two benchmark problems through experiments.
Lastly, we conclude this paper with a discussion and future
works in Section VI.

II. RELATED WORKS

A. PMBGAs and PMBGPs

Probabilistic Model-Building Genetic Algorithm (PMBGA)
or Estimation of Distribution Algorithm (EDA) [9] aims at
describing a population of optimal solutions of a problem with
a probability distribution. In order to limit the search spaces,
it is assumed that a significant change in fitness values is
due to huge differences in their structures. Furthermore, as
noted in [10], individuals sharing the same components are
also assumed to be correlated in their fitnesses. The proba-
bilistic model can be either univariate (UMDA[11], PBIL[12],
cGA[13]), bivariate (MIMIC[14], COMIT[15], BMDA[16]) or
multivariate (BOA[17], EBNA[18], LDFA[19]).

Inspired by the success in PMBGA, many Probabilistic
Model-Building Genetic Programming (PMBGP) approaches
have been proposed. There are two classes of models: prob-
abilistic prototype tree (PPT) model-based method and prob-
abilistic grammar model-based method. The former method
operates on a fixed-length chromosome, which is essentially a
tree structure, and utilizes probabilistic models. Probabilistic
Incremental Program Evolution (PIPE)[20], being the first
PMBGP, introduced probabilistic prototype tree and adopted
a univariate model, which has been subsequently used and
extended by Estimation of Distribution Programming (EDP)
[21], Extended Compact Genetic Programming (eCGA) [8],
BOA programming (BOAP) [22], Program Optimisation with
Linkage Estimation (POLE) [23], [24], POLE on binary en-
coded PPT [25] and POLE-BP [26].

Probabilistic grammar model-based method incorporates
probabilistic context-free grammar (PCFG) [27]. Stochastic
CFG (SCFG) is a simple PCFGs and adds weights on each
derivation rule while the weights on the rules having the
same non-terminal are normalized to sum to 1. Stochastic
grammar-based GP (SG-GP) [28] combines PBIL [12] with
Grammar-Guided Genetic Programming (GGGP) [3] and has
been shown to resist bloating. Program evolution with explicit
learning (PEEL) [29] extends SG-GP and uses Search Space
Description Table (SSDT). It allows the use of depth and the
relative location in the tree. Grammar model-based program
evolution (GMPE) [30] modifies the grammar to describe the
search space by applying stochastic hill-climbing search to find
a good merging of the non-terminals of the production rules
of SCFG scored by the Minimum Description Length (MDL)
[31]. Grammar transformation in an EDA (GT-EDA) [32] is
similar to GMPE but it learns from expression trees. Program-
ming with annotated grammar estimation (PAGE) [33] em-
ploys PCFG with Latent Annotations (PCFG-LA) to weaken
the context free assumption. PAGE-EM uses expectation-
maximization (EM) algorithm [34] to estimate the annotations
from promising individuals. Variational Bayes (VB) learning
[35] was also introduced to PAGE to learn the annotations
and infer the number of annotations from the learning data.

Unsupervised PAGE (UPAGE) [36] utilizes PCFG-LA mixture
model to deal with local dependencies and global contexts.
Bayesian automatic programming (BAP) [37] applies a learnt
Bayesian network on top of a fixed size chromosome and
generates new individuals using the Bayesian network.

Tanev’s work was based on Probabilistic Context-Sensitive
Grammar (PCSG), which extended PCFG by varying the
probability according to the predefined context [38]. In this
work, the probabilities were obtained by conditioning on the
context which can be extracted from the rules applied before.

Other models have also been proposed. N-gram GP [39]
evolves linear GP (that is a machine-language-type program).
Ant Tree Adjoining Grammars (AntTAG) [40] evolves pro-
grams using an ant colony optimization algorithm and esti-
mates the dependencies in tree structures using the pheromone
matrix.

In contrast to the aforementioned PMBGP approaches, we
introduce a new PCSG model to maintain the syntactical cor-
rectness and overlay each derivation rule with a Bayesian net-
work to keep the number of variables tractable. The Bayesian
networks are learnt automatically from the individuals from
the past generation which affect the conditional probabilities
in the PCSG.

B. Bayesian network

A Bayesian network, also called belief network, is a graph-
ical model to represent the probabilistic independences among
variables [41]. It connects probability with graph theory.

Consider a set of random variables X = (X1, X2, ..., Xn)
and denote the assignment of states by x = (x1, x2, ..., xn).
We use X = x to mean the variable set X is in configu-
ration x. The joint probability p(X = x) can be factorized
into a set of conditional probability distributions encoded
in a Bayesian network, which is a directed acyclic graph.
In the network, nodes are the variables and edges represent
the conditional dependencies. Each node Xi is associated
with a conditional probability table representing the function
p(xi|pa(xi)), where pa(xi) is the configuration of the parents
of Xi in the network. The joint distribution for X can thus be
expressed as p(X = x) =

∏n
i=1 p(xi|pa(xi)). The Bayesian

network provides an explicit representation of the variable
dependence and saves memory by exploiting independence
and recovering the joint distribution from a set of small
conditional distributions.

Very often, the Bayesian network has to be learnt from the
training data. Two well-known algorithms for this task are
K2 [42] and Max-Min Hill-Climbing (MMHC) [43]. K2 is a
greedy algorithm to construct the network. Note that the learnt
Bayesian network depends on the input order of the random
variables in K2, as each random variable will only form
connections with the preceding random variables. MMHC is
a constraint-based hill climbing search. The algorithm firstly
identifies the possible links in the network using mutual-
information, and then orients the edges one by one to obtain
the network with local optimal score. Unlike K2, the order of
variables need not be given for MMHC.
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TABLE I
GRAMMAR FOR DECEPTIVE MAX PROBLEM.

1.0 Start → Exp
2.0 Exp → [*] Exp Exp Exp Exp Exp
2.1 → [+] Exp Exp Exp Exp Exp
2.2 → [0.95]
2.3 → [λ]

TABLE II
EXAMPLE OF FORMALIZED PCSG FOR DECEPTIVE MAX PROBLEM.

N {Start, Exp}
T {∗,+, 0.95, λ}
S Start
R {r0, r1, r2, r3, r4}, where

r0 = Start → Exp
r1 = Exp → [∗] Exp Exp Exp Exp Exp
r2 = Exp → [+] Exp Exp Exp Exp Exp
r3 = Exp → [0.95]
r4 = Exp → [λ]

C ∅
D Initial probability distributions for the rules

p(w, ∅|r0) = 1/4, where w ∈ {r1, r2, r3, r4}
p(w, ∅|r1) = 1/45, where w ∈ {r1, r2, r3, r4}5
p(w, ∅|r2) = 1/45, where w ∈ {r1, r2, r3, r4}5

III. GRAMMAR MODEL

A PCSG is employed in our algorithm. Our grammar formu-
lation differs from previous works in the context information
used. Formally, a PCSG G is a 6-tuple consisting of

1) A set of non-terminal symbols N
2) A set of terminal symbols T
3) A start non-terminal symbol S ∈ N
4) A set of derivation rules R ⊂ N × (N ∪ T )∗
5) A set of context elements C
6) A set of derivation probabilities D containing the prob-

abilities p(w, c|r), where r ∈ R and r contains non-
terminal in its right hand side, Lr

i = {s ∈ R :
LHS(s) = ith element in RHS(r)}, Lr = Lr

1 × Lr
2 ×

... × Lr
|RHS(r)|, w ∈ Lr and c ⊆ C. In other words,

Lr
i is the possible choices of the ith non-terminal and

Lr contains all valid combinations to derive the rule
r. p(w, c|r) gives the joint distribution of the context
elements and the expansion choices of the non-terminals
for a rule r.

Besides, we define a right-hand side function RHS : R→ N∗

to obtain an ordered set of non-terminals on the right-hand side
of a derivation rule. And a left-hand side function LHS : R→
N gives the left-hand side of a derivation rule. An example of
the PCSG for the deceptive max problem [24] is depicted in
Table I and the formalized version is given in Table II. We use
a pair of square brackets (e.g. [0.95]) to enclose the terminals
while the non-terminals (e.g. Exp, Start) are not enclosed by
them. When the set of context elements C is empty, we may
use p(w|r) to represent p(w, ∅|r) for notation simplicity. The
initial probability distributions for the rules are assumed to be
uniformly distributed.

As usual, individuals are represented as trees and con-
structed according to the choices of the derivation rules at

each node. The previous works on PMBGP applied different
probabilistic models for the variables (e.g. PIPE: a position-
dependent model; POLE: a global dependence model for all
nodes in a parse tree). BGBGP has one Bayesian network for
each rule that encodes the choice dependency (i.e. p(w, c|r))
for it and therefore the sub-trees. In particular, a derivation
rule is attached with a Bayesian network Br encoding the
derivation probabilities. For a given derivation rule r, the non-
terminal symbols in the left-hand side and the context elements
are the nodes in the Br. Although some non-terminals may
appear in several positions in a rule, each non-terminal is
regarded as distinct node in Br. For example, the five Exp
non-terminals in Rule 2.0 of the grammar in Table I correspond
to five different random variables. Given the grammar, the
learning and generation algorithm will then be applied to
learn a set of good derivation probabilities of this model
(i.e. updating the probability distributions D in Table II)
by learning the structures of the Bayesian networks and the
conditional probabilities.

IV. PROPOSED ALGORITHM

In this section, we present the details in BGBGP. The whole
process of BGBGP involves six steps.

1) Initialize a Bayesian network with independent uniform
distribution for each derivation rule.

2) Produce a population of individuals from the grammar
according to the probabilities specified in the Bayesian
networks.

3) Select the fitter individuals based on the fitness values.
4) Collect the usage counts for all choices of derivation of

each production rule from the selected individuals.
5) For each production rule in the grammar, check if the

number of samples accumulated exceeds a predefined
threshold, if so, its Bayesian network is re-learnt and
the samples are cleared.

6) Repeat from step 2 and the selected individuals survive
to the next generation.

Step 2 to step 6 are repeated until certain criteria, such as
reaching the maximum number of generation, are satisfied.

A. Initialization of Bayesian networks

Initially, all variables are assumed to be independent and
thus the nodes in the Bayesian networks are disconnected.
For example, given the grammar in Table I and assuming
no context element, the initial Bayesian networks (containing
nodes only for the non-terminals in the RHS) are shown in
Table III.

B. Individual generation

The generation of an individual is the same as deriving a
sentence from the grammar except that the derivation proce-
dure of the rules follows the distributions specified by the
Bayesian networks. When a non-terminal is to be expanded
with a particular rule, the Bayesian network for that rule
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TABLE III
BAYESIAN NETWORKS ASSOCIATED GRAMMAR IN TABLE I RIGHT AFTER

STEP 1. THE CONDITIONAL PROBABILITY TABLE IS FOR UNIFORM
DISTRIBUTION AND IS NOT SHOWN HERE.

Rule Bayesian network

1.0

2.0

2.1

2.2 No Bayesian network since there is no non-terminal
2.3 No Bayesian network since there is no non-terminal

Fig. 1. An example Bayesian Network for rule 2.1 in Table I

is used to instantiate the choices1 of rule for all the non-
terminals, given the context elements, and they can be recur-
sively expanded to get the final tree. As an example shown in
Figure 1, we instantiate the rule r = Exp → [+] Exp0 Exp1
Exp2 Exp3 Exp4 according to a topological order in Br,
(i.e. Exp0 Exp1 Exp2 Exp3 Exp4 in the example), where the
subscript distinguishes the five Exp non-terminals in the RHS.
Exp0 has four possible states representing the four rules (i.e.
2.0, 2.1, 2.2, 2.3) of Exp respectively. To instantiate Exp0,
we choose a state, say state 1, according to the distribution
p(Exp0). This means picking the derivation rule 2.1 of Exp.
Similarly, we instantiate Exp1 with state 3, hence rule 2.3. Af-
ter the instantiation of Exp0 and Exp1, we instantiate Exp2.
As the parents of Exp2 are now in states 1 and 3 respectively,
we look up the conditional probability table for the entries that
Exp0 = 1 and Exp1 = 3, draw a value for Exp2 according to
the distribution p(Exp2, ∅|Exp0, Exp1, r) and (say) obtain 2.
Following the same procedure for Exp3 and Exp4, (say) we
get 3 and 2 respectively. Therefore, the states are (1, 3, 2, 3, 2)
which means the rule is derived to (2.1, 2.3, 2.2, 2.3, 2.2). The
chosen rules can then be recursively expanded. Each program
can be represented as a parse tree. The chosen rule by the non-
terminal will be stored in the parse tree. A valid individual for
the grammar in Table I is shown in Figure 2, where #n in
the circles represent the instantiated choice of state for that
non-terminal is n.

C. Bayesian networks learning

Since each node in the parse tree records the rule choice, it
is possible to acquire the set of applied rules in constructing an
individual. In the example in Figure 2, we know that the Start

1Each rule has a minimum derivable depth. The allowed rules are those
where the sum of the current depth and the minimum derivable depth does
not exceed the maximum tree depth.

applies rule 1.0, and the children Exp is in turn instantiated
to state 1 and the non-terminals of right-hand side of the rule
r2,1 are being instantiated to states (1, 3, 2, 3, 2). We collect the
derivation events, and construct a table for each derivation rule.
With this table of cases, Bayesian network learning algorithms
can be used to model the relations of variables in the network.
In this work, the K2 algorithm is chosen to learn the structure
of the Bayesian network for the variables [42], where the input
order of the nodes is: the context elements come first, then the
nodes for non-terminals with the same order as in the grammar
rule. Since we need enough samples to build a better Bayesian
network, a parameter accumulation-size is defined and is
usually small relative to the population size. Only when the
number of cases is equal to or greater than the accumulation-
size, the Bayesian network is re-learnt.

D. Context elements during derivation

In our proposed grammar model in Section III, we can
easily add extra contextual information to the conditional
probabilities. In the Bayesian network, a new variable node
corresponding to each context element will be added (pre-
ceding the nodes for the non-terminals). In this paper, we
have introduced three different context elements to boost the
performance of BGBGP.
• Depth: When a rule is derived, it may be beneficial if the

non-terminals are chosen according to the depth of the
current level. For example, in Figure 3, for the bottom
layer of non-terminals, the state of Depth context is 2,
so the choices of the five Exp non-terminals will be
conditioned on Depth = 2.

• Caller: In the derivation of a parse tree, a set of rules are
chosen according to the grammar. Not only the derivation
can be affected by other non-terminals within the same
rule, but also affected by whom (the parent rule) calling
the rule.
It is observed that a non-terminal symbol appears in a
subset of rules. Consider a non-terminal symbol s, the
corresponding subset of rules Z ⊆ R are rules containing
s in their RHS. We index these rules (starting from 0
to |Z|-1) by their order of occurrence in the grammar.
Then, we subsequently annotate the non-terminals having
symbol s on the right-hand side of each rule in Z
using the index, namely the caller value. For example,
considering the Exp symbol in Figure 4, Rule 1.0, Rule
2.0 and Rule 2.1 are indexed by 0,1 and 2 respectively
with respect to the symbol. Next, the Exp non-terminals
on the right-hand side of Rule 1.0 (having index 0) are
annotated by 0 as shown using superscript in Exp0 and
similarly for other rules. We repeat this for all existing
non-terminal symbols on the right-hand side in the gram-
mar. Subsequently, each non-terminal is associated with
a caller value.

• Call position: We annotate globally instances of the same
non-terminal in the grammar. In other words, we regard
every non-terminal as distinct instance in a global manner.
For example, in Figure 5, the Exp3 in the third rule is
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Fig. 2. A valid parse tree on the deceptive max grammar in Table I

Fig. 3. Tree depth context.

Fig. 4. Caller context.

Fig. 5. Call position context.

the fourth Exp in the right-hand side in the grammar so
this instance of non-terminal Exp has the call position 3
when it is expanded.

These elements are represented as variable nodes in the
network. Since contextual information is provided during the
derivation procedure, they can solely be the parent of other
nodes.

V. COMPARATIVE EXPERIMENTS

In order to demonstrate the capability of our algorithm,
BGBGP was compared with canonical GBGP and three state-
of-the-art GP methods: POLE[23], [24], PAGE-EM [33], and

PAGE-VB[33]. These three methods were shown to be supe-
rior to univariate model (PIPE), adjacent model (EDP model)
and simple GP [33]. These approaches were applied to two
benchmark problems: the deceptive maximum (DMax) and the
royal tree (RT) problems. The parameters and their values used
in the system configuration and problems are shown in Table
IV. Due to time constraints, if a method cannot obtain an
optimal solution in 200,000 fitness evaluations, we assume it
fails for the run. We have tested all eight combinations of the
context variables: depth depth, caller caller and call position
callpos. We label BGBGP with depth if depth context variable
is used and similarly for other variables. Besides, ’-’ is used
if more than one variable is used. For example, caller-callpos
indicates that caller and callpos variables are used. If none of
the context variables is used, we call it a plain BGPGP.

A. Deceptive Max Problem

The objective in the Max problem [44] is to find a
function that returns the largest value within the maxi-
mum tree depth. Since this problem is very easy to solve,
the authors in [24] formulated a deceptive version of it,
called the Deceptive Max (DMax) problem. The interac-
tion of the values needs to be considered. The function
set is F = {+m,×m} and the terminal set is T =
{λ, 0.95} where λr = 1, λ ∈ C and r ∈ N (so λ is a
primitive rth root of unity), +m(a0, a1, ..., am−1)=

∑m−1
i=0 ai

and ×m(a0, a1, ..., am−1)=
∏m−1

i=0 ai. This problem is difficult
since the fitness value only considers the real part of a complex
value while the imaginary part is completely ignored but
multiplication on imaginary parts may change the magnitude
of the real part.

The DMax problem uses m = 5, r = 3. The optimal
solution is (5λ)3(0.95 × 5)2 = 2820.3125 for depth 3. For
depth 4, the optimal solution is (5λ)24(0.95×5) ≈ 2.83×1017.
The parameters used in this experiment are shown in Table IV.
The results are depicted in Table V. Following the procedures
in previous works [25][33], we report the average number of
fitness evaluations needed to obtain the optimal solution with
a probability of at least 90% in 50 independent runs under
different configurations. Some results of POLE, PAGE-EM,
and PAGE-VB are adopted from the papers [25][33] and the
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TABLE IV
PARAMETER VALUES FOR TWO BENCHMARK PROBLEMS.

Problem Specific Configuration
Parameter Value
Depth DMax: 3, 4

RT: 5 (Level D), 6 (Level E)

GBGP Configuration
Parameter Value
Population size 1000
Generation 1000
Crossover rate 0.9 (DMax,RT)
Mutation rate 0.09 (DMax,RT)

POLE Configuration
Parameter Value
Population size 4000 (DMax), 1000 (RT)
Parent range 2
Selection rate 0.1
Elite rate 0.005

PAGE-EM Configuration
Parameter Value
Population size 1000 (RT level D, DMax)

2500 (RT level E)
Annotation size 2, 4, 8, 16 (RT level D)

16 (RT level E)
8 (DMax)

Selection rate 0.1 (RT level D, DMax)
0.05 (RT level E)

Elite rate 0.1 (RT level D, DMax)
0.05 (RT level E)

PAGE-VB Configuration
Parameter Value
Population size 1000 (RT level D, DMax)

4000 (RT level E)
Annotation to explore {1,2,4,8,16}
Annotation exploration range 2
Selection rate 0.1 (RT level D, DMax)

0.05 (RT level E)
Elite rate 0.1 (RT level D, DMax)

0.05 (RT level E)

BGBGP Configuration
Parameter Value
Population size 500,1000
Accumulation size 10, 25
Context variables tested Depth, Call position, Caller
Selection rate 0.1

numbers in square brackets are the corresponding references.
For the BGBGP tests, only the results with accumulation-
size of 25 and population size 1000 are presented because
the difference caused by varying either the accumulation-
size or the population size is insignificant. It can be observed
that BGBGP outperforms POLE in the DMax problem at depth
4 (POLE takes up to 7 times more evaluations) when some
context elements have been used and has a similar value of
the average number of fitness evaluations as in PAGE-EM.
In order to construct an optimal solution, the two building
blocks (5λ and 5 × 0.95) must be constructed, which can be
done by correctly deriving the Exp non-terminals in Rule 2.1.
Table VI gives the Bayesian network for Rule 2.1 (Exp→ [+]
Exp0 Exp1 Exp2 Exp3 Exp4) in the last stage of BGBGP
with caller context. When this rule is invoked by Rule 2.0,
this gives caller = 1. Once Exp0 is in state 3, Exp1, Exp2,

Exp3 and Exp4 have a high chance of being in state 3, and
thus producing 5λ. Similarly, 5 × 0.95 can be constructed
with high probability (See the bolded numbers in Table VI).
Thus, BGBGP successfully estimates the distributions for
constructing the substructures.

TABLE V
RESULTS FOR THE DMAX PROBLEM. NUMBERS IN BRACKETS MEAN IT
FAILS TO OBTAIN THE OPTIMAL SOLUTION WITH A PROBABILITY OF AT
LEAST 90% IN 50 INDEPENDENT RUNS. ’X’ MEANS NONE OF THE RUNS

SUCCEEDS., ’-’ MEANS RESULTS ARE UNAVAILABLE.

Depth 3 Depth 4
µ σ µ σ

BGBGP
-plain (4,820) (715) (93,982) (28,317)
-depth 4,431 434 15,448 5,456
-callpos 4,372 591 16,213 4,185
-caller 4,226 493 14,936 4,683
-depth-callpos 4,378 496 15,158 2,835
-callpos-caller 4,082 392 14,432 4,876
-depth-caller 4,306 519 14,108 2,754
-depth-callpos-caller 4,397 511 16,110 7,882
GBGP (25,878) (545) x x
POLE 1,499[25] 83[25] 119,572[33] 4,295[33]
PAGE-EM 5,040 450 16,043[33] 1,189[33]
PAGE-VB 5,880 659 18,293[33] 1,688[33]

TABLE VI
THE LEARNT BAYESIAN NETWORK FOR RULE 2.1 TO GENERATE A
GLOBAL OPTIMAL INDIVIDUAL IN BGBGP WITH caller VARIABLE.

caller 0 1 2
p(caller) 0.996 0.00199 0.00199
Exp0 0 1 2 3
p(Exp0|caller = 0) 0.000200 0.000200 0.174 0.826
p(Exp0|caller = 1) 0.25 0.25 0.25 0.25
p(Exp0|caller = 2) 0.25 0.25 0.25 0.25
Exp1 0 1 2 3
p(Exp1|Exp0 = 0) 0.25 0.25 0.25 0.25
p(Exp1|Exp0 = 1) 0.25 0.25 0.25 0.25
p(Exp1|Exp0 = 2) 0.00114 0.00114 0.903 0.0950
p(Exp1|Exp0 = 3) 0.000242 0.000242 0.0210 0.978
Exp2 0 1 2 3
p(Exp2|Exp1 = 0) 0.25 0.25 0.25 0.25
p(Exp2|Exp1 = 1) 0.25 0.25 0.25 0.25
p(Exp2|Exp1 = 2) 0.00114 0.00114 0.860 0.138
p(Exp2|Exp1 = 3) 0.000242 0.000242 0.0758 0.924
Exp3 0 1 2 3
p(Exp3|Exp0 = 0) 0.25 0.25 0.25 0.25
p(Exp3|Exp0 = 1) 0.25 0.25 0.25 0.25
p(Exp3|Exp0 = 2) 0.00114 0.00114 0.775 0.223
p(Exp3|Exp0 = 3) 0.000242 0.000242 0.0597 0.940
Exp4 0 1 2 3
p(Exp4|Exp0 = 0) 0.25 0.25 0.25 0.25
p(Exp4|Exp0 = 1) 0.25 0.25 0.25 0.25
p(Exp4|Exp0 = 2) 0.00114 0.00114 0.811 0.186
p(Exp4|Exp0 = 3) 0.000242 0.000242 0.0607 0.939

B. Royal Tree Problem

In the royal tree problem [45], the set of functions is
{A,B,C, ...} and the terminal set is {x}. Each function has
an incremental arity (A is unary, B is binary, C is ternary
and so on). The optimal solution is the perfect tree which has
as children perfect trees of one level smaller. For example,
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the perfect tree at level C has three perfect trees of level B.
At level A, the perfect tree has A as root, and has only one
terminal x as child. The score of the tree is given by the score
of the root node and Score(x) = 1. The score of a node Xi

is computed by the following equation (1)

Score(Xi) = wbi
∑
j

waij × Score(Xij) (1)

where Xij is the jth sub-tree of Xi counting from the left.
Children weight waij is defined as follows:
• Full bonus = 2, if a sub-tree rooted at Xij has a correct

root with respect to the root node at Xi and is a perfect
tree

• Partial bonus = 1, if a sub-tree rooted at Xij has a correct
root with respect to the root node at Xi but is not a perfect
tree

• Penalty = 1/3, if a sub-tree rooted at Xij is not a correct
root with respect to the root node at Xi

Root weight wbi is defined as follows:
• Complete bonus = 2, if the tree rooted at Xi is a perfect

tree
• Otherwise = 1

Also, Score(x) = 1.
The results of the royal tree problem are presented in Table

VII which shows the average number of fitness evaluations
for obtaining the optimal solution in 50 runs under different
configurations. Some results of PAGE-EM and PAGE-VB
are adopted from the papers [33][36] and the numbers in
square brackets are the corresponding references as shown
in the table. For the BGBGP tests, only the results with
accumulation-size of 25 and population size 1000 are pre-
sented because of the little difference in results in changing
these parameters. BGBGP with the context-element(s) detph,
depth-callpos, depth-caller, and depth-callpos-caller settings
significantly outperforms PAGE-EM and PAGE-VB. BGBGP
shows its advantage when depth context is included in which
it is six times faster because the choice of the rules heavily
depends on the current level in order to generate a perfect tree.
Besides, as the royal tree becomes more complex, BGBGP
can be more scalable than PAGE-EM and PAGE-VB. We
terminate POLE for the level E experiment because it takes
two hours to complete one generation in our machines, which
is significantly longer (usually within one minute for other
approaches). The bottleneck of POLE is in the reconstruction
of Bayesian network since the number of nodes of each
Bayesian network grows rapidly when the tree depth and arity
of the new function node both increase using the Expanded
Parse Tree. From these results, BGBGP has the potential to
perform better than other methods when the problem has
strong dependence of depth.

VI. DISCUSSION AND CONCLUSION

From the experiment results, dependence learning improves
the performance of BGBGP for problems requiring strong sub-
tree dependence. Besides, it has several nice properties.

TABLE VII
RESULTS FOR ROYAL TREE.

Level D Level E
µ σ µ σ

BGBGP
-plain 6,047 631 51,832 12,887
-depth 3,411 267 10,163 1,000
-callpos 5,351 430 38,759 10,181
-caller 4,851 632 23,824 4,413
-depth-callpos 3,401 307 9,957 839
-callpos-caller 4,812 693 23,942 4,432
-depth-caller 3,303 311 9,977 983
-depth-callpos-caller 3,342 310 9,957 861
GBGP (33716) (0) x x
POLE 12,720 1,126 - -
PAGE-EM 6,237[36] 18[36] 61,809[33] 15,341[33]
PAGE-VB 11,240 7,631 263,720[33] 63,528[33]

A. Partial order in instantiation

Tanev’s approach [38] which tries to accumulate context
information using the derived terms, where sampling enough
data can be a problem. Besides, it relies on the derivation
to be in a specific order (say in a depth-first search manner
and from left-to-right). In contrast, BGBGP does not require
a predefined instantiation order. Instead, the order is deter-
mined by the dependence of instantiating the non-terminals.
Conceptually, if the non-terminals do not depend on other non-
terminals, it can be any valid value so they can be instantiated
first and alter the probabilities of instantiation of the remaining
non-terminals that depend on them.

B. Automatically discard independent events

Instead of blindly associating context variables with the non-
terminals, the dependence between them is learnt from data,
and is therefore adaptive to the problem nature. If the non-
terminals do not depend on the context elements, the values of
the context information do not affect the assignment of them.
In other words, irrelevant information can be automatically
discarded when appropriate through the Bayesian network
learning.

C. More scalable

One limitation of using a Bayesian network approach is the
scalability of Bayesian network itself. In practice, large scale
Bayesian network learning is still an active research problem.
Our approach handles this issue by localizing a Bayesian
network to a single rule, usually having a smaller number of
nodes and thus much simpler. Therefore, our system should
be more scalable than eCGP, PEEL, and POLE.

D. Future work

A novel GBGP system named BGBGP has been proposed
to handle the dependence issue. It employs multiple Bayesian
networks to accelerate the discovery of optimal solution using
context sensitive information. It performs well in the Deceptive
Max and Royal Tree problems. In the future, we will also
study how control parameters influence the search power. The
future extensions of BGBGP can learn more sophisticated
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global dependence and be applied to real world problems.
For example, an optimal solution of the Bi-polar Royal Tree
problem [24] requires all the leaf nodes to be the same (i.e.
either x or y) but our current framework cannot collect the
context information across different branches located in other
levels. We would like to identify a set of commonly occurring
context elements to tackle the complex dependence in real
world problems.
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