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Abstract—This paper proposes a route planning algorithm 

for the automatic garment cutter, a machine extensively used 

in the clothing industry, aiming at reducing the length and 

improving the smoothness of quick moving route for the cutter. 

With proper constraints for the cloth segments and knife-down 

points, the route planning problem is resolved into a 

generalized travelling salesman problem (GTSP) of the first 

category, for which an enhanced genetic algorithm is proposed. 

In this paper, we firstly outline the procedure of the algorithm 

and discuss some important details, including individual fitness 

calculation based on the multistage graph problem, a local 

search algorithm with 2-opt method, etc. Then a position-

reservation crossover operator based on dual-relevancy, and 

an adaptive mutation operator based on population dispersion 

are proposed, which can accelerate convergence of the 

algorithm as well as prevent locking into local minima as much 

as possible. Finally, experimental tests are performed on the 

GTSP Instances Library and the data of garment CAD files, 

which demonstrates the effectiveness of our route planning 

strategy in terms of both solution quality and running time. 

I. INTRODUCTION  

With the increasing market competition and growing 

personalized customer needs, the industries of clothing, 

shoemaking and bags are confronted with new challenges on 

the quality and efficiency of production. The cutting 

equipment, as an important tool for these industries, relates 

directly to the efficiency of production and the quality of 

products. Therefore, development of high-performance 

automatic garment cutter has become the urgent requirement 

for the development of these industries. 

Cutting route optimization is one of the key issues 

needed to be solved in the research of high-performance 

automatic garment cutter. Generally speaking, in numerical 

control machining, cutting route can be divided into two 

kinds: one is the actual feed path of the knife to cut cloth, 

leather or other materials; another is the quick moving route 

which has no cutting effect on the materials [1]. The length 

of the former is determined by the contours of cloth 

segments, which cannot be changed after the confirmation of 

the garment CAD file, while the length of the latter can be 

shortened with proper optimization methods to accelerate 

speed of processing and improve productivity. If the garment 

CAD file is cut according to the order of segment numbers, 

the performance of the quick moving route is rather poor in 

terms of both length and smoothness of the route, as shown 

in Fig. 1. Therefore, the purpose of the paper is to show how 

to determine the actual knife-down points for each cloth 

segment from hundreds of feasible knife-down points with 

an enhanced genetic algorithm, so that the quick moving 

route connected sequentially by actual knife-down points is 

shortest. 

 

A. Cutter Route Planning and Generalized Travelling 

Salesman Problem (GTSP) 

GTSP is an extension of the classical traveling salesman 

problem, and belongs in the category of NP-hard 

combinatorial optimization problems. In the 1960s, Henry-

Labordere [2], Srivastava [3] and Saksena [4] put forward 

the GTSP problem almost at the same time. The problem 

requires that m cities are selected sequentially from the n 

cities which have been divided into m clusters to form a 

Hamilton loop, so that the cost of the loop is lowest. 

According to different requirements for traversing the 

 
Fig. 1. Route planning problem for automatic garment cutter. The figure 

shows cloth segment contours (solid green lines) and feasible knife-down 

points (red dots on segment contours). The dash blue lines give a quick 

moving route using segment number based strategy. The segment number 

is marked at the center of each segment. The data comes from the CAD 

file SAKKO.ISO of Topcut–bullmer Co. Ltd. 
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clusters, there are two categories of GTSP problems: one is 

only one city can be visited for each cluster, and another is 

more than one city can be visited for each cluster. By 

imposing some constraints on cloth segments and knife-

down points, the cutter route planning problem can be 

converted to the GTSP problem of the first category. 

As mentioned above, the cutter route is made up of 

feasible knife-down points on the cloth segment contour. 

However, not every interpolation point is suitable as feasible 

knife-down points, and there are isolated drilling points in 

some CAD files, such as the segment 1 at the bottom right 

and the segment 6 at the upper right in Fig. 1. Moreover, we 

should specify the origin position for the cutter. In order to 

convert the cutter route planning problem to the GTSP 

problem, we extend the concept of feasible knife-down 

points and cloth segments. The generalized knife-down 

points (GKFP) consist of the following three parts: 

a)  The start point for cutting. The start point can be 

either the knife-down point on the first segment contour or 

the origin point of the cutter. 

b) Feasible knife-down points on segment contours. 

These points are given by the CAD file parsing program. 

c) Isolated drilling points. Every drilling point is regarded 

as a feasible knife-down point. 

The general cloth segments (GCS) also consist of three 

parts: the real cloth segments given by the CAD file, the 

isolated knife-down points, and the start point for cutting 

which is not on the first segment contour. With the definition 

of GKFP and GCS, the cutter route planning problem is 

converted to the GTSP problem: m GCS correspond to m 

city clusters, and n GKFP correspond to n cities, and the best 

cutter route corresponds to the lowest cost Hamilton loop. 

B. State of Art for GTSP  

The current solution methods for GTSP problems can be 

roughly divided into accurate solution methods, structural 

approximation methods, and heuristic optimization methods. 

Laporte and Norbert resolved the GTSP problem to the 

integer programming problem and proposed an accurate 

solution approach for the problem through branch and bound 

method [5]. Latter Fischetti improved the branch and bound 

method, providing us with the accurate solution to the GTSP 

problems in the GTSP instances library with up to 89 clusters 

and 442 cities [6]. Because of the combinatorial explosion 

problem of the solution space for the search of best solution, 

these accurate solution methods based on branch and bound 

are time-consuming and only applicable to small scale 

problems. Structural approximation methods, such as 3ρ/2 

algorithm proposed by Slavik [7], usually can solve the 

problem quickly, but the quality of solution is often 

unsatisfying. Current research mainly focuses on heuristic 

optimization methods. Many effective heuristic search 

methods adopted in the classic travelling salesman problem, 

such as genetic algorithm [8], particle swarm optimization 

algorithm [9], simulated annealing algorithm [10], and ant 

colony optimization algorithm [11], have been adapted and 

applied to the GTSP problem, thus forming some efficient 

algorithms for the GTSP problem, typical representatives 

among which are GI3 algorithm [12], Synder algorithm [13], 

mrOX algorithm [14] and LNS algorithm [15].  

II. CUTTER ROUTE PLANNING ALGORITHM 

A. Profile of Cutter Route Planning Algorithm  

As a probability optimization techniques based on 

biological genetic and evolutionary mechanisms, genetic 

algorithm is simple in operation, flexible and efficient in 

search, and with the characteristic of explicit parallelism in 

execution if compared to other heuristic algorithms. 

Therefore, the genetic algorithm is suitable for optimization 

computation of large complex systems, especially the NP-

hard combinatorial problems with multi-variable, multiple 

targets, and poor connectivity in many areas [16]-[18]. The 

basic idea of genetic algorithm mainly stems from the 

proposition of "survival of the fittest” in biological evolution. 

Fig. 2 shows the basic process of genetic algorithm. 

 

We solve the GTSP problem that stems from the cutter 

route planning problem using the above mentioned genetic 

algorithm. On the basis of the existing algorithm, the 

crossover operator and mutation operator are improved in 

order to balance the contradiction between accelerating 

convergence and avoiding premature of the algorithm. Alog. 

1 shows the profile of the whole algorithm with pseudo-code. 

B. Chromosome coding and Shortest-path algorithm 

Competition Population

Eliminated 
individuals

Crossover

Mutation Children

Colony

Fig. 2. Basic process of genetic algorithm. 
 

Input information of knife-down points and segments 

Compute distance-matrices of cities and clusters 

Initiate the colony with N individuals randomly 

Calculate fitness for individuals of the initial colony 

do: 

   Population selection through competition 

   Couple the individuals randomly for crossover 

   Apply crossover operator for each couple 

   for k:=1 to N 

         Apply mutation operator  

         Renew fitness through shortest-path algorithm 

         Apply 2-opt local search algorithm 

   until: Termination rules are satisfied 

   Renew best fitness, best route of current colony 

   Calculate statistic characteristics of current colony 

end  
Algo. 1. Profile of cutter route planning algorithm. Note that the 

 knife-down points and segments correspond to cities and 

 clusters in  GTSP problem, respectively. 
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Every gene corresponds to a generalized cloth segment in 

the cutter route planning problem and a city cluster in the 

GTSP problem, and genes with a particular arrangement 

constitute a chromosome. Therefore, individuals can be 

represented with chromosome coding. In this paper, we 

adopt the irregular coding method for chromosome coding, 

i.e., coding the chromosome with the indices of ordered 

sequence of generalized cloth segments. Take the virtual 

simplified CAD file in Fig. 3 as example. It consists of 4 

generalized cloth segments and 12 generalized knife-down 

points, and the ordered sequence “m1-m2-m3-m4-m1” forms 

the chromosome of an individual, where )( jimm ji   

and }4,3,2,1{i  . Thus every individual defines a cluster of 

cutting routes, which are of the same segment order but 

different knife-down points. As a matter of fact, every 

individual corresponds to a directed acyclic multistage 

graph shown in Fig. 3 above, on which the individual fitness 

can be obtained through a shortest-path algorithm. The main 

idea of the algorithm is backtracking dynamic programming 

},)({)( 11
),(tan

min
1

ijkk
mmcedisd

kk dmfmf
kkij

 
 

        (1) 

where )( kk mf  is the shortest distance set between the knife-

down points in stage k and the generalized cloth segment of 

final stage, and ),(tan 1kk mmcedis is the distance set of two 

knife-down points between stage k and stage k+1. 

Obviously,      

  kk nmf |)(|                                                     (2)                    

and 

                11 |),(tan|   kkkk nnmmcedis ,                    (3) 

where kn  is the number of knife-down points on segment 

km . It is necessary to note that when the start position is set 

to be the knife-down point on the first cloth segment, the 

dimension of the first (or last) shortest distance set may be 

greater than 1. To ensure a closed Hamilton loop, we should 

deal with the first GCS separately: apply the shortest-path 

algorithm for each knife-down point in the first (or last) 

GCS. Therefore, we obtain )( 1mf , and the length of the 

shortest path 
minf  for an individual is 

  }.{min
)(
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11

k
mff

ff
k

                             (4)    

C. 2-opt Local Search  

The cutter route planning algorithm adopt the efficient 2-

opt local search to fasten convergence and improve solution 

quality of the algorithm. 2-opt local search algorithm can 

find the best solution within time complexity of O(m2) from 

the 2-opt space, where m is the length of chromosome 

coding, and 2-opt space is the solution space that made up of 

all the feasible routes by substituting two new edges in the 

original route. Fig. 4 and Algo. 2 show the basic idea and 

pseudo-code of 2-opt local search algorithm, respectively. 

 

D. Population Selection 

Population selection strategy for the cutter route planning 

algorithm is based on fitness-sorting function and roulette 

selection. Specifically, sort the colony in ascending order of 

individual fitness, and then select the individual using 

roulette wheel according to the following probability: 

 mi
mm

i
ip 


 1,    

)1(

2
)(                         (5) 

where i is the individual index after sorting, m is the length 

of chromosome coding. Compared to the traditional method 

that directly uses individual fitness for population selection, 

fitness-sorting method is better to prevent the algorithm 

locking into local minima by always selecting the best 

for i:=1 to m-3 

     for j:=i+2 to m 

          if (di,i+1+dj,j+1>di,j+di+1,j+1) 

          for k:=0 to (j-i)/2 

  swap(xj-k, xi+k+1) 

  fnew=fold - ( di,i+1+dj,j+1-di,j-di+1,j+1） 

Algo. 2. 2-opt local search algorithm 

i-1

i+1

i

i+2
j-1

j

j+1

j+2
i-1

i+1

i

i+2
j-1

j

j+1

j+2

2-opt

Fig. 4. Basic principle of 2-opt local search. The dash lines in the 

right figure are the original edges, E(i, i+1) and E(j, j+1), which are 

replaced by the new ones E(i, j) and E(i+1,j+1), and the clockwise 

and anticlockwise arrows show that the order of genes between two 2-

opt points is reversed.  
 

GCS m1 GCS m2 GCS m4GCS m3 GCS m1

n11

n12

n21

n22

n23

n31

n32

n33

n34

n41

n42

n43

n11

n12

 
Fig. 3. Multistage graph for individual representation and shortest-

path algorithm.  GCS is the abbreviation for generalized cloth 

segment defined in the preceding part and is represented by “m” while 

generalized knife-down point is represented by “n”. The bold line in 

the figure gives a closed Hamilton loop. The GCS sequence in the 

figure below shows the chromosome coding for an individual. 

381



individual with the probability of 
)1(

2

mm
. 

E. Termination Rules  

The termination strategy for the cutter route planning 

algorithm consists of the following 4 rules: (1) The algorithm 

has reached the maximum generations; (2) The global 

optimum has not changed for specified generations; (3) The 

colony has not evolved towards favorable direction for 

specified generations; (4) The variety of colony has been 

diminished and not improved for specified generations. The 

criterion for rule (3) is the trends of average fitness of the 

colony. The criterion for rule (4) is the logarithm ratio of the 

colony fitness dispersion (discussed in detail in part III). 

Four rules can be used alone or by random combination. 

III. ENHANCED GENETIC ALGORITHM OPERATORS 

A. Enhanced Crossover Operator 

The position-reservation method is one of the most 

effective crossover techniques used in genetic algorithm. Its 

principal idea is to generate a reservation vector of the same 

dimension with chromosome coding, and the genes 

corresponding to bit “1” in the reservation vector are passed 

on to the offspring directly while the genes corresponding to 

bit “0” are rearranged with the different genes according to 

the order of location in the spouse. Fig. 5 shows the basic 

approach for position-reservation crossover. 

Thus, it is of critical importance for the selection of the 

position-reservation vectors. Generally, position-reservation 

vectors are selected randomly, which cannot guarantee that 

the superior genes of parents will be able to pass on to their 

children. So it is likely to result in poor global search ability 

and slow convergence of the algorithm. Therefore, we 

improved the crossover operator to avoid unnecessary search 

in the poor solution spaces. To be more specific, we take the 

cluster neighborhoods into consideration when selecting 

position-reservation vectors: neighboring genes of high 

correlation are selected as reserved bits while neighboring 

genes of poor correlation are selected as varying bits. In this 

way, the superior genes are more likely to be inherited by 

children, and the overall performance of the algorithm can be 

improved because of the reduction of unnecessary search in 

the poor solution spaces. 

The distance between genes is introduced in order to 

quantitatively characterize the “correlation” of genes. As we 

know, every gene corresponds to a generalized cloth segment, 

and every generalized cloth segment may contain more than 

one generalized knife-down points. Thus, the gene-to-gene 

distance is categorized as the distance of two point sets. Two 

typical representatives of definition for distance of point sets 

are the average distance and the minimum distance, as 

defined in the formula (6) and formula (7), respectively. 
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|mi| is the number of knife-down points on gene i in the 

above formulae. Compared to average distance, which is the 

measurement of average distance of two different point sets, 

minimum distance is more feasible for the gene-to-gene 

distance because we always seek to find the optimal 

individual fitness value in the cutter route planning problem. 

With the gene-to-gene distance, the definition of partial 

correlation is given in the following formula (8) 
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where, m is the number of genes in an individual, i.e., the 

number of generalized cloth segments. Obviously,  
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1


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                          .jiij RmRm                                           (10) 

That is, partial correlation has the property of summation 

normalization and asymmetry. To overcome the negative 

influence caused by the asymmetry property of partial 

correlation, through the combination and normalization of 

partial correlation, we further define the dual 

correlation

,
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where, ia and ib  are the coefficients for standardized linear 

transformation of partial correlation, i.e.,         
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position- reservation  
crossover

0 2 1 3 4 5 6 7 0

0 4 3 1 2 7 6 5 0

father

mother

reservation vector: 111001101

reservation vector: 101100101

0 starting/ending bitreserved bitvarying bit

child 1

child 2

0 2 1 4 3 5 6 7 0

0 2 3 1 4 5 6 7 0

 
 Fig. 5. Basic principle of position-reservation crossover  
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The pseudo-code of Algo. 3 clarifies the procedure for 

the position-reservation crossover algorithm based on dual 

correlation. It is noted that gene-to-gene distance and partial 

correlation are calculated off-line during the initiation stage 

of the genetic algorithm and the results are saved for future 

iteration. Even though dual correlation must be recalculated 

on-line for each generation due to relatively higher memory 

cost of off-line method, the calculation can be achieved in 

O(1) of time complexity by using the normalized partial 

correlation. So the time cost for correlation calculation is 

very low compared to the whole iteration of generations. 

Moreover, the number of reserved bits is chosen randomly 

from the interval [m/3, 2m/3], where m is the length of 

chromosome coding. 

 

B. Enhanced Mutation Operator 

The mutation probability is a key parameter in mutation 

operator. Normally, fixed mutation probability is used in 

genetic algorithm, which does not take into account the 

evolution process of a colony. Therefore, we propose an 

adaptive mutation strategy based on population dispersion 

and individual fitness: increase mutation probability to 

escape the trap of local minima when the individual fitness 

of the colony tends to be the same, and decrease mutation 

probability to protect the superior individuals when the 

distribution of individual fitness is very dispersed; apply 

smaller mutation probability to the individuals of better 

fitness than average to protect superior genes, and apply 

larger mutation probability to individuals of worse fitness 

than average to accelerate the evolution of inferior 

individuals. Through this adaptive adjustment strategy in 

mutation probability, the superior individuals are well 

protected while the evolution speed of the inferior 

individuals is accelerated, which nicely balances the inherent 

contradictions of genetic algorithms between fastening 

convergence and preventing locking into local minima.  

The adaptive mutation probability is determined by 

,
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where minp and maxp denote the lower bound and the upper 

bound of mutation probability respectively, f denotes 

individual fitness, minf , maxf and avef denote the minimum, 

the maximum, and the average value of the colony fitness 

respectively. It is noted that the fitness value is negatively 

correlated to the superiority of the individual, so minf  

corresponds to the most superior individual.  

The adaptive mutation formula (14) takes into account of 

the relation of fitness value between the isolated individual 

and the entire colony. However, it fails to reflect the dynamic 

change during the evolution of the colony, in which process 

the variety of the colony tends to decline.  In order to prevent 

the diversity of the colony from declining quickly and 

enlarge search space of the algorithm as much as possible, 

we propose a strategy to dynamically adjust the lower and 

upper bounds of mutation probability according to the 

average fitness and standard deviation of the colony fitness. 

In order to avoid the negative influence by the order of 

magnitude or the unit of individual fitness for different 

colonies, we use the logarithm ratio between standard 

deviation and average value of colony fitness  

   

avef


 10log            (15) 

to evaluate the degree of dispersion for the colony, where 

 and avef are the standard deviation and average value of 

the colony fitness respectively. The detailed implement 

method is shown in table I, in which we divide the scope of 

fitness dispersion into 6 fuzzy sets -- EG, G, LG, LS, S, and 

ES -- and the membership functions for these fuzzy sets are 

given in the second column of the table. 

 
     Basic operations of the enhanced mutation operator 

adopted in this paper are based on 4-opt insertion. 

Specifically, we choose a gene and a position for insertion 

Renew average fitness and colony standard deviation 

Calculate membership function value for current colony 

Decide lower and upper bounds for mutation probability 

for i:=0 to N 

    Determine repeated times of 4-opt insertion operations 

    Calculate mutation probability pi for individual i 

    Apply 4-opt insertion operations with probability pi 

end 
Algo. 4. Enhanced mutation algorithm 

Calculate gene-to-gene distances, partial correlations 

Normalize and save partial correlations 

Couple all the N individuals randomly  

for i:=1 to N/2 

    Calculate the lists of dual correlations of parents 

    Sort the lists of dual correlations in descending order 

    Generate the number of reserved bits for parents  

    Generate the reserved bits for parents respectively 

    Crossover using position-reservation method 

end 

Renew the colony by substituting children for parents 
Algo. 3. Enhanced position-reservation crossover algorithm 

TABLE I 

BOUNDS FOR ADAPTIVE MUTATION PROBABILITY 

Colony Fitness 

Dispersion γ 

Membership 

 Function μ 
Lower  

Bound  

Upper  

Bound 

extremely great (EG) 1)2(5 ]1[  e  0.00 0.00 

great (G) 1)5.1(5.12 ]1[
2  e  

0.01 0.05 

a little great (LG) 1)5.0(5.12 ]1[
2  e  

0.05 0.10 

a little small (LS) 1)5.0(5.12 ]1[
2  e  

0.10 0.20 

small (S) 1)5.1(5.12 ]1[
2  e  

0.20 0.50 

extremely small (ES) 1)2(5 ]1[  e  0.50 1.00 
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randomly, and then insert the chosen gene after the chosen 

position. This process is performed several times for each 

mutation individual to improve the randomness of mutation. 

The specific repeated times of the 4-opt insertion operation 

are determined randomly according to the length of 

chromosome coding. Algo. 4 shows the pseudo-code for the 

basic procedure of enhanced mutation operator.  

IV. SIMULATIONS AND APPLICATIONS 

The whole algorithm is implemented with C++ on a 

personal computer with 2.2GHz Intel T6600 CPU, 2GB 

RAM, and Windows 7 operating system. There are two types 

of simulation data: one is from the standard GTSP instances 

library, another is from the parsing data of garment CAD 

files. The computational results of the former provide us with 

a way to compare performances of different GTSP 

algorithms while the computational results of the latter show 

the successful application of the algorithm in cutter route 

planning problem. 

A. Simulation of the Enhanced Crossover Operator 

For the test of crossover operators, we choose 37 

instances among 11berlin52 ~ 84fl417 and 115u674 ~ 

217vm1084 of the standard GTSP instances library. As 

shown in Fig. 6, we compare three crossover operators: the 

basic crossover operator using randomly chosen reserved bits, 

the enhanced crossover operator using average gene-to-gene 

distance and the enhanced crossover operator using 

minimum gene-to-gene distance. We record the generation of 

the first appearance of the best global solution for each 

crossover operator applied to Algo. 1, and normalize the 

results with respect to every instance, hence the Fig. 6 above. 

The Fig. 6 below shows the convergence process of the 

algorithm for the three crossover operators using parsing data 

of a garment CAD file named “SAKKO.ISO” from Topcut–

bullmer Co. Ltd. We can know from Fig. 6 that the enhanced 

crossover operators tend to find the global best more quickly 

than the basic crossover operator, and the minimum gene-to-

gene distance is more effective than the average gene-to-

gene distance for GTSP problems.  

B. Simulation of the Enhanced Mutation Operator 

To test the performance of mutation operators, we select 

7 larger instances among 115u574 ~ 217vm1084 of the 

standard GTSP instances library. Fig. 7 shows the simulation 

results of the basic mutation operator using fixed mutation 

probability of 0.1, and the enhanced mutation operator using 

the adaptive mutation probability proposed in the paper. The 

figure above gives the percentage error of different instances 

while the figure below shows the running time of 

corresponding instances. Note that the running time is 

normalized with respect to each instance. According to the 

simulation results, the adaptive mutation operator can help 

find better solutions for large scale problems while the 

running time increases justly slightly compared to the basic 

mutation operator.  

 

C. Comparison with Other Algorithms 

Because the cutter route planning algorithm (CRPA) is 

based on the GTSP problem, we compare our algorithm with 

some representative GTSP algorithms to show the 

effectiveness of our method. For convenience, we select 

18instances widely used for comparison in papers on GTSP 

algorithms, and compare the percentage error and running 

time of different algorithms. Table II shows the comparison 

results. The best solutions of these instances are provided by 

BC algorithm [6]. Though the running time in Table II 

cannot reflects the performance of different algorithms 

faithfully because of the hardware/software environment 

differences of test platforms. Nevertheless, we can use it as 

references for different instances of a specific algorithm. 

Seen from Table II, the cutter route planning algorithm gains 

obvious advantages over GI3 algorithm (GI3) [12], ant colony 

algorithm (ACO) [11], and simulated annealing algorithm 

(SA) [10] in both solution quality and running time. 

 
Fig. 6. Simulation results of crossover operators. The figure above 

shows the first appearance of global best for different instances. The 

results are normalized corresponding to each instance. The figure 

below shows the convergence process of the algorithm. The dot line 

corresponds to the basic crossover operator with randomly chosen 

reserved bits; the solid line corresponds to enhanced crossover 

operator using average gene-to-gene distance; the dash line 

corresponds to another enhanced crossover operator using minimum 

gene-to-gene distance. 
 

 
Fig. 7. Simulation results of mutation operators. The figure above 

shows the percentage error for different instances. The figure below 

shows the relative running time of the algorithm. Note that the 

running time is normalized with respect to each instance. The bar in 

dark color corresponds to the basic mutation with fixed mutation 

probability; the bar in light color corresponds to the adaptive mutation 

based on dispersion of colony fitness. 
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Moreover, the performance of our algorithm can also attain 

or surpass the performance of some other complex 

algorithms base on the genetic algorithm, such as mrOX 

algorithm (MROX) [14] and large neighborhood crossover 

algorithm (LNS) [15]. 

D. Applications in Automatic Cutter Route Planning 

We apply the cutter route planning algorithm proposed in 

this paper to the practical problem encountered during our 

endeavors for the development of an automatic garment 

cutter for Topcut–bullmer Co. Ltd. Currently, two strategies 

for cutter quick moving route are widely adopted in this 

industry: segment number based strategy, and “Z” order 

based strategy, as shown in Fig. 1 and Fig. 8, respectively. 

The “Z” order based strategy tends to choose the nearest 

feasible knife-down point from current position as the next 

cutter position. Fig. 9 shows GA based strategy of the quick 

moving route for the cutter proposed in this paper.  The 

figure is taken from the user graphic interface (GUI) 

program of the automatic garment cutter implemented with 

 
Fig. 9 . Quick moving route using the GA based strategy of this paper 

 
Fig. 8 . Quick moving route using the “Z” order based strategy 

TABLE II 

COMPARISON OF DIFFERENT ALGORITHMS 

GTSPLIB 

INTSTANCES 

BC GI3 MROX LNS SA ACO CRPA 

best CPU error CPU error CPU error CPU error CPU error CPU error CPU 

30kroA150 11018 100.3 0 17.8 0 0.98 0 5.95 0.16 152 5.99 104 0 0.725 

30kroB150 12196 60.6 0 14.2 0 0.98 0 5.02 0.02 78 6.02 67 0 0.595 

31pr152 51576 94.8 0.47 17.6 0 0.97 0 5.24 1.12 79 1.6 69 0 0.58 

32u159 22664 146.4 2.6 18.5 0 0.98 0 5.58 1.9 89 8.68 75 0 0.819 

39rat195 854 245.9 0 37.2 0 1.37 0 11.01 1.09 198 5.86 145 0 2.072 

40d198 10557 763.1 0.6 60.4 0 1.63 0 10.15 0.53 112 10.77 99 0 2.061 

40kroA200 13406 187.4 0 29.7 0 1.66 0 10.41 6.02 107 10.77 99 0 1.652 

40kroB200 13111 268.5 0 35.8 0.05 1.63 0 10.81 0.38 108 8.34 99 0 1.717 

45ts225 68340 37875.9 0.61 89 0.14 1.71 0.04 31.45 1.57 325 5.38 223 0 3.161 

46pr226 64007 106.9 0 25.5 0 1.54 0 8.25 2.7 130 7.51 124 0 2.492 

53gil262 1013 6624.1 5.03 115.4 0.45 3.64 0.14 24.34 5.24 142 15.92 148 0.12 4.408 

53pr264 29549 337 0.36 64.4 0 2.36 0 18.27 1.87 146 12.06 150 0 4.387 

60pr299 22615 812.8 2.23 90.3 0.05 4.59 0 21.25 7 165 15.97 184 0 6.493 

64lin318 20765 1671.9 4.59 206.8 0 8.08 0 26.33 5.73 166 13.57 199 0.06 8.699 

80rd400 6361 7021.4 1.23 403.5 0.58 14.58 0.42 32.21 10.4 225 21.67 299 0.46 21.746 

84fl417 9651 16719.4 0.48 427.1 0.04 8.15 0 31.63 9.95 282 10.14 345 0 5.91 

88pr439 60099 5422.8 3.52 611 0 19.06 0 42.55 13.1 276 16.14 368 0 31.398 

89pcb442 21657 58770.5 5.91 567.7 0.01 23.43 0.19 42.53 11.2 253 19.48 376 0.04 24.048 

BC algorithm gives the best solution of each instance, and “error” is the percentage error value relative to the best solution. The “CPU” represents the 

running time of the algorithm with unit of second (s) . The algorithms shown in the table from left to right are: branch and bound algorithm, GI3 algorithm, 

mrOX algorithm, large neighborhood crossover algorithm, simulated annealing algorithm, ant colony algorithm, and cutter route planning algorithm. The 

results presented above are the mean results of 5 attempts for each instance. Because of the hardware/software environment differences of test platforms, 

the above listed CPU time is for reference only. 
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PyQt. Table III lists the comparison results of GA base 

strategy and conventional strategies. The CAD file used in 

these tests is “SAKKO.ISO”, which contains 22 cloth 

segments, 119 feasible knife-down points, 8 drilling points, 

and a starting point outside of the contours of cloth segments.  

Therefore, the number of GCS is 31, and the number of 

GKDP is 128. The running time of the cutter route planning 

algorithm is 0.461 seconds. From Fig. 1 and Fig. 8, we know 

that the route planning strategy based on genetic algorithm 

can shorten the length of quick moving route for the cutter 

by reducing redundant reciprocating motions to maximum 

extent with relatively low time costs, thus improving the 

working efficiency of the automatic cutter. 

 

V. CONCLUSIONS 

We propose an improved genetic algorithm for the route 

planning problem of the automatic garment cutter in this 

paper. The route planning problem is transformed into the 

GTSP problem by applying some constraints on knife-down 

points and cloth segments. Then an adaptive genetic 

algorithm for the transformed GTSP problem is introduced. 

The algorithm resolves the chromosome coding into the 

coding of cloth segment sequence through a variant method 

of dynamic planning, and evolves by generations through 

population selection, crossover, mutation and other basic 

procedures of genetic algorithm. The termination of the 

algorithm is controlled by four different conditions to ensure 

the solution quality, and a 2-opt local search strategy is 

applied to strengthen the search ability. The main efforts of 

this paper lie in the enhanced operators for crossover and 

mutation. 

For the crossover operator, the partial-correlation and 

dual-correlation of genes are defined, and the reservation 

vector is generated based on the dual-correlation so that the 

superior genes can be passed on to children, thus fastening 

the convergence of the algorithm. For the mutation operator, 

we propose a strategy to adaptively change the mutation 

probability based on the colony dispersion and individual 

fitness, which can protect the superior individuals and 

prevent locking into local minima for the algorithm at the 

same time. 

Finally, simulations are performed on both the standard 

GTSP instances library and the garment CAD files. The 

simulation results demonstrate the effectiveness of our 

algorithm and its successful application to the garment cutter 

route planning problem. 
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TABLE III 

COMPARISON WITH CONVENTIONAL STRATEGIES 

 segment number  

based strategy 

“Z” order 

 based strategy 
GA based 

strategy  

Route Length        45347 38291 19203 

Length   Reduction     57.7% 49.8% 0 

Machining Time 580.7 559.9 497.4 

Time Reduction 14.3% 11.1% 0 

The “Route Length” is represented in unit of millimeter (mm), and the 

“Machining Time” is represented in unit of second (s). The 

“Length/Time Reduction” is the ratio of the value between the reduced 

costs and the original costs. Default parameters for configuration of the 

cutter are adopted. The machining time is the mean value of 3 trials for 

the CAD file SAKKO.ISO of Topcut–bullmer Co. Ltd. 
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