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Abstract—Learning automaton (LA) is a reinforcement learn-
ing model that aims to determine the optimal action out of a set
of actions. It is characterized by updating a selection probability
vector through a sequence of repetitive feedback cycles interacting
with an environment. Decentralized learning automata (DLAs)
consists of many learning automata (LAs) that learn at the same
time. Each LA independently selects an action based on its own
selection probability vector. In order to provide an appropriate
central coordination mechanism in DLAs, this paper proposes
a novel decentralized coordination learning automaton (DCLA)
using a new selection probability vector which is combined with
the probability vectors derived from both LA and estimation of
distribution algorithm (EDA). LA contributes to the own learning
experience of each LA while EDA estimates the distribution of the
whole swarm’s promising individuals. Thus, decentralized LAs
can be coordinated by EDA using the swarm’s comprehensive
knowledge. The proposed automaton is applied to solve the real
problem of meta-task scheduling in heterogeneous computing
system. Extensive experiments demonstrate a superiority of
DCLA over other counterpart algorithms. The results show that
the proposed DCLA provides an effective and efficient way to
coordinate LAs for solving complicated problems.

I. INTRODUCTION

Heterogeneous computing (HC) system is an emerging
platform that is composed of some distributed and different
high performance machines to perform different computation-
ally intensive applications. Scheduling problem is a crucial
problem that needs to be solved efficiently in HC system. There
are two categories of scheduling problems that are classified
according to the types of tasks: one is the scheduling of meta-
tasks, the other is the scheduling of directed acyclic graph
composed of communicating tasks. In this paper, we focus
on meta-task scheduling problem, its goal is to find a task
assignment solution that is to minimize the schedule length
of several independent tasks with no data dependencies in
HC system. It has been proved to be a NP-complete problem
[1]. Initially some suitable heuristic algorithms are proposed
to solve it, such as Min-min, Max-min [2] and Segmented
Min-min [3]. Next, in order to improve the solutions’ quality,
meta-heuristics approaches are presented for solving it.

Besides the famous algorithms like genetic algorithm (GA)
[4][5], simulated annealing (SA) [6] and particle swarm opti-
mization (PSO) [7], learning automaton (LA) [8][9] as an im-
portant learning model has been successfully applied to solve
scheduling and assignment problems in recent years. Such as

static task graph scheduling [10], multiple cost optimization for
task assignment [11] and multi-constraint assignment problems
[12]–[16]. The goal of LA is to determine the optimal action
out of a set of actions, the optimal action is defined as the
one that maximizes the rewarded probability [17]. Recently,
learning automata (LAs) have been shown to be valuable tools
for designing multi-agent reinforcement learning algorithms
and controlling the stochastic games [18]. The pioneers of
all the classes of LAs belong to the fixed-structure stochastic
automata (FSSA) family, they have the property that their
transition and output matrices do not change with time. A
subclass of FSSA have been used to solve the equipartitioning
problem [19]. In order to accelerate the convergence speed,
variable structure stochastic automata (VSSA) are proposed
and they have been proved to be the fastest converging LAs,
whose transition and output matrices are time-varying. They
have been widely employed to systems that have time-varying
environments, e.g., channel assignment [20], wireless and
wired networks [21][22], dominating set problem [23] and
tutorial-like system [24]. Normally, only one LA is used to
construct the learning model of related problems. In order
to supply a learning model that consists of many LAs that
learn at the same time, decentralized learning automata (DLAs)
[12] is proposed. In general, these LAs are VSSA. DLAs can
increase the flexibility to some extent, but its performance is
not ideal due to each LA in DLAs selects an action based on
its own selection probability vector independently without an
appropriate central coordination.

How to provide an appropriate central coordination mech-
anism to coordinate different LAs in DLAs becomes an
important and interesting problem. Estimation of distribution
algorithm (EDA) that is firstly introduced in [25] maybe very
potential to solve it. Because the most important feature of
EDA is to estimate the distribution of promising solutions
in the search space. Thus, EDA can be used in DLAs to
estimate the distribution of promising solutions that selected
by different LAs. By this perspective, each LA in DLAs can
obtain other LAs’ learning experiences to a certain degree,
and uses this knowledge to guide its own learning. In recent
years, EDA has been successfully applied to a large number
of discrete optimization problems by using its estimation
feature. Such as permutation flowshop [26], job shop [27],
hybrid flow-shop [28], nurse scheduling [29], semiconductor
final test [30], resource-constrained project [31], multiobjective
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resource-constrained project [32], permutation-based combina-
torial optimization [33], large scale global optimization [34]
and max-cut problem [35].

In the field of hybrid of LA and EDA, the work [36]
proposes learning automata based estimation of distribution
algorithm (LAEDA) that belongs to a class of EDAs, it uses a
team of learning automata to build the probability distribution
model of high quality solutions. That is, LA is used to provide
distribution information for EDA.

This paper proposes a novel decentralized coordination
learning automaton (DCLA) that owns a new selection prob-
ability vector, which is combined with the probability vectors
derived from both LA and EDA. LA contributes to the own
learning experience of each LA while the EDA provides
a swarm’s comprehensive knowledge through estimating the
distribution of promising individuals. Thus, each LA will
possess more comprehensive learning and search abilities,
decentralized LAs will be coordinated by the EDA using
the swarm’s comprehensive knowledge. The information of
combined selection probabilistic vector in DCLA obtains from
not only the learning experience of each LA itself, but also the
promising distribution experience of the whole swarm. The
proposed automaton is applied to solve the real problem of
meta-task scheduling in HC system. Extensive experiments
demonstrate a superiority of DCLA over other counterpart
algorithms. The results show that the proposed DCLA provides
an effective and efficient way to coordinate LAs for solving
complicated problems.

The rest of this paper is organized as follows: meta-task
scheduling problem formulation is described in Section II.
In Section III, traditional LA and EDA are introduced. The
proposed DCLA is presented in Section IV. In Section V,
DCLA is applied to meta-task scheduling problem. Extensive
simulation results that indicate the superiority of DCLA over
other algorithms are presented in Section VI. Finally, conclud-
ing remarks are given in section VII.

II. META-TASK SCHEDULING PROBLEM FORMULATION

In this paper, we focus on meta-task scheduling problem
(MTSP) that is composed of a set of tasks and computing
machines. Meta-task is defined as these tasks that are indepen-
dent of each other, that is they have no inter-task data depen-
dencies. Next, a formulation of meta-task scheduling problem
is presented. Firstly, HC system is assumed to be composed
of M heterogeneous machines, which is defined as M =
{M1,M2 . . . ,Mm}, and a set of tasks T = {T1, T2 . . . , Tn} is
submitted to HC system at a specific time, m is the number of
computing machines and n is the number of tasks. Secondly,
an expected time to compute (ETC) matrix is used to estimate
the expected execution times of a task when it runs on different
machines. ETC matrix is a n ×m matrix, every element in
ETC matrix denotes the expected execution time of a task on
a particular machine. That is, Eqp (1 ≤ q ≤ n, 1 ≤ p ≤ m) is
the expected execution time of a task q on machine p. q is an
arbitrary task and p is an arbitrary machine. In addition, C[p] is
the sum of the expected execution times of tasks that assigned
to the p-th machine. Formally, C[p] is defined as follows:

C[p] =
∑

Z(q)=p

Eqp, (1 ≤ q ≤ n, 1 ≤ p ≤ m) (1)

here, Z is a set of size n, Z(q) indicates task q is assigned on
different machines.

Then, the makespan of the meta-task scheduling problem is
the maximal total execution time among those machines. And
the goal of scheduler is to minimize makespan in this paper.
Formula is defined as follows:

makespan = max{C[p]}, (1 ≤ p ≤ m) (2)

III. RELATED WORKS

A. Learning Automaton (LA) and Linear Reward-Penalty
(LRP ) Algorithm

LA is a reinforcement learning model [8][9]. The goal
of such an automaton is to determine the optimal action out
of a set of actions, the optimal action is defined as the one
that maximizes the rewarded probability [17]. LA selects the
optimal action through interacting with an environment, which
provides an appropriate response that is defined as reward
or penalty, then this response is used to update the selection
probability vector of actions by LA. The simple steps of LA
are described in Algorithm 1:

Algorithm 1 LA
1: begin
2: do
3: LA selects an action according to the selection probability

vector;
4: The selected action is supplied to an environment, which

provides an appropriate response that is reward or penalty;
5: LA updates the selection probability vector of actions

according to this response.
6: until The end condition is satisfied.
7: end

In order to understand the learning process of LA better, we
will simply introduce linear reward-penalty (LRP ) algorithm
that is adopted in this paper. LRP is a typical LA algorithm and
perhaps it is the earliest scheme considered in mathematical
psychology [37]. In LRP algorithm, the selection probability
vector of actions are computed strictly dependent on the
environmental response, which is described as �, � ∈ {0, 1},
“1” is reward and “0” is penalty. If the k-th action of i-th LA
is attempted at time t, The updating formulas of the selection
probability vector are as follows:

If � = 1

LA pji (t) = (1− a)LA pji (t− 1), j ̸= k;

LA pki (t) = LA pki (t− 1) + a[1− LA pki (t− 1)].

Else

LA pji (t) =
b

r − 1
+ (1− b)LA pji (t− 1), j ̸= k;

LA pki (t) = (1− b)LA pki (t− 1).

here, a and b are reward and penalty parameters, re-
spectively. 0 < a < 1, 0 ≤ b < 1. LA pi =
(LA p1i , LA p2i , . . . , LA pri ) is the selection probability vec-
tor of the i-th LA,

∑r
R=1 LA pRi = 1. r is the num-

ber of actions. The probability LA pki (t) is increased at
time t if the response is reward, other actions’ probabilities
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LA pji (t), (j ̸= k and 1 ≤ j, k ≤ r) are decreased by an
amount proportional to their values at time t− 1. Conversely,
the probability LA pki (t) is decreased at time t if the response
is penalty, other actions’ probabilities LA pji (t) are increased
by an amount proportional to their values at time t− 1.

B. Estimation of Distribution Algorithm (EDA)

EDA [25] is a new class of evolutionary computation.
The main difference between EDA and traditional evolutionary
computations is that the interrelations in EDA are expressed
explicitly through a joint probability distribution model that
constructed through some selected promising individuals from
the previous iteration. Then new offspring are generated by
sampling the constructed probability distribution model. The
most difficult work in EDA is the estimation of the joint prob-
ability distribution model associated with selected promising
individuals. The following Algorithm 2 is a description for
EDA:

Algorithm 2 EDA
Require:

Input: The initial population generated randomly.
1: begin
2: do
3: Select promising individuals from population according to

their fitness values by using a certain selection procedure;
4: Estimate the probability distribution of the selected

promising individuals;
5: Sample new offspring according to the estimated proba-

bility distribution;
6: Use new sampled offspring to replace some worse indi-

viduals in the previous population.
7: until The end condition is satisfied.
8: end

IV. PROPOSED DCLA

One of the most serious defects that weakens the perfor-
mance of decentralized learning automata (DLAs) is that each
LA independently selects an action based on its own selection
probability vector without an appropriate central coordination.
In order to solve this problem, this paper proposes a novel
decentralized coordination learning automaton (DCLA) using
a new selection probability vector to combine two probabil-
ity vectors that derived from both LA and EDA. That is,
the information in combined probabilistic vector obtains not
only the learning experience of each LA itself, but also the
promising distribution experience of the whole swarm. The
decentralized LAs can be coordinated by EDA using the
swarm’s comprehensive knowledge.

The advantage of incorporating EDA into DLAs is that
the promising distribution experience of the whole swarm is
able to reflect the distribution of promising solutions in the
search space. EDA can build a distribution model through
making full use of the information of swarm’s promising
learning experience, then this model is used to coordinate the
decentralized LAs.

In DCLA, a new selection probability vector updating
formula is designed by combining the learning experience of

LA and the whole swarm’s promising distribution experience
that is obtained by EDA. Here, we assume that each component
in a solution corresponds to a LA, and a variable in a
component corresponds to an action. That is, the r variables in
each component correspond to r actions in each LA, denoted
as an action set ai = {a1i , a2i , . . . , ari } in the i-th LA. The
combined selection probability is as follows:

pji (t)=�×LA pji (t)+(1− �)×EDA p̃ji (t) (3)

where pi = (p1i , p
2
i , . . . , p

r
i ) denotes the combined selection

probability vector, pji (t) is the combined selection probability
of the j-th action in the i-th LA at time t, 1 ≤ j ≤ r.
pji (t) is calculated by LA pji (t) and EDA p̃ji (t). LA pji (t)
denotes the learning experience of the j-th action in the i-th
LA. EDA p̃ji (t) shows the promising distribution experience
of the j-th variable in the i-th component. � ∈ [0, 1] is a
learning parameter and it is used to balance the contributions
between the individual learning experience of each LA and the
promising distribution experience of the whole swarm derived
from EDA. That is, the bigger � is, the greater contribution of
LA, the smaller � is, the greater contribution of EDA. Thus, the
setting of learning rate � has a direct impact on the tradeoff
the learning ability between LA and EDA. For example, if
� is 0, new offspring will be sampled based on EDA. As �
increases, the amount of LAs’ learning abilities increase. Next,
we will simply analyze the learning process of DCLA. All
LAs will initially expect to be explorative until their rewards
and penalties have balanced out, and as the search goes on, the
probabilistic model constructed by EDA to converge, EDA can
be thought of as an exploitation behavior as sampled solutions
focus round LAs’ “learned” values with high probability.

A. Learning Process of LA pi

At each time, a new candidate solution is generated by
all LAs using their combined selection probability vectors,
then environment gives a response according to the quality
of the new candidate solution. In this paper, the response from
environment is described as �, � ∈ {0, 1},“1” is reward and
“0” is penalty. Then each LA will utilize the response to update
its own selection probability vector. Algorithm 3 displays the
learning process of LA pi.

Algorithm 3 The learning process of LA pi
1: begin
2: Each LA selects an action (a variable in a component)

according to the combined selection probability vector p
in equation (3). A new candidate solution is generated
when all LAs have selected their actions;

3: If the new candidate solution is better than the global best
solution, environment will give a reward response, else the
response is penalty;

4: LRP algorithm is used to update the selection probability
vector LA pi in the i-th LA according to this response.

5: end

B. Distribution Experience of EDA p̃i

Population-based incremental learning (PBIL) [38] is used
to model the promising distribution experience of the whole
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swarm EDA p̃i. In PBIL, there is a probability vector
EDA p̃i = (EDA p̃1i , EDA p̃2i , . . . , EDA p̃ri ), which is to
characterize the distribution of the promising solutions in the
search space, i is a component of solution and r is the number
of all potential variables on this component. The updating
formulae of the probability vector EDA p̃i at time t are as
follows:

EDA p̃ji (t) = (1− �)× EDA p̃ji (t− 1)

+�× EDA pji (t) (4)

EDA pji (t) =

∑Q
k=1 ps

j
ik

Q
(5)

where EDA p̃ji is the percentage of the value of the j-th
potential variable on the i-th component, and it is learned and
updated from the promising solutions’ historical experience
and current experience that calculated by EDA pji . That is,
EDA p̃i can be regarded as a probability vector for modeling
the distribution of the promising solutions’ historical and
current experience. � ∈ [0, 1] is a learning parameter and it is
used to balance the contributions between historical experience
and current experience. The process of building EDA p̃i can
be described as Algorithm 4:

Algorithm 4 The distribution experience of EDA p̃i
1: begin
2: Calculate the fitness value of each individual solution in

the swarm. The fitness value is makespan;
3: Select Q promising solutions (ps) from the swarm to

calculate equation (5), then the distribution experience
of good regions in the search space is calculated using
equation (4).

4: end

V. DCLA FOR MTSP

In this section, the proposed DCLA is applied to the MTSP.
Firstly, solution representation for this problem and initial
population are given. Next, the learning process of LA will be
described. At last, the complete process of DCLA for MTSP
is given.

A. Solution Representation and Initial Population Generation

Solution representation is an important factor that can
affect the performance of DCLA, so a well designed solution
representation can better solve related problems. In this paper,
a potential solution is an integer set T [q], q ∈ {1, 2, . . . , n}
with n elements, and the q-th element indicates that a specific
machine p is assigned to the q-th task, i.e., T [q] = p, p ∈
{1, 2, . . . ,m}. n is the number of tasks, m is the number of
machines.

At initial time, the population is randomly generated by
uniform distribution, and the size of population is PN . A
generated solution in population is described as xk,i =
randint(1,m), which is denoted the i-th component of the
k-th solution, k ∈ {1, 2, . . . , PN}. randint is a function that
generates an integer uniformly distributed in the range [1,m].
Then, the makespan of a solution is used as its fitness value.

B. Selection Probability Updating Strategy of LA

Here, each LA corresponds to a task and its actions are m
machines. After all LAs select their actions, a new candidate
solution is generated. If the new candidate solution is better
than the global best solution, environment will give a reward
and all LAs will update their selection probability vectors
according to LRP . However, if the response is penalty, a new
selection probability updating strategy is designed to better use
of the characteristics of the problem itself. Firstly, the heaviest
load machine in the candidate solution is selected; secondly,
those tasks (LAs) that are located in the heaviest load machine
will decrease their selection probabilities on this machine, so
that they will select a more appropriate machine in the next
iteration. Fig. 1 shows the effect of tasks that are located in the
heaviest load machine before and after penalty, respectively.

(a)

……………………
The heaviest 
load machine

w
y…………

g
h

f

(b)

……………………
The heaviest 
load machine

w

y

…………

g
h

f

…………

…………

…………

…………

Fig. 1. The effect of tasks that are located in the heaviest load machine
before and after penalty, respectively. (a). Before penalty; (b). After penalty.

In Fig. 1(a), the heaviest load machine is g, tasks w and y
are located in this machine. After tasks w and y update their
selection probability vectors according to the penalty response,
task w is likely to migrate to another machine h, task y may
migrate to another machine f , as displayed in Fig. 1(b). The
updating strategy can be elaborated in Algorithm 5.

Algorithm 5 The selection probability updating strategy
1: begin
2: All LAs will use equation (3) to select their actions and

generate a new candidate solution;
3: When the new candidate solution is better than the global

best solution, environment will give a reward response “1”,
otherwise the response is penalty “0”;

4: If response is reward “1”, all LAs will increase their
selection probability vectors of the selected candidate
solution;

5: Else response is penalty “0”, those tasks (LAs) that are
located in the heaviest load machine will decrease their
selection probabilities on this machine just like Fig. 1.

6: end

C. Complete Procedure of DCLA for MTSP

At each iteration, the individual learning experience of each
LA and the promising distribution experience of the whole
swarm are combined to generate new offspring. The details of
the proposed DCLA for MTSP are presented in Algorithm 6.
The flowchart of DCLA for MTSP is given in Fig. 2.

VI. EXPERIMENTAL EVALUATION

Extensive simulations are carried out in order to compare
DCLA algorithm with a genetic algorithm (GA) [4], a tradi-
tional particle swarm optimization (PSO) algorithm [7] and a
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Algorithm 6 DCLA for MTSP
1: begin
2: do
3: At iteration t ≥ 1, calculate the fitness value for each

potential solution;
4: Select two solutions from the current swarm randomly;
5: Compare the fitness values of two selected solutions

through tournament selection procedure and the better one
is selected. Then repeat step 4 and 5 until Q promising
solutions are selected;

6: PBIL is adopted to estimate the distribution of promising
regions in the search space based on equations (4) and (5);

7: The individual learning experience of each LA and the
promising distribution experience of the whole swarm are
combined to build a selection probability vector equation
(3);

8: A new offspring is generated by the combined selection
probability vector;

9: If the fitness value of the new offspring is better than the
global best solution, environment will response a reward,
else is a penalty;

10: LRP algorithm is used to update LAs’ selection probabil-
ity vectors according to the response and related strategy.
Here, Q new offspring are generated by the combined
selection probability vector;

11: Q current worse individuals in population will be replaced
by the Q new offspring;

12: until The end condition is satisfied.
13: end

simulated annealing (SA) algorithm [6]. All these algorithms
are coded in MATLAB-R2010a and dedicated simulations are
executed on a 3.20GHz Core i3 processor with 4GB main
memory running under Windows 7 environment.

The benchmark of instances is based on ETC matrix that
decides various possible heterogeneous computing environ-
ments. In this paper, these instances are classified into 12 dif-
ferent types according to three metrics in ETC matrices. That
is task heterogeneity, machine heterogeneity and consistency.
Task heterogeneity is defined as the amount of variance among
the execution times of tasks for a given machine, machine
heterogeneity is denoted as the variation that is possible among
the execution times for a given task across all the machines,
consistency represents whenever a machine executes any tasks
faster than other machines. Besides, in order to better exert the
performance of LA, the number of actions in each LA is as
small as possible. So instances consist of 50 tasks (LAs) and 5
machines (actions) are considered in this paper. Other details
about benchmark please refer to [4][6][7].

In our experiments, the number of population for proposed
DCLA is set to 100. Besides, since some earlier studies
have shown that the best GA solution always come from the
population that had been seeded with the Min-min solution
[4], the same method of initiating population is adopted in
DCLA and PSO. Also, the result of Min-min is used as
the initial solution of SA. These algorithms are terminated
when they have experienced a maximum number of iterations
(this number is set to 5000). All algorithms are stochastic
approaches and each independent run of the same algorithm on

Initialize population PN and 
calculate their fitnesses

Select Q promising solutions from 
population through tournament 

selection procedure

LA response

reward penalty

k<Q
Yes

No

t<max_t

t=t+1

Yes

No

End

A new offspring is generated by 
the combined probability 

k=k+1

Worse individuals will be 
replaced by the Q new offsprings

Those LAs that are located
in the heaviest load machine

t=1

k=1

Fig. 2. Flowchart of DCLA for MTSP. PN: population number, Q: number
of new offspring, max t: the max time (iteration).

a particular problem instance may yield a different result. Thus,
we run each algorithm 20 times for every problem instance and
report the statistical results.

The experimental results are shown in Table I where the
first column indicates the instance name. Mavg , Vavg , Mbest

and RPD, denote, respectively, the average makespan, the
average variance, the best makespan and the average relative
percentage deviation obtained by the corresponding algorithms
to solve the problem instances. Here, RPD is calculated as
follows:

RPD = (Mi −MDCLA)/MDCLA × 100 (6)

where MDCLA is the average makespan across 20 independent
runs obtained by the proposed DCLA algorithm and Mi is
the average result provided by each of the three comparator
algorithms for each instance. Fig. 3. shows the evolution of
the mean makespan derived from the four algorithms.
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TABLE I. EXPERIMENTAL RESULTS OF SA, PSO, GA AND DCLA OVER 20 INDEPENDENT RUNS ON 12 INSTANCES IN 5000 ITERATIONS. Mavg , Vavg ,
Mbest AND RPD INDICATE THE AVERAGE MAKESPAN, THE AVERAGE VARIANCE, THE BEST MAKESPAN AND THE AVERAGE RELATIVE PERCENTAGE

DEVIATION RESPECTIVELY. “+” AND “-” DENOTE THE PERFORMANCE OF THE CORRESPONDING ALGORITHM IS WORSE THAN, BETTER THAN DCLA.

Instances SA PSO GA DCLA
Mavg Vavg Mbest RPD Mavg Vavg Mbest RPD Mavg Vavg Mbest RPD Mavg Vavg Mbest

1 3891 269.48 3442 13.67+ 3685 95.77 3558 7.65+ 3483 57.87 3362 1.75+ 3423 27.29 3362
2 8971 320.60 8434 13.42+ 8437 118.93 8186 6.67+ 8201 65.29 8084 3.69+ 7909 57.23 7790
3 729 0 729 3.99+ 712 3.74 705 1.56+ 705 3.10 699 0.57+ 701 2.58 698
4 7488 67.67 7290 8.13+ 7097 76.56 7019 2.48+ 6959 56.42 6878 0.49+ 6925 26.65 6891
5 4315 182.64 3984 19.03+ 3904 255.62 3662 7.69+ 3884 37.49 3803 7.14+ 3625 93.70 3540
6 7899 174.12 7460 5.44+ 7782 131.50 7568 3.88+ 7702 158.48 7425 2.81+ 7491 110.44 7313
7 3172 0 3172 3.49+ 3172 0 3172 3.49+ 3072 14.29 3049 0.22+ 3065 13.44 3041
8 9560 56.12 9322 5.06+ 9112 138.93 8969 0.14+ 9050 62.56 8956 0.53- 9099 79.97 8889
9 3556 476.33 3191 11.33+ 4061 369.33 3444 27.14+ 3337 93.01 3191 4.47+ 3194 18.35 3135
10 5842 22.16 5777 7.31+ 5668 23.87 5640 4.11+ 5595 24.05 5571 2.77+ 5444 46.47 5386
11 4421 9.61 4380 4.71+ 4330 54.87 4248 2.55+ 4250 20.94 4200 0.66+ 4222 26.88 4187
12 8113 127.86 7743 10.27+ 7646 67.52 7563 3.92+ 7492 59.50 7395 1.83+ 7357 21.52 7326
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Fig. 3. The evolution of the mean makespan derived from DCLA and other algorithms over 20 independent runs on 12 instances.

The setting of parameter values of all algorithms are
described as follows:

• SA:

1) The initial solution is generated by Min-min;
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2) Cooling factor = 0.9;
3) Increasing factor = 1.05.

• PSO:
1) The initial population is generated randomly

and a Min-min solution is seeded;
2) Population size = 100;
3) c1 = c2 =2.05, w=0.9.

• GA:
1) The initial population is generated randomly

and a Min-min solution is seeded;
2) Population size = 100;
3) Crossover probability = 0.9, mutation proba-

bility = 0.2.

• DCLA:
1) The initial population is generated randomly

and a Min-min solution is seeded;
2) Population size = 100;
3) �=0.1, �=0.1, a=b=0.1.

It is observed from Table I that the DCLA algorithm
achieves the best results in terms of the best makespan and the
average performance among all the instances comparing with
other algorithms. On average, the improvements of DCLA over
SA, PSO and GA are 13.67%, 7.65% and 1.75% in instance
1, 13.42%, 6.67% and 3.69% in instance 2, 3.99%, 1.56% and
0.57% in instance 3, 8.13%, 2.48% and 0.49% in instance 4,
19.03%, 7.69% and 7.14% in instance 5, 5.44%, 3.88% and
2.81% in instance 6, 3.49%, 3.49% and 0.22% in instance 7,
11.33%, 27.14% and 4.47% in instance 9, 7.31%, 4.11% and
2.77% in instance 10, 4.71%, 2.55% and 0.66% in instance
11, 10.27%, 3.92% and 1.83% in instance 12, respectively.
In instance 8, the performance of DCLA is better than SA
and PSO. These results indicate that the proposed DCLA is
better at solving meta-task scheduling problem. From Fig. 3,
we can see clearly that the convergence of DCLA is faster than
SA, PSO and GA significantly and the accuracy is conserved.
Specially, DCLA outperforms PSO that utilizes the global best
position (gbest) of the swarm. Normally, PSO is easy to be
trapped into a local optimum when gbest remains unchanged
for a long time. DCLA can avoid such premature convergence
problem to a certain extent because the diversity of swarm
in DCLA is maintained. This is mainly due to new offspring
are sampled through probabilities. In addition, there seems to
be an interesting behavior of DCLA taking longer to learn
in the early stages of runs, even though it mostly gets better
solutions if the waiting time long enough. This is maybe due
to all LAs will take a long time to converge their “learned”
values and is particularly marked in instances 7 and 8. The
good performance of the DCLA can be attributed in large part
to the incorporation of effective EDA, which is used to build
the promising distribution experience of the whole swarm, then
this promising distribution experience information is used to
coordinate the learning of each LA. Therefore, the learning
experience of DCLA obtains from not only LA itself, but also
the whole swarm’s comprehensive knowledge.

VII. CONCLUSION

In this paper, a novel decentralized coordination learning
automaton (DCLA) is proposed. It owns a new selection

probability vector, which is combined with two probability
vectors that derived from both LA and EDA. The decentralized
LAs can be coordinated by the EDA using the swarm’s
comprehensive knowledge. The results on meta-task schedul-
ing problem in heterogeneous computing system show that
the proposed DCLA provides an effective and efficient way
to coordinate LAs for solving complicated problems. In the
future, we will upgrade the performance of DCLA in more
discrete optimization problems. Besides, we will try to apply
DCLA to solve some continuous function problems.
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