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Abstract—Particle swarm optimization (PSO) is a swarm
intelligence technique that optimizes a problem by iterative
exploration and exploitation in the search space. However, PSO
cannot achieve the preservation of population diversity on solving
multimodal optimization problems, and once the swarm falls
into local convergence, it cannot jump out of the local trap. In
order to solve this problem, this paper presents a fast restart-
ing particle swarm optimization (FRPSO), which uses a novel
restarting strategy based on a discrete finite-time particle swarm
optimization (DFPSO). Taking advantage of frequently speeding
up the swarm to converge along with a greater exploitation
capability and then jumping out of the trap, this algorithm can
preserve population diversity and provide a superior solution.
The experiment performs on twenty-five benchmark functions
which consists of single-model, multimodal and hybrid compo-
sition problems, the experimental result demonstrates that the
performance of the proposed FRPSO algorithm is better than
the other three representatives of the advanced PSO algorithm
on most of these functions.

I. INTRODUCTION

Particle swarm optimization (PSO) is an evolutionary com-
putation technique which is firstly put forward by Eberhart and
Kennedy in 1995 [1]. This algorithm was initially enlightened
by the regular pattern of birds cluster activities and then
established a simplified model that uses the swarm intelli-
gent technology. Through sharing the information of particles,
which exist in the group, the whole population moves from
disorder to order evolution process in the problem space,
and then obtains the optimal solution. The commonly used
model of particle swarm optimization updating equation can
be described as follows:

V di (t+ 1) = ωV di (t) + c1r
d
1(pbestdi (t)− xdi (t))

+ c2r
d
2(gbestd − xdi (t))

(1)

Xd
i (t+ 1) = Xd

i (t) + V di (t+ 1) (2)

where t is the current number of iterations, d ∈ (1, 2, ..., D)
and D is the dimension of the search space. xi(t) denotes the
position of ith particle in tth iteration while vi(t) is the velocity
vector of the ith particle in tth iteration. In order to control the
particle’s movement within the region of interest, the particle’s
velocity value in each dimension is limited to a value vdmax. ω
is the inertia weight introduced by shi and eberhart [2] (1998),
which balances the exploration and exploitation capacity of the
particles. A large inertia weight is beneficial to exploration,
while a small inertia weight promotes exploitation [2]. rd1
and rd2 random values sampled from independent uniform
distributions in the range [0, 1]. c1 and c2 are acceleration
parameters. pbestdi stores the best position achieved by the ith

particle from the beginning to current and gbestd represents
the best position found by the whole swarm so far.

The PSO algorithm is easy to implement and effective
so that it has been widely applied in various optimization
problems. However, it shows a flaw when solving some com-
plicated multimodal problems. The algorithm usually traps into
a solution, which may not be the optimal. Meanwhile, without
appropriate mechanism, it cannot jump out of the deceptive
position. It results to a lack of population diversity. But t he
balance between exploration and exploitation abilities of this
algorithm is important to find a high-quality solution.

Lots of PSO variants was proposed, and the existing PSO
variants generally fall into two categories. The first category
of PSO variants achieves improvement by changing the typical
formula of (1) and (2). For example, Liang et al. proposed a
comprehensive learning particle swarm optimizer (CLPSO) [3]
(2006), which uses all other particles’ historical best informa-
tion to update a particle’s velocity. Qiang Lu and Qing Long
Han proposed a model of finite-time particle swarm optimiza-
tion algorithm [4] (2012), [15] (2014), which includes both
continuous-time and discrete-time versions. By introducing a
parameter and a nonlinear damping item into the algorithm,
the exploitation of the discrete model of finite-time particle
swarm optimization (DFPSO) algorithm is improved and it
also make the DFPSO algorithm converge within a finite time
interval. As pointed out by Lu and Han, this algorithm provides
a flexible tool for solving optimization problems [4]. The other
category aims to improve PSO by introducing heuristic or
non-heuristic mechanisms, and there are various mechanisms
including restarting mechanism, which has been widely used.
For example, Keiji Tatsumi et al. [5] (2009) proposed a
restarting multi-swarm PSO (RMSPSO) algorithm, which uses
two kinds of particles and multiple swarms including either
kind of particles to search for solutions. In addition, this
algorithm also uses a restarting strategy by random resetting
the particle’s velocity and position once the swarm falls
into a trap. José Garcı́a-Nieto and Enrique Alba proposed a
restarting PSO with velocity modulation (RPSO-vm) algorithm
[6] (2011). It uses a velocity modulation method to attract the
particles within the region of interest. When the swarm falls
into trap, it forces the particles to go to the best position or, if
necessary, enables a random initialization . Tim Hendtlass [7]
(2012) proposed a technique, which, when the swarm begins
converging, disperses the particle to a position whose fitness
is better than the average one, and when the swarm initializes
in a good region, it will provide a better solution. Ling Lin et
al. [8] (2012) proposed a crown jewel defense strategy based
on particle swarm optimization (PSOCJD), Which is used to
relocate the global best position and initialize each particle’s
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personal best position once the particle’s pbest fitness has not
improved in a certain period of time. For initializing particles
in a good region, the algorithm provides a better solution
in the next convergence. Although these algorithms improve
the performance of PSO to a certain extent, It still remains
a challenge to achieve fast convergence while maintaining
population diversity during the search process.

In this paper, we propose a variant of PSO algorithm, called
fast restarting particle swarm optimization (FRPSO) algorithm.
The essence of this algorithm is that it provides a mechanism
for fast convergence with a great exploitation capabilities and
preserves proper population diversity at the same time. On
the one hand, it can quickly converge to a solution no matter
whether the solution is optimal or not. On the other hand,
once the swarm gets into a trap, a restarting mechanism kicks
in to make the swarm jump out the trap, and constantly looks
for new and better solutions. Due to frequently searching and
restarting, the swarm is able to search more promising regions
and eventually finds the global optimum.

The rest of this paper is organized as follows: In Section
II, the DFPSO algorithm will be briefly described. In Section
III, details of the restarting strategy and the FRPSO algorithm
will be elaborately described. The experiment on benchmark
functions will be illustrated to demonstrate the performance
of the proposed algorithm in Section IV. Finally, we will end
this paper with a short conclusion in Section V.

Notation:Assumes that sig(r)a = sign(r)|r|a, where 0 <
a < 1, r ∈ R and sign(·) is the sign function.

II. DFPSO ALGORITHM

In this section, we will briefly describe the model of
DFPSO algorithm which was introduced by Qiang Lu and
Qing-Long Han in [4], [15]. Since the particles are independent
in each dimension, without loss of generality, we set dimension
d = 1 in the following.

The DFPSO algorithm derives from designing the
continuous-time model of finite-time PSO (CFPSO)[4], [15].
Since the CFPSO algorithm has a well exploration capability,
and uses the same discretization method as the generalized par-
ticle swarm optimization (GPSO) [9] to discretize the CFPSO,
so that the exploiting capability of DFPSO was been further
improved. Therefore, the DFPSO algorithm provides a well
performance in purchasing the balance between exploration
and exploitation abilities.

To be convenient, we assume α1 = c1r1 and α2 = c2r2

in Eqn. (1), and let α = α1 + α2. Thus, we can regard α as
a random number in the range [0,A], where A represents the
upper bound of α. We also assume the oscillation center pi(t)
as

pi(t) =
α1pbesti(t) + α2gbest

α1 + α2
(3)

Then we can rewrite Eqn. (1) as

Vi(t+ 1) = ωVi(t) + α(pi(t)− xi(t)) (4)

The model of DFPSO can be given as

vi(t+ ∆t) =(1− γ(1− ω)∆t)

− βsig
(
γ1xi(t)− γ2pi(t)

+ γ3vi(t) + γ4pi(t−∆t)

)a (5)

xi(t+ ∆t) = xi(t) + vi(t+ ∆t)∆t (6)

with

γ1 = (1− ω)∆t
1−a
a + α∆t

1
a

γ2 = (1− ω)∆t
1−a
a

γ3 = (1− ω)∆t
1
a

γ4 = α∆t
1
a

where a, β, γ are parameters, and 0 < a < 1, β > 0,and
0 < γ ≤ 1, βsig(·)a is a nonlinear damping item [4],
[10], [15]. It is obvious that if β = 0 and γ = 1, then
the Eqn. (5) turns to Eqn. (1) and Eqn. (6) equals Eqn. (2).
Therefore, the PSO algorithm can be regarded as a special
case of the DFPSO algorithm. As pointed out by Qiang Lu
and Qing Long Han in [4], The convergence speed of the
swarm and the average oscillation magnitude of the position
are controllable through adjusting the parameter β and γ .
When β is increased, convergence time decreases, and when
γ is reduced, the average oscillation magnitude increases.

III. METHODOLOGY

In this section, firstly, we will introduce a novel restarting
strategy, which is inspired by the work on the designed Crown
Jewel Defense (CJD) strategy [9]. Then we will propose the
FRPSO algorithm which uses the restarting strategy based on
DFPSO algorithm.

A. Restarting Strategy

We use Ip(i) to record the increment of the ith particle’s
pbest fitness value and use Ig to record the increment of
the swarm’s gbest fitness value in a observation period T .
T is a predefined number of iteration. We also use It to
record the number of iterations in the process of operation.
The calculation of Ip(i) can be describe as

Ip(i) =
fit(pbestt−1)− fit(pbestt)

fit(pbestt−1)
(7)

where fit(pbestt) stands for the personal best fitness value
of tth iteration and fit(pbestt−1) stands for the personal best
fitness value of the previous iteration. The calculation of Ig
can be describe as

Ig =
fit(gbestt−1)− fit(gbestt)

fit(gbestt−1)
(8)

where fit(gbestt) means the global best fitness value of tth
iteration and fit(gbestt−1) denotes the global best fitness
value of the previous iteration. It should be pointed out that
Ip(i) and Ig are calculated only if the the personal best of
the particles and the global best of the swarm are updated,
respectively.
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We also use RCp(i) to record whether the personal best
fitness value of the ith particle gets the improvement that is
higher than the predefined threshold θ. RCg is used to record
whether the global best of the swarm is improved greater than
the the threshold θ. The threshold θ is introduced to distinguish
whether the fitness value improvement of the personal best or
global best is negligible or not. When the swarm falls into
trap, the particles oscillate around the local point and the
improvement is so small that might be ignored. The calculation
of RCp(i) can be described as

RCp(i) =

{
RCp(i) + 1 if Ip(i) ≥ θ
RCp(i) if Ip(i) < θ

(9)

and the calculation of RCg is

RCg =

{
RCg + 1 if Ig ≥ θ
RCg if Ig < θ

(10)

Once a particle or the swarm gets trapped, the restating
strategy is activated. The restarting strategy can be divided
into two cases:

1) If the value of RCp(i) was not updated in an observation
period T , then we regard that this particle has got into the
trap, as shown in Fig.1 (a). In order to escape from the local
optimal region, then initialize the personal best position, as
shown in Fig.1 (b). Because the particle’s flying is influenced
by pbest, when initializing the value of pbest, the particle gets
a new velocity, and thus it can jump out of the trap. Hence,
the population diversity maintains. If the value of RCp(i)
increases in period T , we will reset RCp(i). The improvement
of RCp(i) represents the particle is searching. The pseudo code
of this process is given in Algorithm 1.

(a) (b)

Fig. 1. (a) Particle falls into trap. (b) Random initialize the particle’s pbest
to maintain population diversity.

Algorithm 1 Random Pbest()
1: for each particle in the swarm do
2: if (It mod T == 0) and (RCp(i) == 0) then
3: reinitialize the pbest’s postion of ith particle;
4: end if
5: if (It mod T == 0) and (RCp(i)) 6= 0 then
6: RCp(i) == 0;
7: end if
8: end for

2) If the value of RCg does not update in a observation
period T , we would like to regard the swarm falling into a trap,

as shown in Fig.2 (a). Therefore, it should take a measure to
make the particles jump out of this region. This can be regarded
as a special case of case one. Hence, we randomly reinitialize
the velocity of the global best particle found and update its
position according (6). Since the particle’s moving is guided
by pbest and gbest, and the value of the gbest affects all the
particles in the swarm. If only gbest is resetted, the swarm
will still gets trapped. Therefore, we randomly reinitialize the
position of the personal best of others particle, as shown in
Fig.2 (b). Accordingly, if the value of RCg increased in the
observation period T , then we reset RCg . This mechanism in
case two is similar to CJD strategy [8]. The pseudo code of
this process is given in Algorithm 2.

(a) (b)

Fig. 2. (a)The swarm falls into trap. (b)After randomly initialize gbest and
pbest.The swarm reaches a new position.

Algorithm 2 Random Gbest()
1: if (It mod T == 0) and (RCg == 0) then
2: Reinitialize the gbest particle’s velocity;
3: Update gbest particle’s position;
4: for The rest particles of the swarm do
5: Reinitialize the position of pbest;
6: end for
7: end if
8: if (It mod T == 0) and (RCg 6= 0) then
9: RCg == 0;

10: end if

It should be pointed out that this restarting strategy is
different from others strategies which are described in section
I. This strategy constantly initializes particles to maintain
population diversity once the improvements of a particle’s
pbest are negligible. After that, the gbest gets relocated and
pbest of all particles are discarded when a particle’s gbest
is not improved in a certain period. And it is also designed
to maintain the information that ever found and escape from
where it has fallen.

B. FRPSO Algorithm

The restarting mechanism proposed above is based on
the DFPSO algorithm, and the resultant algorithm is called
FRPSO for short. Taking advantage of frequently speeding
up the swarm to converge along with a greater exploitation
capability and then jumping out of the trap, this algorithm
preserves population diversity and provides a superior solution.
The pseudo code of FRPSO is given in Algorithm 3.
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Algorithm 3 FRPSO
1: BEGIN
2: Initialize the particle swarm;
3: Update pbest gbest;
4: Initialize T ,It,RCp(i),RCg;
5: while FEs < MaxFEs do
6: for each particle in the swarm do
7: Update particle’s velocity according to (5);
8: Update particle’s position according to (6);
9: Calculate particle fitness;

10: end for
11: if pbest fitness is improved then
12: Update pbest position and fitness value;
13: Calculate Ip(i) according to (7);
14: Update RCp(i) according to (9);
15: end if
16: if gbest fitness is improved then
17: Update gbest position and fitness value;
18: Calculate Ig according to (8);
19: Update RCg according to (10);
20: end if
21: It = It+ 1;
22: Random Pbest();
23: Random Gbest();
24: end while
25: END

In order to demonstrate the benefits of mechanism used in
FRPSO algorithm, we use the position diversity to measure
the fast convergence and the great exploitation capacity of the
FRPSO algorithm [11]-[13].

Position diversity measures the current particles’ position
distribution. Therefore, it can reflects particles’ dynamics and
gives the population diversity information of the swarm [13].
The calculation of position diversity can be given as

X
d

=
1

N

N∑
i=1

xdi (11)

P ddis =
1

N

N∑
i=1

(xdi −X
d
)2 (12)

Pdiv =
1

D

D∑
j=1

P ddis (13)

where Xd means the average value of particles’ current posi-
tion on dth dimension. P ddis measures the Euclidean distance
between all the particles’ position and the average value
of particles’ current position for dth dimension [13]. Pdiv
represents the whole swarms’ current position diversity.

The experiment is performed on the single-model bench-
mark function f2 and multimodal benchmark function f14 from
[14], which can be illustrated in Fig.3 (a) and Fig.3 (b).
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Fig. 3. (a) Single-model benchmark function f2. (b) Multimodal benchmark
function f14.

The population diversity curve on f2 and f14 are illustrated
in Fig.4 (a) and Fig.4 (b), respectively.
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Fig. 4. Population diversity of FRPSO algorithm and PSO algorithm
on single-model and multimodal function (N=30, D=30). (a) Single model
function f2. (b) Multi-model function f14.

From Fig.4, the following facts can be observed:

• From Fig.4 (a) and Fig.4 (b), the position diversity
distance of the FRPSO algorithm is less than PSO
algorithm on both of these functions, that means the
FRPSO algorithm can make the particles get together
quickly. In other words, the mechanism used in FPSO
algorithm can speed up the particle to converge.

• From Fig.4 (b), the oscillation amplitude of the po-
sition diversity is more severer on FRPSO algorithm
compared with PSO algorithm, it is because there are
lots of locals position on multimodal function, and
the restarting strategy in FRPSO algorithm constantly
resetting pbest or pbest when the particle or the whole
swarm falls into trap, that can make the particles
jump out of the trap. This phenomenon also illustrates
that the FRPSO algorithm has a greater capacity of
exploitation.

• For the FRPSO algorithm, the oscillation amplitude
of the position diversity is more severer in Fig.4 (b)
compared with Fig4. (a), that means on single-model
function, the restarting strategy less activated, since
there is few local positions on it, but on multimodal
function, the restarting strategy activities more fre-
quently.

IV. EXPERIMENT

In this section, we illustrate the performance of the pro-
posed FRPSO algorithm compared with other three represen-
tatives of advanced PSO algorithm.
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A. Benchmark Functions

Twenty-five functions were selected from CEC 2005 [14]
to test the performance of these algorithms. These functions
include single-model , multimodal and hybrid composition
functions which are listed in TABLE I. These functions are
all minimizing problems and suitable for validating the effect
of FRPSO algorithm.

TABLE I
BENCHMARK FUNCTIONS

Funtion Type description
f1 − f5 Single-model function
f6 − f14 Multimodal function
f15 − f25 Hybrid composition function

B. Parameter Settings for FRPSO

During the simulations, to be fair, the maximum fitness
evaluation FEmax in each algorithm is equal to 5e + 04.
The particle size is set to 30, and the dimension is 30. The
inertia weight ω linearly changes from 0.9 to 0.4 during the
optimization process by using Enq.(14):

ω = 0.9− 0.5× FEs
FEmax

(14)

where FEs is the current number of fitness evaluation. And
the threshold value θ can affect the outcome radically. If
it is too large, the swarm may be restarted frequently even
though it does not converge currently; if it is too small, the
swarm may be hardly restarted since the particles of the swarm
oscillate around the local point, then it is difficult to reach the
threshold. Therefore, the threshold value θ is set to 1e−6. The
observation period T is set to 4 so that it has enough time to
determine whether particles fall into trap. The parameters of
Eqn. (5) and Eqn. (6) are given in TABLE II,

TABLE II
PARAMETERS SETTING FOR Eqn.(5)and Eqn.(6)

Parameter Value
alphabound 2.1

β 0.5
γ 0.8

∆t 0.5
a 0.5

It is notable that as discussed in section II, the PSO algorithm
can be regarded as a special case of the DFPSO algorithm.
And the parameters β will influence the convergent speed of
the swarm, and in traditional PSO algorithm the parameter
β = 0. Hence, in FRPSO algorithm we set β = 0.5, thus
the convergence speed of FRPSO algorithm is faster than the
traditional PSO algorithm. In addition, the parameters γ will
influence the oscillation amplitude of particles during search,
and in traditional PSO algorithm γ = 1. In FRPSO algorithm
we set γ = 0.8, thus the average oscillation amplitude is
increased.

In order to further illustrate the influence of β and γ on the
convergence speed of position and the oscillation magnitude
in FRPSO algorithm.

We use a generalized particle swarm optimization (GPSO)
algorithm [9] as a comparison. For convenience, we set pi(t) =
0. From Fig.5 and Fig.6, one can see that the convergence time
of position decrease and the oscillation magnitude experiences
a lightly increase in FRPSO algorithm comparing with GPSO
algorithm.
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Fig. 5. The convergence trend of position of GPSO algorithm (ω = 0.8,
a = 0.5, α = 2.1, β = 0, γ = 1, ∆t = 0.5, xi(0) = −5 vi(0) = 9).
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Fig. 6. The convergence trend of position of FRPSO algorithm (ω = 0.8,
a = 0.5, α = 2.1, β = 0.5, γ = 0.8, ∆t = 0.5, xi(0) = −5 and
vi(0) = 9).

C. Comparisons with Other PSO

Three representative algorithms are used in the contrast
experiment. These algorithms and their parameters are listed
in Table III.

TABLE III
PARAMETERS SETTING FOR THE ALGORITHMS

Algorithm Parameters Reference
PSO N = 30, ω = 0.9→ 0.4, c1 = c2 = 2 [2]

CLPSO N = 30, ω = 0.9→ 0.4, c1 = c2 = 2 [3]
PSOCJD N = 30, ω = 0.9→ 0.4, c1 = c2 = 2 [8]

where ω = 0.9 → 0.4 stands for ω linearly changes from
0.9 to 0.4 by use Eqn. (14). Each algorithm running 51 times
independently.

The test results of all algorithms on the twenty-five func-
tions are shown in Table IV. “mean” represents the mean
value of performance among 51 runs, and “var” represents the
standard deviation of these values. The bold data represents
the best obtained value for the function. From Table IV, we
can found:

• The performance of the proposed FRPSO algorithm is
better than the other three representatives of advanced
PSO algorithms on most of these functions, especially
on f2−f6, f10−f11, f16−f17, f21, f23, these function
are covered by single-model, multimodal and hybrid
composition functions.
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TABLE IV
EXPERIMENTAL RESULTS OF ALL ALGORITHMS

Function PSO CLPSO PSOCJD FRPSO
mean 0.00e+000 1.03e-003 0.00e+000 9.63e-006

f1 var 0.00e+000 5.44e-005 0.00e+000 4.73e-009
mean 6.56e+001 3.99e+002 1.99e+002 1.11e-004

f2 var 2.19e+005 8.12e+006 2.03e+006 6.31e-007
mean 5.10e+005 1.10e+006 8.80e+005 3.93e+003

f3 var 1.33e+013 6.21e+013 3.95e+013 7.88e+008
mean 8.69e+002 7.11e+002 5.26e+002 4.73e+002

f4 var 3.85e+007 2.58e+007 1.41e+007 1.14e+007
mean 9.88e+001 1.40e+002 1.54e+002 9.08e+001

f5 var 4.98e+005 9.99e+005 1.21e+006 4.20e+005
mean 4.61e+000 1.15e+002 2.83e+000 5.78e-001

f6 var 1.09e+003 6.78e+005 4.08e+002 1.70e+001
mean 9.21e+001 9.21e+001 9.21e+001 9.21e+001

f7 var 4.32e+005 4.32e+005 4.32e+005 4.32e+005
mean 4.12e-001 4.09e-001 4.13e-001 4.13e-001

f8 var 8.66e+000 8.55e+000 8.69e+000 8.69e+000
mean 2.32e+000 2.72e+000 1.06e+000 1.86e+000

f9 var 2.75e+002 3.77e+002 5.74e+001 1.76e+002
mean 4.69e+000 3.19e+000 3.00e+000 2.68e+000

f10 var 1.12e+003 5.20e+002 4.59e+002 3.65e+002
mean 5.74e-001 5.85e-001 6.67e-001 2.85e-001

f11 var 1.68e+001 1.75e+001 2.27e+001 4.15e+000
mean 1.75e+003 6.44e+003 1.40e+004 2.59e+004

f12 var 1.56e+008 2.12e+009 9.98e+009 3.43e+010
mean 1.91e-001 3.04e-001 1.53e-001 1.80e-001

f13 var 1.86e+000 4.71e+000 1.20e+000 1.65e+000
mean 2.68e-001 2.60e-001 2.70e-001 2.45e-001

f14 var 3.66e+000 3.45e+000 3.73e+000 3.05e+000
mean 6.64e+000 9.62e+000 5.34e+000 7.88e+000

f15 var 2.25e+003 4.72e+003 1.45e+003 3.17e+003
mean 7.85e+000 4.92e+000 6.69e+000 1.88e+000

f16 var 3.14e+003 1.23e+003 2.28e+003 1.80e+002
mean 6.06e+000 5.73e+000 6.06e+000 4.99e+000

f17 var 1.87e+003 1.68e+003 1.87e+003 1.27e+003
mean 1.79e+001 1.78e+001 1.79e+001 1.78e+001

f18 var 1.63e+004 1.62e+004 1.63e+004 1.62e+004
mean 1.80e+001 1.78e+001 1.78e+001 1.83e+001

f19 var 1.66e+004 1.62e+004 1.61e+004 1.70e+004
mean 1.77e+001 1.79e+001 1.78e+001 1.95e+001

f20 var 1.61e+004 1.63e+004 1.62e+004 1.95e+004
mean 2.16e+001 1.85e+001 9.97e+000 9.80e+000

f21 var 2.38e+004 1.74e+004 5.07e+003 4.90e+003
mean 1.83e+001 1.85e+001 1.85e+001 2.20e+001

f22 var 1.72e+004 1.75e+004 1.75e+004 2.47e+004
mean 2.17e+001 1.95e+001 1.05e+001 2.47e+001

f23 var 2.41e+004 1.95e+004 5.59e+003 3.11e+004
mean 1.88e+001 1.90e+001 3.92e+000 3.92e+000

f24 var 1.80e+004 1.85e+004 7.84e+002 7.85e+002
mean 2.16e+001 1.98e+001 2.02e+001 2.17e+001

f25 var 2.38e+004 2.00e+004 2.09e+004 2.39e+004

• The variances of FRPSO are also smaller than the
three algorithms on most of these functions.

In order to further illustrate the advantages of the proposed
algorithm, the average convergence traces of these algorithm
are plotted in Fig. 7. We choose twelve typical functions which
consists of single-model functions, multimodal functions and
hybrid composition functions. The single mode functions in-
clude f1, f2, f4 and f5. The multimodal functions include f10,
f11, f13 and f14. The hybrid composition functions include
f16, f17, f21 and f24. The result indicates that:

• On the single-mode functions, the convergence speed
of FPPSO algorithm is faster than the other algorithms.
This benefits from the parameter β which decreases
the convergence time.

• On multimodal functions, FRPSO maintains fast con-
vergence. Once the swarm falls into trap, the restarting
mechanism is activated, and the algorithm found a
better solution. Especially on the function f11 and f14.

• On hybrid composition functions, the convergence
speed of FPPSO algorithm is still very faster.

V. CONCLUSIONS

In this paper, a FRPSO algorithm is proposed, which uses
a novel restarting strategy based on DFPSO algorithm. This
algorithm can speed up the swarm to converge. Once a particle
gets trapped, it randomly initializes pbest. Similarly, once the
swarm falls into a local solution, it random initializes gbest and
the others particles’ pbest. Through quickly convergence and
frequently restarting, the swarm can search more candidate so-
lutions and eventually find the optimal one. Moreover, we use
twenty-five benchmark functions to analyze the performance
of the FRPSO algorithm. The experimental results also show
that the proposed FRPSO algorithm performs better than the
three other representatives of the advanced PSO algorithms on
most of the twenty-five benchmark functions which consist of
single-model, multimodal and hybrid composition problems.
Nevertheless, it still has some work to do in the future.
Such as, the performance of FRPSO algorithm on CEC 2013
should be tested, and the performance of the FRPSO on
higher dimensionality are yet to be explored. Furthermore, The
impacts of the parameters β and γ in the algorithm worth
further discussing, and the parameters γ also can add into
the restarting strategy. If the swarm renews frequently, then
the value of parameter γ will be reduced. It improves the
exploitation capacity. If the swarm updates slowly, then it
increases the value of parameter γ. It improves the exploration
capacity.
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