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Abstract—One of the main purposes of building a battery
model is for monitoring and control during battery charg-
ing/discharging as well as for estimating key factors of batteries
such as the state of charge for electric vehicles. However, the
model based on the electrochemical reactions within the batteries
is highly complex and difficult to compute using conventional
approaches. Radial basis function (RBF) neural networks have
been widely used to model complex systems for estimation and
control purpose, while the optimization of both the linear and
non-linear parameters in the RBF model remains a key issue.
A recently proposed meta-heuristic algorithm named Teaching-
Learning-Based Optimization (TLBO) is free of presetting algo-
rithm parameters and performs well in non-linear optimization.
In this paper, a novel self-learning TLBO based RBF model
is proposed for modelling electric vehicle batteries using RBF
neural networks. The modelling approach has been applied to
two battery testing data sets and compared with some other RBF
based battery models, the training and validation results confirm
the efficacy of the proposed method.

I. INTRODUCTION

The European Union has set a ’20-20-20’ strategy by 2020
to tackle the climate change and quick depletion of fossil
fuel reserves such as coal, oil and natural gas: to reduce
20% green house gas (GHG) emission, to integrate 20%
renewable energy and to improve 20% energy efficiency [1].
The passenger vehicles are one of the major contributors to
GHG emissions and among the biggest users of fossil fuel
reserves. The wide adoption of electric vehicles (EVs) is being
encouraged to replace traditional internal combustion engine
vehicles due to their advantages of low consumption of non-
renewable energy resources as well as low GHG emissions [2],
[3]. Many countries have set goals and favourable policies to
promote the deployment of electric vehicles. Manufacturers
are encouraged by these policies and the future prospects and
have designed more models to compete for the market share
of the conventional internal combustion engine vehicles.

The battery is one of the key elements in the development
and wide adoption of EVs. The battery provides energy storage
and power based on electrochemical reactions or physical
mechanisms, while the behaviour of a battery is however com-
plicated. An accurate battery model is crucial for the battery
management system in order to charge/discharge properly and
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to estimate the state of charge (SOC) and state of health (SOH)
of a battery. However, the dynamic behaviour of batteries
is highly non-linear due to the complex internal electro-
chemistry reactions. Numerous battery modelling approaches
have been introduced to estimate the complex dynamic non-
linear voltage-current behaviour of batteries including white-
box models such as electrochemical model, grey-box models
such as equivalent electric circuit models (EECM) as well as
black-box models such as neural network models [4]. Black-
box models can be free of any background knowledge and
easy to extend to different types of batteries.

Among all the black-box methods, the RBF neural networks
have been widely used due to a simple structure and powerful
approximation performance in modelling non-linear systems.
One of the main challenges involved in constructing RBF
network models is the optimization of parameters in the basis
function. Some studies optimize the basis function parameters
using gradient-based searches to manage this, but they are
often trapped within a local optimum. Other methodologies
based on heuristic approaches perform well in searching non-
linear parameters globally and some of them have been used
in battery modelling [5], [6]. However, the pre-set design
parameters have a noticeable impact on the performance of
these methods. A recently proposed population based heuristic
method, namely Teaching-Learning-Based Optimization [7], is
free of presetting the algorithm parameters and converges fast.
In this paper a variant of TLBO named self-learning TLBO
(SL-TLBO) is proposed to search for the non-linear parameters
in the RBF model.

The rest of the paper is organized as follows. Battery
models for EV applications are reviewed in Section II. A brief
introduction of RBF neural networks is discussed in Section
III and the basic procedure of TLBO is presented in Section
IV. Then SL-TLBO based RBF modelling is demonstrated in
Section V, followed by an experimental study on the modelling
of a lithium-ion (Li-ion) battery in VI. Section VII concludes
the paper.

II. MODELS FOR ELECTRICAL VEHICLE BATTERIES

The battery is the major power source and energy storage
device for hybrid electric vehicles (HEVs) and plug-in hybrid
electric vehicles (PHEVs), and it is the only power source for
battery electric vehicles (BEVs). The accuracy of a battery
model has a significant impact on the performance of the
battery management system (BMS) and consequently affects
the driving experience of EV users and the life span of
the battery. Numerous battery types have been used for EV
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applications including lead-acid, nickel-cadmium, nickel-metal
hydride and Li-ion [8], though among which Li-ion battery is
recently preferred by the leading EVs manufacturers [9] due
to its high energy density and long battery life, the battery
modelling approaches should be compatible with different
types of batteries to tackle the rapid technique innovation.

Categorized by the modelling mechanism, battery models
are divided into three types: white-box model, grey-box model
and black-box model [4]. White-box battery models are nor-
mally the simulation models of real electrochemical reactions,
and fundamental background knowledge such as the physical
mechanism of lithium ion cell [10] are of necessity to study,
leading to the complication of the modelling procedure and the
failure of suitability for BMS applications. In terms of grey-
box models, EECM uses circuits composed of basic electronic
components to represent the behaviour of the battery such as
the Thevenin-type circuit model or the impedance model [11].
The accuracy of these models is highly dependent on the
circuit structure, which also needs considerable experiences.
Black-box models, free of any experience of battery types and
EECM structures, use neural network structures or other non-
linear regression models to approximate the non-linear I-V
curves, which is a convenient and robust approach to model
various types of batteries [12]. The RBF network is a popular
black-box model approach.

III. RADIAL BASIS FUNCTION NETWORKS

The RBF network is a three-layered feed forward neural
network as shown in Fig.1. Consider the multi-input and
single-output (MISO) RBF network, the mathematical output
is formulated as

y(t) =

n∑
i=1

wi · φi(X) (1)

where y(t) is the system output at sample time t, and wi

denotes the linear output weight for the i-th node in the hidden
layer. The radial basis function φi of input vector X is chosen
as Gaussian function defined below:

φi(X) = exp(− 1

2σ2
i

‖X − ci‖2), i = 1, 2, ..., n (2)

where σi is the width and ci denotes the center of the ith
hidden node.

To model a system using an RBF network, the structure
should firstly be determined, including the selection of input
vector X and the number of hidden layer nodes n. In terms
of choosing the RBF parameters, key parameters are divided
into two sets, i.e. a non-linear parameter set θN including
σi and ci and a linear parameter set θL including wi. To
efficiently optimize the parameters, the development of a
powerful approach still remains a key issue.

IV. SELF LEARNING TEACHING-LEARNING-BASED
OPTIMIZATION

The TLBO is a new nature-inspired population based opti-
mization algorithm first proposed in 2011 [7]. The philosophy

Fig. 1. RBF network structure

of TLBO mimics a class teaching scenario where a teacher
(i.e. the best student) who outperforms others in terms of
grades shares his/her knowledge with the other students,
and the students also learn from initiative interaction among
themselves. Similar with other population based algorithms,
the global solution is derived from a series of evolutions with
a population of solutions. More specifically in TLBO, the
population is considered as a group of students, the grade mark
is analogous to the ’fitness’, and the best solution obtained in
one evolution is considered as the teacher.

The conventional TLBO method is divided into two parts:
the teacher phase and the learner phase. In the teacher phase
the learners learn from the teacher to improve the grades
and in the leaner phase learners learn from the interactions
between themselves. To further improve the searching speed
and searching accuracy and inspired by [13], a novel step is
added to follow the learner phase named self-learning phase.
In this phase, each of the learners searches for better solutions
around their own position, which may effectively improve
the searching accuracy by the original TLBO. The modified
approach is consequently named a self-learning TLBO (SL-
TLBO) and the optimization procedure is given as follows.

A. Teacher Phase

In the optimization process, the best performed solution is
taken as the teacher and in charge of sharing the knowledge
and improving the grades of the whole class. The teaching
procedure can be formulated as follows. First, the difference
between the teacher and the existing mean value of all students
in each dimension is denoted as DMi

DMi = rand1 × (Ti − TFMi) (3)

where Mi is the mean value of each dimension of the solutions
and Ti denotes the selected teacher at the i-th iteration. TF
is the teaching factor that determines the mean to be changed
and can be either 1 or 2 denotes as:

TF = round(1 + rand2(0, 1)) (4)
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Knowledge of learners are improved by adding the DMi as:

Stnewi = Stoldi +DMi (5)

where Stnewi and Stoldi denotes the i-th solution particles
imitating learners before and after gaining knowledges. the
better knowledge from new learners is accepted to replace the
worse old learner.

B. Learner Phase
Besides gaining knowledge from the teacher, the learners

also improve their grades through interaction between each
others. They work in pairs to compare the results and share
knowledge, and the process of the learner phase is denoted as:

Stnewi =

{
Stoldi + rand3(Sti − Stj) if f(Sti) < f(Stj)

Stoldi + rand3(Stj − Sti) if f(Stj) < f(Sti)

(6)

where the i-th learner Sti and j-th learner Stj are randomly
selected from the population. The fitness values of the two
learners are compared and Sti benefits from the deviation of
the two learners.

C. Self-learning Phase
In the original TLBO, a new teacher is selected and shares

knowledge after the learner phase, however better solutions
near the learners might be missed out due to the lack of a
further refinement. A self learning phase is added in order
to complement the learner phase to motivate the learners to
gain knowledge by themselves. The methods is formulated as
follows:

Stnewi = Stoldi · (1 + (rand− 0.5) · w) (7)

where rand is a random number between (0, 1), while w
is a self-learning weight that determines the learning range
from learners-based knowledge. Similar with the inertia weight
particle swarm optimisation (PSO) [14], w changes following
the generation procedure and is formulated as:

w = wmax −
G

Gmax
· (wmax − wmin) (8)

where G is the index of the current generation and Gmax de-
notes the maximum number of generations. The self-learning
weight decreases with the searching process goes on in order
to shrink the solution range and to elaborately search for
the painstakingly better solution. wmax and wmin are the
maximum and minimum values of the self-learning weight
which are selected based on the feasible solution space and the
objective function. Typically, the larger the weight the wider
the self searching range extends.

V. SL-TLBO BASED RBF NEURAL MODELLING

In the RBF network modelling, the root mean squared error
(RMSE) based cost function is formulated as the criterion to
be minimized, and it is denoted as follows:

min f =

√√√√ 1

Nm
·
Nm∑
i=1

(ŷ − ym)2 (9)

where ŷ is the prediction value and ym is the measured data
set. Note that the formulation and all the parameters should be
pre-set or determined before achieving the calculation result
of ŷ as

ŷ(t) =

nh∑
i=1

wi · exp(−
1

2σ2
i

‖X − ci‖2), i = 1, 2, ..., nh. (10)

Hence, it is necessary to formulate the RBF network first.
There are three crucial steps to build a RBF network includ-
ing determining the network structure, optimizing non-linear
parameters as well as calculating linear parameters.

A. Determination of Network Structure

In neural network construction, the inputs and the number
of hidden layer nodes need to be determined first. Considering
a MISO RBF network to model a battery, the key elements
of the structure include the input variables X and the number
of hidden nodes n in (2). A number of approaches have been
proposed to select the input vectors and the hidden layer nodes
number [15], [16], [17], [18]. However, in this paper, the trial
and error method is adopted to empirically select both the input
vectors and the number of hidden layer nodes. The application
of the above systematic methods to determine the network
structure will be the future work.

B. Non-linear Parameter Optimization Using SL-TLBO

Based on the network configuration, the non-linear pa-
rameters θN including σi and ci in (2) are optimized using
the proposed SL-TLBO approach. The cost function (9) is
considered as the fitness function for comparing and refining
the solutions in the population during the optimization process.

C. Calculation of Linear Parameters Using Least Squares
Method

Besides non-linear parameters in θN , the linear parameters
θL in (1) denoting the output weights also need to be deter-
mined. The least square method is efficient to calculate θL as
follows:

θL = (φTφ)−1φT y (11)

The detailed optimization procedure is described as
1) Initialization:

a) select the input vector X and the number of hidden
layer nh;

b) pre-set the generation Gm, population size Np,
upper and lower bounds of the solutions Stup and
Stlow.

c) randomly generate a population of St in which the
dimension of each solution is 2nh as each θN has
two unknowns σi and ci.

2) Teacher Phase:
a) compare fitness values f of all the solutions in St

to select a teacher Ti;
b) calculate the mean Mi of the population column

wise (for each dimension);
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c) the teacher will try to shift the mean to from Mi

towards Ti. The difference between Mi and Ti is
DMi calculated in (3);

d) the obtained difference DMi is added to the current
solution to increase knowledge of learners as in (5);

e) accept better solutions in learners after teacher’s
influence.

3) learner Phase:
a) learners share knowledge and gain improvement

through interactions aforementioned as in (6);
b) select better solutions after interaction of learners.

4) self-learning Phase:
a) learners are self motivated to gain knowledge by

themselves as in (7)
b) select better solutions after learners’ self-learning

process.
c) back to teacher phase until arriving at the final

generation or a criterion is met.

VI. EXPERIMENTAL STUDY

In this paper, a 5Ah lithium iron phosphate (LiFePO4)
battery also called an LFP (lithium ferro-phosphate) battery
with a maximum allowed voltage 3.65V and cut-off voltage
2.5V is tested in an Arbin BT2000 battery tester under the
room temperature (25oC). Two standard test procedures are
implemented respectively. One is the Hybrid Pulse Power
Characteristic (HPPC) method which is composed of a condi-
tioning/capacity cycle, a discharge cycle as well as a charge
cycle and the whole duration of the test lasts for more than
16 hours. The other procedure is the Federal Urban Driving
Schedule (FUDS) lasting for more than 18 hours to simulate
cycles of urban driving. A section of FUDS with SOC from
(100%-90%) is selected as the training date set and the section
with same of SOC in HPPC is used to validate the model.
[V (t−1), V (t−2), I(t), I(t−1), I(t−2)] representing voltage
and current data at time t, t−1 and t−2 are the selected input
X and V (t) is the output, while the hidden node number is
set as 7, both are based on trial and error. The total number
of generations for SL-TLBO is set as 40 and the population
size is set to 20, and the self-learning weight w in (7) is set
as 1. Besides the SL-TLBO approach, the random selection
method which generates the non-linear parameters randomly,
the PSO as well as the basic TLBO approach are implemented
respectively within roughly the same computational time to
compare the results.

The simulation results are shown in Fig 2-5. In Fig 2,
the model with randomly selected non-linear parameters sees
extremely big errors. The other three optimized RBF models
aided by the heuristic approaches to approximate the training
data well. The maximum spike in the overall profile is 0.06 V
as in Fig 3.

As the generation proceeds, the cost function decreases. All
the three methods reduce the modelling error within less than
ten generations and after thirty generations, the TLBO and the
SL-TLBO begin to outperform the PSO. Overall SL-TLBO
shows better searching capability and gives the best value.

Model validation is implemented and illustrated in Fig 4.
The selected data section from the HPPC test is used as the
validation data set. Fig 4 apparently shows that the three
optimized RBF models approximate the battery I-V curve
well, avoiding the failure approximation of the random RBF
model. Validation errors of the four models are proposed in
Fig 5. There are several spikes as big as 40 mV in the PSO-
RBF and the TLBO-RBF models, while SL-TLBO-RBF model
significantly reduces the spike to less than 7 mV. Table I
compares the average deviations of validation errors for the
these models. Similarly, the model with randomly selected
non-linear parameter still endures extremely big errors. The
PSO and the TLBO aided RBF models improve the accuracy
as expected and reduce the model deviation to as low as 4.2
mV and 4.1 mV respectively. Subsequently, the SL-TLBO-
aided model outperforms other alternatives and reduces the
deviation to 2.1 mV. It is clear that the SL-TLBO-aided RBF
model performs better on validation data and shows better
generalization capability.

TABLE I
AVERAGE DEVIATION OF PREDICTION VALUE

Model Type Random-
RBF

PSO-
RBF

TLBO-
RBF

SL-TLBO-
RBF

Average
Deviation Value

12.5740 0.0042 0.0041 0.0021

VII. CONCLUSION AND FUTURE WORK

In this paper, a novel SL-TLBO-aided RBF method is
developed and applied to an LFP EV battery. In the SL-TLBO
optimized RBF model, a modified TLBO namely self-learning
TLBO is integrated to optimize the non-linear parameters in
the RBF model. Compared with the model with randomly
selected parameters, the PSO optimized model, as well as the
basic TLBO optimized model, the SL-TLBO optimized model
performs better both on the training data and the validation
data, thus giving a better model generalization capacity.

Although the model shows acceptable approximation per-
formance, some problems still remain to be solved. First, the
input selection and determination of the number of hidden
nodes are the two key issues in the structure configuration
of the RBF model, but they are determined simply based on
the empirical trial and error method in this work. The input
selection can be improved by using various of input selec-
tion approaches [19], [20]. Secondly, the RMSE based cost
function utilised as criterion in this work may cause the over-
fitting and thus reduce the generalization capability and other
criteria such as leave-one-out (LOO) [21] could be utilized
to overcome this issue. Thirdly, the model structure selection
and parameter optimization can be implemented continuously
[22] and simultaneously [23], [24] to further improve the
accuracy and generalization ability of the model. It should
also be noted that the heuristically optimized RBF models
which normally have expensive computation efforts, combined
with the long training procedure, are more appropriate for off-
line modelling. On-line battery modeling generally uses some
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Fig. 2. Model Training Result

Fig. 3. Model Error
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Fig. 4. Validation

Fig. 5. Validation Error
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other approaches such as the Kalman filters [25], [26]. Finally,
the self-learning weight proposed in the SL-TLBO method is
simply pre-set to 1 and further investigation of this parameter
may potentially improve the model accuracy.
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[23] J. González, I. Rojas, J. Ortega, H. Pomares, F. J. Fernandez, and
A. F. Dı́az, “Multiobjective evolutionary optimization of the size, shape,
and position parameters of radial basis function networks for function
approximation,” Neural Networks, IEEE Transactions on, vol. 14, no. 6,
pp. 1478–1495, 2003.

[24] A. Alexandridis, E. Chondrodima, and H. Sarimveis, “Radial basis
function network training using a nonsymmetric partition of the input
space and particle swarm optimization,” Neural Networks and Learning
Systems, IEEE Transactions on, vol. 24, no. 2, pp. 219–230, 2013.

[25] M. Partovibakhsh and G. Liu, “Online estimation of model parameters
and state-of-charge of lithium-ion battery using unscented kalman filter,”
in American Control Conference (ACC), 2012. IEEE, 2012, pp. 3962–
3967.

[26] L. Juang, P. Kollmeyer, T. Jahns, and R. Lorenz, “Improved nonlinear
model for electrode voltage x2013;current relationship for more consis-
tent online battery system identification,” Industry Applications, IEEE
Transactions on, vol. 49, no. 3, pp. 1480–1488, 2013.

2691




