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Abstract—In nature, a phase transition is the transformation
of a thermodynamic system from one phase to another. Different
phases of a thermodynamic system have distinctive physical
properties. Inspired by this natural phenomenon, this paper
presents a Particle Swarm Optimization (PSO) based on the Phase
Transitions model which consists of solid, liquid and gas phases.
Each phase represents a distinctive behavior of the swarm. Tran-
sitions of condensation, solidification and deposition can enhance
the exploitation capability of the swarm. While the transitions
of fusion, vaporization and sublimation from the other direction
improve the exploration capability of the swarm. The proposed
model directs the swarm to transform among phases dynamically
and automatically according to the evolutional states to balance
between exploration and exploitation adaptively. Especially, it
uses a new modified PSO algorithm called Simple Fast Particle
Swarm Optimization (SFPSO) in the solid phase, which modifies
the original PSO by adding new parameters simply to make the
algorithm convergence more quickly. The proposed algorithm
is validated by extensive simulations on the 28 real-parameter
optimization benchmark functions from CEC 2013 compared
with other three representative variants of PSO.

I. INTRODUCTION

Particle swarm optimization (PSO) is a stochastic global
optimization technique inspired by the social behavior of bird
flocking or fish schooling [1], [2]. In the classical PSO, each
particle in a swarm population adjusts its position in the
search space by the best position it has found so far (pbest)
and also the overall best position found so far by the whole
swarm (gbest). The PSO algorithm is easy to implement
and has been empirically shown to perform well on many
optimization problems. However, it may easily get trapped in
a local optimum when solving complex multimodal problems.

This paper applies the phase transitions model to PSO and
presents a new algorithm, namely Phase Transition Particle
Swarm Optimization (PTPSO). In PTPSO, the swarm is en-
dowed with one of three different phases (solid, liquid and gas
phase) during the evolution process, and it could transform to
another one according to the evolutional states dynamically
and automatically.

We organize the paper as follows. Section II reviews related
work in PSO and phase transitions. In Section III, we analyze
the PSO from the aspect of force attraction and introduce a
simple fast PSO for the particles to fly in the solid phase. In
Section IV , the Phase Transition Particle Swarm Optimization
(PTPSO) and its characteristics are described. Section V exper-
imentally validates the PTPSO and compares it with three PSO
variants on 28 benchmark functions. Conclusions are drawn in
Section VI.

II. BACKGROUND

A. Particle Swarm Optimization (PSO)

The original PSO algorithm is discovered through sim-
plified social model simulation. It is related to the bird
flocking, fishing schooling and swarm theory. The PSO was
first designed to simulate birds seeking food which is defined
as a cornfield vector. The bird will find food through social
cooperation with other birds around it. It was then expanded
to multidimensional search. The original PSO algorithm is
described as below [1], [2]:

vdi = vdi + c1r
d
1(pbestdi − xdi ) + c2r

d
2(gbestd − xdi ) (1)

xdi = xdi + vdi (2)

where D is the dimension of solution space and d = 1, 2, .., D;
Xi = (x1i , x

2
i , ..., x

D
i ) represents the position of the ith

particle; Vi = (v1i , v
2
i , ..., v

D
i ) is velocity of the ith particle;

pbesti = (pbest1i , pbest
2
i , ..., pbest

D
i ) is the best previous

position yielding the best fitness value for the ith particle;
and gbest = (gbest1, gbest2, ..., gbestD) is the best position
discovered by the whole swarm. c1 and c2 are two parameters
to weight the relative importance of pbesti and gbest,
respectively; rd1 and rd2 are two random numbers in the range
[0,1].

Since the original PSO was introduced, many researchers
have worked on improving its performance in various ways.
One of the variants [3] introduces a parameter called inertia
weight (w) into the original PSO algorithms as follows:

vdi = wvdi + c1r
d
1(pbestdi − xdi ) + c2r

d
2(gbestd − xdi ) (3)

the inertia weight is used to balance the global and local search
abilities. A large inertia weight facilitates global search, and
a small inertia weight is more appropriate for local search. A
linearly decreasing inertia weight over the course of search
was proposed by Shi and Eberhart [3]. Since then, the inertia
weight has been used in almost all PSO variants. To balance
the ability of local search and global search, Shi and Eberhart
[3] proposed a scheme to decrease w linearly from 0.9 to 0.4
over the course of search process.

Another variant is the comprehensive learning PSO (CLP-
SO) proposed by Liang et al. [4], where particles are able to
learn from distinctive pbest positions on different dimensions.
The velocity updating as follow:

vdi = wvdi + c · rdi (pbestdfi(d) − x
d
i ) (4)

where fi = [fi(1), fi(2), ..., fi(D)] defines which particles’
pbests the particle i should follow. pbestdfi(d) can be the
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Fig. 1. Microscopic view of the three states of matter.

corresponding dimension of any particle’s pbest including
its own pbest, and the decision depends on probability Pc,
referred to as the learning probability, which can take different
values for different particles.

B. States of Matter

In nature, a state of matter is one of the distinct forms that
different phases of matter take on [5]. Three states of matter
are observable in everyday life: solid, liquid, and gas phase.

1) solid phase:

• When matter is in a solid phase, it holds its shape.
As it is illustrated in Fig.1 (a), although the tiny atom
particles that make up the molecules of a solid are in
motion all the time, the molecules are not free to go
anywhere.

• Unlike a liquid, a solid object does not flow to take
on the shape of its container, nor does it expand to fill
the entire volume available to it like a gas does.

2) liquid phase:

• Liquid phase is considered to be a transition state.
That means a liquid lies between the two extremes of
ordered arrangement of solids and disorder in gases.
As it is shown in Fig.1 (b), the molecules in a liquid
are not as close together as those in a solid but they
are not as spread out as the molecules in a gas.

• Liquid phase has some extent of freedom of motion,
because it has a definite volume but no definite shape.
The intermolecular force attraction is only temporary
in liquid phase which allows it to move freely resulting
in a limited degree of particle mobility.

3) gas phase:

• Gas phase is usually difficult to see and sometimes
called vapor. In a gas, the molecules are very far apart,
the microscopic view of gas is given in Fig.1 (c). In
fact, gas will fill a container of any shape by spreading
out as much as possible.

• The main difference between gas phase and other
phases is that gas molecules move around much more.
The random movement of constituent particles in
gas phase is due to negligible intermolecular force
attraction such that intermolecular distance between
molecules is very high.

Fig. 2. Phase transitions.

C. Phase transitions

A phase transition is an abrupt, discontinuous change
in the properties of a system [6] which is defined as the
transformation of a thermodynamic system from one phase
to another. There are the key terms in the movement from one
phase to another, which is shown in Fig. 2:

• Fusion: the transition by which a solid becomes a
liquid.

• Vaporization: the transition by which a liquid becomes
a gas.

• Sublimation: an unusual process by which a solid goes
directly to the gas phase without turning into a liquid
first.

• Solidification: the transition by which a liquid be-
comes a solid.

• Condensation: the transition by which a gas becomes
a liquid.

• Deposition: the transition by which a gas goes directly
into the solid phase without becoming a liquid first.
This process is the opposite of sublimation.

III. A SIMPLE FAST PARTICLE SWARM OPTIMIZATION

In this section, we briefly analyze the Particle Swarm
Optimization from the perspective of the force attraction and
the distance between particle and gbest or pbest in each
dimension, and modify the original PSO by adding new
parameters simply to make the algorithm convergence more
quickly. We called this variant Simple Fast Particle Swarm
Optimization (SFPSO), which will be used to derive the
PTPSO algorithm in the later section. Since the dynamics of
each dimension of particles is in independent of others, we
assume that D = 1 without loss of generality in the following.
When the pbesti 6= xi and gbest 6= xi, then equation (3) can
be modified as:
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vi = wvi + c1r1R
p
i
~epi + c2r2R

g
i
~egi (5)

with
Rpi =| pbesti − xi |

Rgi =| gbest− xi |

~epi =
pbesti − xi
| pbesti − xi |

~egi =
gbest− xi
| gbest− xi |

where Rpi is the distance between the ith particle and
pbesti; R

g
i is the distance between the ith particle and gbest;

~epi is a unit vector, which points from xi to pbesti; ~egi is a
unit vector, which point from xi to gbest. According Newtons
second law [7], we assume that each particle in the swarm has
a mass mi and mi = 1, so we have

vi = wvi + r1
~F pi
mi

+ r2
~F gi
mi

(6)

with
~F pi = c1R

p
i
~epi

~F gi = c2R
g
i
~egi

where ~F pi is considered as the force attraction between xi and
pbesti; ~F gi is considered as the force attraction between xi
and gbest, Fig. 3 shows the schematic of them. According to
equation (6), we can find that it can be linear relation between
force attraction (~F pi , ~F gi ) and the distance (Rgi , Rgi ) if without
random perturbation, and it turns to be uncertain with random
perturbation. But the random area of force attraction is in
proportion to the distance due to the range of r1 and r2 is
[0,1]. Fig.4 (a) illustrates the relationship between the force
attraction F and the distance R in original PSO.

Actually, it can influence the convergence rate if the
particles which are very far away from gbest and pbest have
a very small force attraction. As shown in Fig.4 (a), the point
A with a smaller distance than the point B (RA < RB), but
the force attraction of A is larger than B (FA > FB). In order
to keep a high convergence rate, we add two new parameters
k1, k2(0 ≤ k1 < c1, 0 ≤ k2 < c2) simply, and the equation (5)
can be rewritten as follow:

vi = wvi +
~F p1i
mi

+ r1
~F p2i
mi

+
~F g1i
mi

+ r2
~F g2i
mi

(7)

with
~F p1i = k1R

p
i
~epi

~F g1i = k2R
g
i
~egi

~F p2i = (c1 − k1)Rpi
~epi

~F g2i = (c2 − k2)Rgi
~egi

As shown in Fig.4 (b), the point A with a smaller distance
than the point B (RA < RB), and the force attraction of

Fig. 3. Two cases of the force attraction in original PSO with D = 1: (a)
xi is between gbest and pbesti; (b) xi is on the side of gbest and pbesti.

Fig. 4. The comparison of original PSO and PSO with new parameters k:
(a) represents the original PSO; (b) represents SFPSO. (R could represent the
distance Rp

i or Rg
i , c could represent c1 or c2, and k could represent the new

parameter k1 or k2)

A is smaller than B (FA < FB). The particles which are
very far away from gbest and pbest could have a bigger force
attraction, it leads to the swarm convergence fast. According
to equation (7), we rewrite the equation (3):

vdi = wvdi + (k1 + (c1 − k1)rd1)(pbestdi − xdi )
+(k2 + (c2 − k2)rd2)(gbestd − xdi )

(8)

Now, we discuss the influence of value of k1 and k2 to
the convergence rate. In order to illustrate the convergence
of the position and velocity for equation (2) and equation
(8) respectively, we set D = 1 and pbesti = gbest = 0.
The corresponding results can be see in Fig. 5, Fig. 6 and
Fig. 7. From Fig.5 (b) and Fig.6 (b), we can see that the
position change for the original PSO becomes more instable
than SFPSO, and the convergence rate with different values of
k1 and k2 is be illustrated in Fig. 7. It is clear that the larger k1
and k2 are, the faster convergence rate is. In the next section,
this SFPSO is used in the solid phase of the Phase Transitions

2533



0 20 40 60 80
−10

−5

0

5

10

Iteration

v
(t

)

 

 

(a) Velocity of the particle

0 20 40 60 80
−6

−4

−2

0

2

4

6

Iteration

x
(t

)

(b) Position of the particle

Fig. 5. The convergence curves of the original PSO (w = 0.8, xi(0) =
10, vi(0) = 10, c1 = c2 = 1.49445 and k1 = k2 = 0 ).
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Fig. 6. The convergence curves of SFPSO (w = 0.8, xi(0) = 10, vi(0) =
10, c1 = c2 = 1.49445 and k1 = k2 = 0.5 ).
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Fig. 7. The convergence curves of SFPSO with different k1 and k2 (w =
0.8, xi(0) = 10, vi(0) = 10, c1 = c2 = 1.49445).

Particle Swarm Optimization (PTPSO), and characteristics of
PTPSO is given.

IV. PHASE TRANSITIONS PARTICLE SWARM
OPTIMIZATION

We model PSO as a thermodynamic system of three phases,
the solid phase Ωs, liquid phase Ωl and gas phase Ωg ,
and we present a Particle Swarm Optimizer based on the
Phase Transition. In PTPSO, the swarm in each phase have
a distinctive behavior:

vdi = wvdi +

a
d
s , ρ ∈ Ωs
adl , ρ ∈ Ωl
adg , ρ ∈ Ωg

(9)

where ρ denotes the phase of swarm during the evolution
process; ads , adl and adg are different accelerated velocities of

particles when ρ in different phase.

A. swarm in solid phase

In solid phase, the particles of swarm could convergence
fast in a smaller region in the whole search space, just as
the solid in which the molecules stay close together. And the
particles could have small velocities, which is in favour of
searching the region more efficiently. The SFPSO, which is
explained in detail in Section III, have a good convergence
performance, so we use the SFPSO in solid phase, and we get

ads = (k1 + (c1 − k1)rd1)(pbestdi − xdi )
+(k2 + (c2 − k2)rd2)(gbestd − xdi )

(10)

B. swarm in liquid phase

When swarm is in liquid phase, we need the particles to
explor more space than it do in solid phase, which makes for
extending the search space to avoid the trapping in a local
optimum. We define updating equation of velocity in liquid
phase using original PSO as follow:

adl = c1r
d
1(pbestdi − xdi ) + c2r

d
2(gbestd − xdi ) (11)

C. swarm in gas phase

In gas phase, a particle could fly to different directions in
different dimensions to search more promising regions to find
the global optimum, which increases the swarms’ diversity to
find the global optimum. CLPSO proposed by Liang [4] is a
fine choice, since each dimension of a particle in general can
learn from different pbests for different dimensions for a few
generation, which makes CLPSO have a larger search spaces
than original PSO. So, adg is defined as follow:

adg = c · rd(pbestdfi(d) − x
d
i ) (12)

where fi = [fi(1), fi(2), ..., fi(D)] defines which parti-
cles’ pbests the particle i should follow.

D. Condition of the Phase Transitions

In nature, the phase transitions among the solid, liquid,
and gas phases due to the effects of temperature and pressure
[8]. However, in PTPSO, we use the pbest and gbest in
the swarm to directs the swarm to transform among the
phases dynamically and automatically, and we use a time
interval θ between two phase transitions to avoid the swarm
to transform among phases frequently. The conditions of the
phase transitions in PTPSO are defined as follow:

• Fusion: gbest is not updated, but the numbers of
pbest updated is larger than the lower limit of pbest
updated during the time interval θ;

• Vaporization: gbest is not updated, and the numbers
of pbest updated is less than the lower limit of pbest
updated during the time interval θ;
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• Sublimation: gbest is not updated, and the numbers
of pbest updated is larger than the lower limit of
pbest during the time interval θ;

• Solidification: gbest is updated;

• Condensation: gbest is not updated, but the numbers
of pbest updated larger than the lower limit of pbest
during the time interval θ;

• Deposition: gbest is updated;

Remark 1: In PTPSO, if the gbest is updated, the whole swar-
m will transform to solid phase in next generation immediately,
no matter what phase the swarm is in. So the time interval is
just helpful in the case that the gbest is not updated.

Considering the velocity of particles in the swarm reduces
quickly when the swarm transform into solid phase, and the
position of particles is very close, we record the velocity of
particles when the solidification takes place, and it will be
recover when the Fusion happens. As for the sublimation,
we use restarting strategy to initialize whole swarm when it
happens. And the pseudocode of PTPSO is shown in Algorithm
1.

V. EXPERIMENTS

In this section, we will illustrate the performance of the
proposed PTPSO algorithm through the benchmark functions
that were submitted for CEC 2013 Special Session on Real-
Parameter Optimization [9]. All these functions are minimiza-
tion problems, the search ranges of all test functions are
defined as: [−100, 100]D.

The proposed PTPSO algorithm has been implemented
using MATLAB 7.6.0 in a PC which has a CPU of Intel(R)
Core(TM) i3 3.20GHz and a memory of 4G. Experiments are
conducted on 28 functions with 30 dimensions. The details of
these test functions are given in TABLE I.

TABLE I. DETAILS OF UNIMODAL, BASIC MULTIMODAL AND
COMPOSITION TEST FUNCTIONS

Type No.
Unimodal Function f1 − f5

Basic Multimodal Function f6 − f20
Composition Function f21 − f28

TABLE II. PARAMETERS SETTING FOR THREE VARIANTS OF PSO

Algorithm Parameters
PSO1 ω = 0.9→ 0.4, c1 = c2 = 2
PSO2 ω = 0.9→ 0.4, c1 = c2 = 1.49445

CLPSO ω = 0.9→ 0.4, c = 1.49445

TABLE III. PARAMETERS SETTING FOR PTPSO

Parameters Explain
c1 = c2 = c = 1.49449 Same as PSO

ω = 0.9→ 0.4 Same as PSO

k1 = k2 = 0.5
They are used to speed up

the convergence rate
θ = 20 Time interval two phase transitions

ξ = 40
The lower limit of pbest updated

during the time interval θ

We compare our proposed PTPSO algorithm with three dif-
ferent variants of PSO. Those algorithms and their parameters

Algorithm 1 PTPSO
1: BEGIN
2: Initialize the particle swarm with X and V ;
3: Update the pbest, gbest;
4: Set the ρ ∈ Ωs, Vl = V ;
5: Set the run count = 0 and θ;
6: while FEs < MaxFEs do
7: for each particle in the swarm do
8: if ρ ∈ Ωs then
9: Update particle velocity according to (9);

10: end if
11: if ρ ∈ Ωl then
12: Update particle velocity according to (10);
13: end if
14: if ρ ∈ Ωg then
15: Update particle velocity according to (11);
16: end if
17: Update particle position according to (2);
18: Calculate particles fitness;
19: end for
20: run count = run count+ 1;
21: Update the pbest, gbest;
22: if gbest is updated then
23: if ρ ∈ Ωl then
24: Vl = V
25: end if
26: Set the ρ ∈ Ωs, run count = 0;
27: else
28: if run count >= θ then
29: if pbest is updated then
30: if ρ ∈ Ωs then
31: V = Vl

32: end if
33: Set the ρ ∈ Ωl, run count = 0
34: else
35: if ρ ∈ Ωs then
36: Restarting the swarm with X and V
37: end if
38: Set the ρ ∈ Ωg , run count = 0;
39: end if
40: end if
41: end if
42: GEN = GEN + 1;
43: end while
44: END

setting are shown in Table II and Table III. The population
size is set to 40 in all the experiment and the MaxFES is
set to 300000 according to [9].

Table IV lists the mean and standard deviation of the
fitness values over 51 independent runs for each problem,
and the best results are shown in bold. It can be seen from
Table IV that PTPSO performs better than the other three
algorithms on functions f2-f3, f7, f10, f12-f13, f18, f20 and
f23-f27, int terms of the average fitness values; PTPSO has
the same mean value as other three algorithm on functions
f1 and f5. The comparsion of convergence rate between and
other three algorithms is also carried out on twenty functions,
selected from unimodal, basic multimodal and composition
functions as the representatives. The convergence rates of the
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TABLE IV. MEAN FUNCTION VALUES AND STANDARD DEVIATIONS OVER 51 RUNS OF THE 28 TESTED BENCHMARK PROBLEMS

Func. No. PSO1 PSO2 CLPSO PTPSO Func. No. PSO1 PSO2 CLPSO PTPSO

f1 Mean -1.400000e+003 -1.400000e+003 -1.400000e+003 -1.400000e+003 f15 Mean 4.524437e+003 6.837346e+003 4.085293e+003 4.294271e+003

f1 Std.Dev. 1.716400e-025 6.927638e-026 0.000000e+000 6.824240e-026 f15 Std.Dev. 1.352138e+006 3.764788e+005 2.217639e+005 1.382437e+006

f2 Mean 1.565201e+007 1.496858e+007 1.676468e+007 6.399401e+006 f16 Mean 2.022035e+002 2.022701e+002 2.010632e+002 2.014839e+002

f2 Std.Dev. 1.594956e+014 9.457975e+013 2.492442e+013 2.267129e+013 f16 Std.Dev. 1.052762e-001 1.102307e-001 5.685439e-002 4.978751e-002

f3 Mean 1.225886e+008 1.702660e+008 2.884749e+008 7.756010e+007 f17 Mean 3.707515e+002 3.580572e+002 4.019380e+002 3.787626e+002

f3 Std.Dev. 1.928585e+017 3.893948e+016 1.831421e+016 7.918914e+015 f17 Std.Dev. 3.722442e+002 5.284239e+002 7.692356e+002 3.971244e+002

f4 Mean -4.740129e+002 3.335609e+003 2.924986e+004 5.542473e+003 f18 Mean 5.283302e+002 6.297546e+002 5.272407e+002 4.917042e+002

f4 Std.Dev. 8.819068e+004 1.765599e+006 4.644325e+007 8.974962e+006 f18 Std.Dev. 1.689051e+003 1.651949e+003 6.565912e+002 4.242977e+002

f5 Mean -1.000000e+003 -1.000000e+003 -1.000000e+003 -1.000000e+003 f19 Mean 5.038064e+002 5.034338e+002 5.065026e+002 5.039981e+002

f5 Std.Dev. 2.652148e-025 1.225261e-025 1.626444e-024 2.605619e-025 f19 Std.Dev. 1.224889e+000 9.910063e-001 9.869410e-001 8.712785e-001

f6 Mean -8.202179e+002 -8.181115e+002 -8.473913e+002 -8.418077e+002 f20 Mean 6.144618e+002 6.147076e+002 6.117062e+002 6.110683e+002

f6 Std.Dev. 1.508893e+003 1.357348e+003 4.032285e+002 1.116671e+003 f20 Std.Dev. 1.682599e+000 8.265051e-001 1.199178e-001 4.219935e-001

f7 Mean -7.621494e+002 -7.635811e+002 -7.448292e+002 -7.674035e+002 f21 Mean 9.872226e+002 9.846612e+002 9.881722e+002 1.007431e+003

f7 Std.Dev. 2.231002e+002 1.755740e+002 5.349714e+001 1.233318e+002 f21 Std.Dev. 6.730260e+003 4.820507e+003 7.028904e+002 7.276757e+003

f8 Mean -6.790653e+002 -6.790717e+002 -6.790645e+002 -6.790579e+002 f22 Mean 2.000436e+003 1.674767e+003 3.648873e+003 2.637943e+003

f8 Std.Dev. 3.008995e-003 4.311543e-003 3.379074e-003 2.603645e-003 f22 Std.Dev. 1.229145e+005 7.492182e+004 1.076281e+005 4.045513e+005

f9 Mean -5.777055e+002 -5.778745e+002 -5.736514e+002 -5.761390e+002 f23 Mean 5.460152e+003 7.730306e+003 5.175000e+003 4.775897e+003

f9 Std.Dev. 8.186197e+000 1.875486e+001 3.139575e+000 1.114881e+001 f23 Std.Dev. 1.267321e+006 2.973347e+005 1.643995e+005 4.591426e+005

f10 Mean -4.998659e+002 -4.996356e+002 -4.955316e+002 -4.998815e+002 f24 Mean 1.268526e+003 1.266974e+003 1.276332e+003 1.262146e+003

f10 Std.Dev. 4.581160e-003 1.342845e-001 1.650447e+000 6.609069e-003 f24 Std.Dev. 6.324321e+001 1.081747e+002 2.875218e+001 8.669359e+001

f11 Mean -3.706390e+002 -3.798276e+002 -3.536425e+002 -3.712422e+002 f25 Mean 1.385365e+003 1.385583e+003 1.392171e+003 1.378876e+003

f11 Std.Dev. 5.952988e+001 2.597947e+001 3.964299e+001 8.738399e+001 f25 Std.Dev. 6.304907e+001 1.115803e+002 2.642875e+001 1.042958e+002

f12 Mean -2.317906e+002 -1.753202e+002 -2.277909e+002 -2.369836e+002 f26 Mean 1.513336e+003 1.512772e+003 1.400969e+003 1.400178e+003

f12 Std.Dev. 4.605180e+002 3.703400e+003 1.408667e+002 4.916068e+002 f26 Std.Dev. 4.964082e+003 4.904673e+003 1.129429e-001 4.666844e-002

f13 Mean -5.975738e+001 -2.970247e+001 -7.427091e+001 -9.286941e+001 f27 Mean 2.203200e+003 2.188762e+003 2.303465e+003 2.165434e+003

f13 Std.Dev. 1.022219e+003 1.362917e+003 3.522784e+002 6.506441e+002 f27 Std.Dev. 9.538437e+003 6.470107e+003 2.228614e+003 6.408788e+003

f14 Mean 9.947394e+002 7.203441e+002 2.224728e+003 1.601774e+003 f28 Mean 1.836658e+003 1.819361e+003 1.700000e+003 1.878331e+003

f14 Std.Dev. 1.115697e+005 6.249524e+004 7.820955e+004 3.033001e+005 f28 Std.Dev. 1.535924e+005 1.337880e+005 5.365406e-017 1.745473e+005

four algorithms are presented in Fig. 8. respectively, where
FEs denotes the number of function evaluations. For functions
f1-f3, f5-f6, f10, f20-f21 and f27, it is obvious that PTPSO
converges much faster than the other three algorithms.

The effect of the phase transitions in PTPSO is also inves-
tigated using the unimodal function f1 and basic multimodal
function f20. The search behavior of PTPSO on these two
functions are illustrated in Fig. 9. The figure is plotted based on
the data of a typical run that can represent the search behavior
of the algorithm in most cases. According to the figure, on
the unimodal function f1, we can see that the swarm stay in
solid phase at the beginning stage of the optimization process,
until at about Iteration = 1000, because it is relatively easy
to locate the global optimum and make the gbest updated,
the swarm have a long time to stay in solid phase, which
can reduce the search space by the newly added parameter
k1 and k2 and speed up the convergence. In contrast, on the
multimodal function f20, the global optimum is more difficult
to locate. As it seen in Fig.9 (b), the phase transitions happened
frequently during the evolution process in PTPSO, those phase
transitions help the swarm avoid to trapped in a local optimum.
Fusion, vaporization, and sublimation bring in diversity, which
makes PTPSO jump out of the local optimum and continue
improving the swarm; Condensation, solidification and depo-
sition enhance the exploitation capability of the swarm, which
makes PTPSO converge fast.

VI. CONCLUSION

In this paper we have proposed a new algorithm called
Phase Transitions Particle Swarm Optimization (PTPSO) in-
spired by the behaviour of different phases and the phase
transitions model. In this approach, the swarm is endowed
with one of three different phases (solid, liquid and gas phase)

1000 2000 3000 4000 5000 6000 7000
0

gas phase

liquid phase

 solid phase

Iteration

 

 

(a) The phase transitions in f1

1000 2000 3000 4000 5000 6000 7000
0

gas phase

liquid phase

solid phase

 

Iteration

(b) The phase transitions in f20

Fig. 9. The illustration of the search behaviour of PTPSO in f1 and f20
with 30 dimensions during the 7500 iteration at once running.

during the evolution process, and the phase of the swarm
can transform among those three phases dynamically and
automatically according to the evolutional states to balance
between exploration and exploitation adaptively. Transitions
of condensation, solidification and deposition can enhance the
exploitation capability of the swarm. While the transitions of
fusion, vaporization and sublimation from the other direction
improve the exploration capability of the swarm. Especially, it
uses a new modified PSO algorithm called Simple Fast Particle
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Fig. 8. The comparison of convergence rates among PTPSO, PSO1, PSO2 and CLPSO over 51 runs on twenty functions with the Dimension D = 30.
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Swarm Optimization (SFPSO) in the solid phase, which modi-
fies the original PSO by adding new parameters simply to make
the algorithm convergence more quickly. We have performed
an extensive experimentation to show the performance of the
proposed approach and compared PTPSO with three varaints
of PSO. Based on the results of the four algorithms on the 28
benchmark problems of CEC 2013, we conclude that PTPSO
has good search capabilities and generates better solutions and
manages to prevent permature convergence and keep the fast-
converging feature of the original PSO.

For future research, we plan to integrate with other features
of the phase transitions modal to strengthen the PTPSO algo-
rithm. On the other hand, in the multiobjective and dynamic
optimization problems, more diversity is required. We also plan
to test our PTPSO algorithm in those problems.
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