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Abstract—Since Particle Swarm Optimization (PSO) was in-
troduced, variants of PSO have usually updated velocities of
particles in each dimension independently in the high-dimensional
space. This paper proposes a Dimensionally Cooperative PSO
(DCPSO), in which dimensions cooperate to update velocities of
particles through Euclidean metric. The Euclidean metric first
builds pbest-centered and gbest-centered hyperspheres. And then,
velocity vectors of particles are derived from stochastic points
obeying a distribution within the hyperspheres for dimensions
cooperating. DCPSO investigates such cooperation of dimensions
through Euclidean metric, instead of updating each dimension
independently. Compared with the traditional PSO, DCPSO is
validated by simulations on the 20 standard benchmark problems
from CEC 2013. Furthermore, DCPSO shows more rotationally-
invariant than the traditional PSO from the results. Additionally,
the differences between the behaviors of the traditional PSO and
the proposed DCPSO are analyzed from the aspect of the search
space. Meanwhile, the curse of dimensionality is illustrated by
comparisons between the traditional PSO and DCPSO in distinct
dimensions.

I. INTRODUCTION

Inspired by the social behaviors of birds flocking, Particle
Swarm Optimization (PSO) is a swarm intelligence technique
introduced by James Kennedy and Russell Eberhart in 1995
[1][2]. As an excellent algorithm for optimizing problems, PSO
can be used in a wide range of applications [3].

In PSO, a particle records its own best position, called
pbest, and the best postion of the whole swarm, called gbest.
And in the next instant, the velocity of the particle contains
three components: inertia, a pbest-guiding vector and a gbest-
guiding vector. The last two components in the traditional PSO
are usually formed by comparing pbest or gbest to the present
position of the particle in each dimension independently. In
other words, each dimension is independent of another, and
there is no cooperation among dimensions when updating
velocities in the traditional PSO. Because of mutual indepen-
dence among dimensions, the search space of the last two
components can be seen as pbest-centered and gbest-centered
hypercuboids in the high-dimensional space. And the particle
is located at one of vertices of each hypercuboid.

On the other hand, cooperation strategies related to di-
mensions have been extensively studied to effectively opti-
mize PSO. Introduced by van den Bergh and Engelbrecht
in 2000, Cooperative PSO (CPSO) achieves improvement by
using multiple swarms to search subspaces for cooperation, so
that it optimizes different components of the solution vector

cooperatively [4][5]. Later, the effects of swarm size on CPSO
are analyzed [6]. Another variant is Comprehensive Learning
PSO (CLPSO), where each particle is able to learn not only
its own pbest, but also the others’ pbest for cooperation in
each dimension [7]. Sequently, CLPSO has several improve-
ments, such as the adaptive CLPSO (A-CLPSO) [8], CLPSO
improved by generalised opposition-based learning [9], and
so forth. It shows that CLPSO and its improvements have
outperformances, especially in multimodel problems [7]. More
similar to dimensional cooperation, a polar PSO has been
studied through the conversion from the Cartesian space to
the polar space [10]. However, CPSO and CLPSO are still
updating velocities in each dimension independently, and after
the conversion from the Cartesian space to the the polar
space, the polar PSO also updates the velocities component-
by-component.

Differing from the traditional PSO, this paper probes
into the search space of PSO and proposes a Dimensionally
Cooperative PSO (DCPSO), in which dimensions cooperate
through Euclidean metric. DCPSO, first, builds pbest-centered
and gbest-centered hyperspheres through Euclidean metric in
the high-dimensional space. Then, the last two components of
velocities in the next instant are derived from stochastic points
obeying a distribution within the hyperspheres for dimensions
cooperating.

The rest of this paper is organized as follows. In Section II,
the traditional PSO is reviewed first. Then, DCPSO is present-
ed and the relation and comparison with the traditional PSO
are illuminated in Section III. To demonstrate the performance
of DCPSO comparing to the traditional PSO, both algorithms
are tested with a set of 20 standard benchmark problems from
CEC 2013 in Section IV. At last, conclusions and the future
work will be described in Section V.

II. THE TRADITIONAL PSO

Mathematically, the traditional PSO can be formulated as
a function as follows:

vji (t+ 1) = wvji (t) + c1r1(pji (t)− x
j
i (t))

+c2r2(gj(t)− xji (t))
(1)

xji (t+ 1) = xji + vji (t+ 1) (2)

where vji (t) is the velocity of particle i in dimension j at
instant t; xji (t) is the position of particle i in dimension j at
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instant t; pji denotes the previously best position of particle
i in dimension j; gj refers to the previously best position of
the swarm in dimension j; introduced by Shi and Eberhart
in 1998, w is the inertia weight to improve the performance
of PSO [11]; c1 and c2 are two acceleration constants, as two
parameters in PSO; random real numbers r1 and r2 are chosen
anew for each dimension.

Because of dimensional independence, in the traditional
PSO, the search space of the pbest-guiding vector of a velocity
is a pbest-centered hypercuboid, while the search space of
the gbest-guiding vector of a velocity is a gbest-centered
hypercuboid. Specifically, for a particle at some instant, it
builds two hypercuboids and it is located at one of vertices
of each hypercuboid. Then, a stochastic point is chosen within
each hypercuboid to be the vector end for one of the last two
components.

III. THE DIMENSIONALLY COOPERATIVE PSO (DCPSO)

A. DCPSO

The traditional PSO updates velocities in each dimension
independently. In other words, when the traditional PSO up-
dates velocities of particles in the high-dimensional space, each
dimension utilizes only the presented dimension’s information,
without other dimensions’ information.

In DCPSO, a particle updates its velocity with compre-
hensive information of all dimensions. This paper adopts
Euclidean metric to build pbest-centered and gbest-centered
hyperspheres for comprehending information of complete di-
mensions, instead of the hypercuboids resulted from indepen-
dent updating in dimensions. The radii of hyperspheres are
calculated as follows:

Rpi = ||xi − pi|| =

√√√√ n∑
j=1

(xji − p
j
i )

2 (3)

Rgi = ||xi − g|| =

√√√√ n∑
j=1

(xji − gj)2 (4)

where Rpi is the radius of pbest-centered hypersphere for
particle i; Rgi is the radius of gbest-centered hypersphere for
particle i; xi is the present position of the particle; pi denotes
the coordinate of pbest; while g refers to the coordinate of
gbest; n is the number of dimensions.

Thus, the equations of the hyperspheres can be given as
follows:

||x− pi|| =

√√√√ n∑
j=1

(xj − pji )2 = Rpi (5)

||x− g|| =

√√√√ n∑
j=1

(xj − gj)2 = Rgi (6)

where x = (x1, x2, . . . , xn) is a variable in an n-dimensional
space.

According to the above two formulae, particle i is located
at the two hyperspheres. Then two stochastic points at the
hyperspheres are chosen uniformly at random from the hyper-
spheres, denoting xpsp and xgsp, respectively. The method for
choosing a point uniformly at random from the hyperspheres
can be described as Algorithm 1 [12].

Algorithm 1 Generating a point uniformly at random from a
hypersphere (in an n-dimensional space)

1: BEGIN
2: Generate an n-dimensional point, x = (x1, x2, . . . , xn), of

normal deviates (xi ∼ N(0, 1), 1 ≤ i ≤ n);
3: Calculate the L2 norm of the point x, that is, r = ||x|| =√

x21 + x22 + · · ·+ x2n;
4: The vector 1

rx(r 6= 0) is uniformly distributed from a
hypersphere;

5: END

And then, through two stochastic lengths between zero
and the radii of the two hyperspheres, respectively, the two
stochastic points can be shrunken within hyperspheres. Let the
two points denote xp, which is derived from the pbest-centered
hyperpsphere, and xg , which is derived from the gbest-centered
hypersphere. Then, a vector from the position of particle i to
xpi and a vector from the position i to xgi are built. Instead
of the last two traditional components, those vectors become
components of the next instant velocity of particle i. Hence,
the formula for updating velocity is calculated as follows:

vi(t+ 1) = wvi(t) + c1(xpi − xi(t)) + c2(xgi (t)− xi(t)) (7)

xpi = r′1(xpsp − pi) + pi (8)

xgi = r′2(xgsp − g) + g (9)

where vi(t) is the velocity of the particle, which is a vector
form of vji (t)(1 ≤ j ≤ n); xpsp denotes a stochastic point
at pbest-centered sphere; xgsp refers to a stochastic point at
gbest-centered sphere; r′1 and r′2 are two random real numbers
between zero and one.

Actually, r′1 and r′2 are not necessary to distribute uni-
formly in (0, 1). This paper tries four distributions. And the
following table lists (Table I) the four distributions with their
probability density functions (pdf) and cumulative distribution
functions (cdf).

TABLE I. FOUR DISTRIBUTIONS IN THE RANGE OF (0, 1)

pdf, f(x) = cdf, F (x) =
1 1 x
2 1

2
√
x

√
x

3 1

3
3√
x2

3
√
x

4 1

4
4√
x3

4
√
x

According to the above table (Table I), the random real
number r′ can be rewritten as r, r2, r3 and r4, respectively,
where r obeys uniform distribution in (0, 1). This paper
conducts simulations to compare the performances not only
between the traditional PSO and DCPSO, but also among the
four kinds of DCPSO. From the simulation results in the next
section, it seems that the third one, among the above four

1360



distributions, performs well. Thus, the formulae of positions of
two stochastic points within pbest-centered and gbest-centered
hyperspheres can be rewritten as follows:

xpi = rm1 (xpsp − pi) + pi (10)

xgi = rm2 (xgsp − g) + g (11)

where r1 and r2 is uniformly distributed in (0, 1); m ≤ 4 is a
positive integer.

DCPSO can be elaborated in Algorithm 2.

Algorithm 2 DCPSO
1: BEGIN
2: Initialize velocities and positions of the particle swarm;
3: Update pbest of each particle and gbest of the swarm;
4: Set FEs = 0;
5: while FEs < MaxFEs do
6: for each particle in the swarm do
7: Calculate Rpi and Rgi according to (3) and (4);
8: According to Algorithm 1, choose a point in each

hypersphere of (5) or (6) uniformly;
9: Choose a stochastic point obeying a distribution with-

in each hypersphere according to (8) and (9);
10: Update the velocity of each particle according to (7);
11: Update the position of each particle according to (2);
12: Calculate the fitness of each particle;
13: end for
14: if the fitness of pbest is improved then
15: Update pbest and the fitness value of pbest;
16: end if
17: if the fitness of gbest is improved then
18: Update gbest and the fitness value of gbest;
19: end if
20: FEs← FEs+ Particle Number;
21: end while
22: END

B. The relation between the traditional PSO and DCPSO

In order to compare the traditional PSO’s and DCPSO’s
potential search spaces, this paper temporarily omits the first
component of a velocity, inertia, i.e. wvi. Hence, the search
space is the composition of pbest-centered and gbest-centered
spaces. Due to the similarity between pbest-centered and gbest-
centered spaces, this paper uses “best-centered” to refer to
pbest-centered or gbest-centered. Thus, the search space is
probed into by comparison between the best-centered spaces
in the traditional PSO and DCPSO. For convenience, let both
of parameters c1 and c2 equate 2. Hence, best-centered spaces
in the traditional PSO and DCPSO are a hypercuboid and a
hypersphere, respectively. Fig. 1 shows the comparison of best-
centered spaces between the traditional PSO and DCPSO in a
3-dimension space.

Here, this paper defines two concepts: the Reachable Vol-
ume (RV) and the Expected Volume (EV) of a best-centered
space.

Definition 1: Let p denote a stochastic point, only able to
reach every point in a space point set S, i.e. every point in

Fig. 1. best-centered spaces of the traditional PSO (a cuboid) and DCPSO
(a sphere) in a 3-D space (where R is Rp

i or Rg
i )

S is reachable by p and meanwhile points not belonging to S
are not reachable by p. The Reachable Volume (RV) of S is
defined as the volume of the space.

Example 1: Let S be a ball with the radius RS , regardless
of the probability density of p in the ball, RV of S is the
volume (VS) of the space, i.e. VS = 4

3πR
3
S .

Definition 2: Based on Difination 1, let p be with a proba-
bility density in S. Let S′ denote a set, in which every element
is a space point set built by p with its probability density in
S. The Expected Volume (EV) of S is the expectation of RV
of the space in S′.

Based on Example 1, here are two extra examples.

Example 2: Suppose that p is uniformly distributed in every
point in the ball S. The cumulative distribution function (cdf) is
F (r) =

4
3πr

3

4
3πR

3
S

= r3

R3
S

. R′S , the expected RS , is
∫ RS
0

rdF (r) =
3
4RS . That is to say, expected positions of stochastic points in
each direction vector build a new sphere with three quarters of
radius of the original sphere. Hence, EV of the original ball
is V ′S = ( 3

4 )3VS = 9
16πR

3
S .

Example 3: If the probability of each direction vector from
the center of the ball is mutually equal and stochastic points
are uniformly distributed in every direction vector, R′S , the
expected RS , is half of RS . That is to say, expected positions
of stochastic points in each direction vector build a new sphere
with half radius of the original sphere. Hence, EV of the
original sphere is V ′S = 1

23VS = 1
6πR

3
S .

Through Definition 1, RV of the best-centered spaces of
the traditional PSO and DCPSO can be calculated as follows
[13]:

V tR =
n∏
j=1

aj (12)
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V DCR =
π
n
2 Rn

Γ(n2 + 1)
(13)

where V tR denotes RV of the search space of the traditional
PSO, while V DCR refers to RV of the search space of DCPSO;
aj is the side length of the best-centered hypercuboid of the
traditional PSO in dimension j; n is the number of dimensions;
R is the radius of the best-centered hypersphere of DCPSO.

In a best-centered hypercuboid of the traditional PSO, the
expected side length of the new hypercuboid is half of the
original side length in each dimension. Hence, EV of best-
centered space of the traditional PSO can be calculated as
follows:

V tE =
1

2n

n∏
j=1

aj (14)

Similar to Example 3, EV of best-centered space of DCPSO
with the first distribution defined in Table I, which is uniformly
distributed in each direction (thus, the expected radius will be
half of the original radius according to Example 3), can be
calculated as follows:

V DCE =
π
n
2 Rn

2nΓ(n2 + 1)
(15)

Similarly, EV of the best-centered space of DCPSO with
the above distributions are as follows (Table II).

TABLE II. EV OF best-CENTERED SPACE OF DCPSO

EV of best-centered space

1 π
n
2 Rn

2nΓ(n
2

+1)

2 π
n
2 Rn

3nΓ(n
2

+1)

3 π
n
2 Rn

4nΓ(n
2

+1)

4 π
n
2 Rn

5nΓ(n
2

+1)

Obviously, RV of best-centered space of DCPSO is strictly
larger than that of the traditional PSO and EV of best-
centered space of DCPSO. And RV of DCPSO with the first
distribution defined in Table I is also strictly larger than that
of the traditional PSO. Although enlargement is able to search
more space, it brings the curse of dimensionality. Hence,
for relieving the problem brought by enlargement, a suitable
distribution is needed to be imposed to control EV of the search
space.

In conclusion, the traditional PSO builds two hypercuboid-
s, a pbest-centered hypercuboid and a gbest-centered hy-
percuboid, while DCPSO builds two hyperspheres, a pbest-
centered hypersphere and a gbest-centered hypersphere. Mean-
while, a particle is located not only at a vertex of hypercuboids,
but also at the hyperspheres. Hence, the hypercuboids are
always inscribed in the hyperspheres. In terms of RV, the
reachable volume of the best-centered hypersphere is larger
than the reachable volume of the best-centered hypercuboid.
What is more, the search space is the superposition of pbest-
centered space and gbest-centered space. Hence, the search
space of DCPSO is larger than the traditional PSO. However,
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Fig. 2. The curse of dimensionality
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with the increment of the number of dimensions, the search
space may be too large to converge. To relieve the curse of
dimensionality, a proper distribution is imposed within the
best-centered hypersphere. And in terms of EV, with some
certain distribution, the expected volume of the best-centered
hypersphere is not necessarily larger than that of the best-
centered hypercuboid.

IV. SIMULATION RESULTS

It is necessary to have simulations of DCPSO on some
benchmark problems for taking a glance at the performance
of it. However, because of the curse of dimensionality, DCP-
SO with the first distribution defined in Table I can hardly
show its advantages over the traditional PSO. In Fig. 2, the
performances of the traditional PSO (tPSO, with w linearly
decreasing from 0.9 to 0.4 and c1 = c2 = 2) and DCPSO
(with w linearly decreasing from 0.9 to 0.4 and the first
distribution defined in Table I) are displayed under four
benchmark problems from CEC 2013 (information of four
benchmark problems included in Table III [14]). From Fig. 2, it
is shown that, with the increment of the number of dimensions,
the performance of DCPSO with the first distribution defined
in Table I may get worse. That is because the curse of
dimensionality leads to a too large search space for DCPSO in
terms of RV. Hence, this paper compares the performances of
the traditional PSO and DCPSO with four distinct distributions
defined in Table I and it seems that DCPSO with the third
distribution performs well. They are run on the 20 standard
benchmark problems from CEC 2013. Table III shows the
information of the 20 tested benchmark problems and Table IV
shows the information of the 5 tested PSO, which are tPSO
(the traditional PSO) and DCPSO(k) (DCPSO with the kth
distribution defined in Table I, k ≤ 4 is a positive integer).

One criterion applied to terminate simulation of the al-
gorithms is function evaluations (FEs) reaching maximum
number of function evaluations (MaxFEs), which has already
implied in Algorithm 2. This paper sets MaxFEs as 10000D =

TABLE III. INFORMATION OF THE 20 TESTED BENCHMARK PROBLEMS
WITH THE NUMBER OF DIMENSIONS D = 30

No. Type Search Ranges
f1 − f5 Unimodal Functions [−100, 100]D

f6 − f20 Basic Multimodal Functions [−100, 100]D

TABLE IV. PARAMETERS OF THE TRADITIONAL PSO (TPSO) AND
DCPSO IN SIMULATION

Algorithms Parameters w, c1 and c2
tPSO w linearly decreases from 0.9 to 0.4, c1 = c2 = 2

DCPSO(k) w linearly decreases from 0.9 to 0.4, without c1 and c2

300000. 51 independent stimulation runs are conducted for
each algorithm. Fig. 3 reveals the simulation results, and it
seems that DCPSO(3) performs well. To compare DCPSO(3)
with the traditional PSO in the aspect of convergence, a
simulation tested, of which the results can be seen in Fig.
4. Eliminating the impact of inertia, the simulation is under
the following conditions: w = 0, x(0) = (10, 10), v(0) =
(10, 10), c1 = c2 = 2. It can be seen that, obviously, the
range of the search space of DCPSO(3) is larger than that
of the traditional PSO. However, it can hardly guarantee the
convergence of DCPSO(3). Further, for each algorithm, the
average (mean) fitness value (Mean) and the standard deviation
(Std. Dev.) over the 51 runs are calculated, and then algorithms
are compared through the two values. The experimental results
are shown in Table V.

From Fig. 3, it seems that DCPSO(3) performs well, and
from the computational results presented in Table V, it is
observed that DCPSO(3) shows superior performances over
the traditional PSO for 11 out of the 20 benchmark problems:
f2, f3, f4, f6, f10, f12, f13, f15, f16, f18 and f20. And in the
two benchmark problems, f1 and f5, both of the traditional
PSO and DCPSO(3) reach the optimum values. DCPSO(3)
is able to have such performances because RV of the search
space is larger than the traditional PSO. And meanwhile, it
has a distribution to control its EV to relieve the problem, for
the huge RV leads to the curse of dimensionality. However,
the traditional PSO shows superior performances over the
traditional PSO for 7 out of the 20 benchmark problems: f7,
f8, f9, f11, f14, f17 and f19. Overall, each PSO has its merits.

TABLE VI. ROTATION INFORMATION OF THE TWO FUNCTION PAIRS
(f14 , f15) AND (f17 , f18)

No. Function f∗i
f14 Schwefel’s Function -100
f15 Rotated Schwefel’s Function 100
f17 Lunacek Bi Rastrigin Function 300
f18 Rotated Lunacek Bi Rastrigin Function 400

Notice the results between f14 and f15 and between f17
and f18. The information of those four benchmark problems
is shown in Table VI.

A notable result is that the performances of the traditional
PSO in each of those two function pairs differ much more
greatly than DCPSO. From Fig. 3, it shows that the curve
graphs of the traditional PSO in each of those two function
pairs differ greatly, while the curve graphs of DCPSO differ
slightly. And from Table V, if f∗i , which is a real constant
to adjust the minimum values of each standard benchmark
problem fi from CEC 2013, is eliminated, the mean function
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TABLE V. MEAN FUNCTION VALUES AND STANDARD DEVIATIONS OVER 51 RUNS OF THE 20 TESTED BENCHMARK PROBLEMS

Func. No. tPSO DCPSO(1) DCPSO(2) DCPSO(3) DCPSO(4)
f1 Mean -1.4000e+003 -1.4000e+003 -1.4000e+003 -1.4000e+003 -1.4000e+003
f1 Std. Dev. 5.6869e-026 2.8951e-026 2.6883e-026 3.7223e-026 3.9291e-026
f2 Mean 1.4994e+007 1.8395e+007 8.3045e+006 1.0688e+007 1.3256e+007
f2 Std. Dev. 1.0198e+014 1.3563e+014 5.3831e+013 7.0169e+013 5.2601e+013
f3 Mean 1.5433e+008 4.0484e+008 6.6681e+007 9.5335e+007 2.8473e+008
f3 Std. Dev. 4.2203e+016 1.7672e+018 2.4883e+016 1.9835e+016 6.1208e+017
f4 Mean 3.5386e+003 5.9017e+003 -9.2595e+002 -1.0477e+003 -1.0868e+003
f4 Std. Dev. 1.8992e+006 2.6048e+006 3.8270e+003 9.8272e+002 8.0359e+001
f5 Mean -1.0000e+003 -9.9330e+002 -1.0000e+003 -1.0000e+003 -1.0000e+003
f5 Std. Dev. 1.1348e-025 1.3887e+002 3.0109e-009 3.7283e-009 1.8880e-009
f6 Mean -8.1878e+002 -7.7424e+002 -8.1792e+002 -8.2195e+002 -8.2476e+002
f6 Std. Dev. 1.2899e+003 1.2252e+003 1.4579e+003 1.4555e+003 1.6829e+003
f7 Mean -7.6135e+002 -7.6159e+002 -7.6807e+002 -7.5866e+002 -7.4313e+002
f7 Std. Dev. 1.9516e+002 1.1188e+002 9.1813e+001 2.3504e+002 4.5121e+002
f8 Mean -6.7907e+002 -6.7904e+002 -6.7907e+002 -6.7907e+002 -6.7908e+002
f8 Std. Dev. 3.0651e-003 1.0170e-003 4.8644e-003 2.8533e-003 5.8100e-003
f9 Mean -5.7895e+002 -5.7336e+002 -5.7875e+002 -5.7766e+002 -5.7619e+002
f9 Std. Dev. 1.8059e+001 2.8631e+001 9.2059e+000 9.8594e+000 1.2958e+001
f10 Mean -4.9963e+002 -4.9963e+002 -4.9982e+002 -4.9979e+002 -4.9982e+002
f10 Std. Dev. 1.4969e-001 1.0547e-001 8.9900e-003 2.0840e-002 1.1841e-002
f11 Mean -3.7862e+002 -2.3120e+002 -3.3742e+002 -3.2243e+002 -3.0013e+002
f11 Std. Dev. 4.5716e+001 2.2284e+003 3.0958e+002 5.0324e+002 1.2522e+003
f12 Mean -1.9552e+002 -1.3243e+002 -2.3976e+002 -2.3369e+002 -2.2491e+002
f12 Std. Dev. 2.3582e+003 2.2257e+003 4.2453e+002 5.5673e+002 7.8376e+002
f13 Mean -3.3876e+001 2.3631e+000 -6.3588e+001 -6.4544e+001 -4.0152e+001
f13 Std. Dev. 1.3434e+003 5.2100e+002 1.0099e+003 1.0039e+003 1.4525e+003
f14 Mean 7.8565e+002 7.0010e+003 5.6623e+003 3.8780e+003 3.6756e+003
f14 Std. Dev. 7.9358e+004 3.5293e+005 2.0398e+006 1.4670e+006 7.3548e+005
f15 Mean 6.8710e+003 7.1084e+003 5.9306e+003 4.2877e+003 4.1563e+003
f15 Std. Dev. 4.9695e+005 2.2987e+005 1.9329e+006 1.2534e+006 9.0453e+005
f16 Mean 2.0222e+002 2.0233e+002 2.0223e+002 2.0199e+002 2.0199e+002
f16 Std. Dev. 1.2841e-001 1.9478e-001 2.0448e-001 2.6777e-001 1.9639e-001
f17 Mean 3.5568e+002 5.2893e+002 4.5289e+002 4.2932e+002 4.1771e+002
f17 Std. Dev. 4.3644e+002 1.3215e+003 2.8272e+003 1.6481e+003 1.2026e+003
f18 Mean 6.3208e+002 6.2707e+002 6.0713e+002 5.5161e+002 5.2191e+002
f18 Std. Dev. 1.2113e+003 8.0284e+002 1.6146e+003 2.8470e+003 1.1339e+003
f19 Mean 5.0398e+002 5.1751e+002 5.0664e+002 5.0696e+002 5.0689e+002
f19 Std. Dev. 1.8437e+000 1.2147e+001 1.0613e+001 5.1581e+000 4.9766e+000
f20 Mean 6.1466e+002 6.1465e+002 6.1425e+002 6.1419e+002 6.1463e+002
f20 Std. Dev. 9.1348e-001 8.3615e-001 1.9767e+000 2.8666e+000 1.1945e+000

values of DCPSO in each of those two function pairs are very
close, while the mean function values of the traditional PSO are
not. The outcomes may be resulted from the concentration of
particles parallel to the coordinate axes in the traditional PSO
[15], while in DCPSO, the concentration is eliminated. For
not exploring the search space on a component-by-component
basis due to the concentration of particles parallel to the coor-
dinate axes, the Incremental PSO with Local Search (IPSOLS)
add a new particle to the population every k iterations [16]–
[18]. However, both of the initialization rule applied to a
new particle and velocities updating are independent in each
dimension.

V. CONCLUSIONS

In this paper, we proposed a Dimensionally Cooperative
PSO (DCPSO), based on dimensional cooperation through
Euclidean metric. It is essentially novel because DCPSO is
to propose such cooperation of dimensions through Euclidean
metric, instead of updating each dimension independently.

This paper defines two concepts, the Reachable Volume
(RV) and the Expected Volume (EV) of a space. Though
Euclidean metric, it is obvious that EV for the search space
of DCPSO will be larger than the traditional PSO. However,
with the increment of the number of dimensions, RV of search
space may be too large to converge, which is one of aspects
of the curse of dimensionality. To relieve the problems in the
high-dimensional space, this paper imposes four distributions

on DCPSO to control DCPSO’s EV. Thus, DCPSO is able to
accelerate its convergence.

DCPSO is validated by comparison with the traditional
PSO under 20 standard benchmark problems from CEC 2013
with the number of dimensions D = 30 over 51 runs. It
seems that, among the four distributions, DCPSO with the third
distribution performs well, which has superior performances
over the traditional PSO for 11 out of 20 benchmark problems
and in another two benchmark problems, both the traditional
PSO and DCPSO reach the optimum values. It also shows
that in rotated and non-rotated functions, the traditional PSO
performs much differently while DCPSO differs slightly.

In our future work, we will try more metrics to study
the performance of DCPSO, and further, we will consider the
convergence condition of DCPSO. Meanwhile, we will test the
performances of the traditional PSO and DCPSO in more non-
rotated and rotated function pairs, in order to study the impact
of rotation to the traditional PSO and DCPSO. What is more,
Partially Dimensionally Cooperative PSO (PDCPSO), which is
dimensionally cooperative in subspaces so as to further relieve
the curse of dimensionality is also of our interests.
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