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Abstract—This paper pursues a course of investigation of
an approach to combine Evolutionary Computation and Data
Mining for the location and computation of multiple local and
global optima of an objective function. To accomplish this task
we exploit the spatial concentration of the population members
around the optima of the objective function. Such concentration
regions are determined by applying clustering algorithms on the
actual positions of the members of the population. Subsequently,
the evolutionary search is confined in the interior of the regions
discovered. To enable the simultaneous discovery of more than
one global and local optima, we propose the use of clustering
algorithms that also provide intuitive approximations for the
number of clusters. Furthermore, the proposed scheme has
often the potential of accelerating the convergence speed of the
Evolutionary Algorithm, without the need for extra function
evaluations.

Index Terms—Data Mining, Clustering, Differential Evolution,
Particle Swarm Optimization, Global Optimization.

I. INTRODUCTION

Evolutionary Algorithms (EAs) refer to problem solving

optimization algorithms which employ computational models

of evolutionary processes. These algorithms share the common

conceptual base of simulating the evolution of the individ-

uals (i.e. search points) that form the population using a

predefined set of evolution operators. Commonly two kinds

of operators are used: the selection and the search operators.

The most widely used search operators are the mutation and

the recombination. The selection operator mainly depends

on the perceived measure of the fitness of each individual

and enforces the concepts of natural selection and survival

of the fittest. The search operators stochastically perturb the

individuals providing efficient exploration of the search space.

This perturbation is primarily controlled by the user defined

recombination and mutation rates. Although simplistic from

a biologist’s point of view, these algorithms are sufficiently

complex to provide robust and powerful search mechanisms

and have shown their strength in solving hard real-world

optimization problems.

On the other hand, recent advances in Data Mining research

have allowed the development of tools and techniques with the

unprecedented ability to extract meaningful information from

diverse types of data. Utilizing these new developments to

discover additional knowledge from an optimization procedure

is the primary focus of this paper. The utilization of Data

Clustering algorithms on the population of the evolutionary

algorithm is proposed with double earnings; primarily to gain

further insight and knowledge for the specific problem, and

secondly to exploit that information aiming to enhance the

dexterity of the evolutionary process itself.

Thus, the research goal of this paper is the combination

of EAs and unsupervised clustering algorithms in an attempt

to locate and compute multiple global and local optima of a

multimodal objective function. More specifically, we propose

the synergy of clustering algorithms that automatically provide

intuitive approximations for the number of clusters, with EAs

having the property to better explore the search space. This

approach has the potential of locating multiple local and

global minima efficiently with minimal extra computational

cost and, in some cases, it can accelerate the EA’s convergence

speed [1].

The paper proceeds with a presentation of related work in

the next Section. In the Sections III and IV, we describe the

specific clustering and evolutionary algorithms employed in

this study. Section V, presents the proposed scheme for the

combination of Data Clustering and Evolutionary Algorithms.

The experimental results in Section VI demonstrate the ap-

plicability of the proposed methodology. The paper ends with

concluding remarks and a short discussion regarding future

research directions.

II. RELATED WORK

In the literature there exist numerous techniques for the

discovery of multiple local and global optima that date back

to the 1970s. These algorithms can be broadly divided into

the following categories: i) multistart techniques, ii) objective

function modification algorithms, iii) niching algorithms, iv)

algorithms that learn the objective function, and v) clustering

based techniques.

Multistart techniques (e.g. [2]–[4]) have their roots on pre-

existing methods, such as the Multi-Level Single Linkage and

the Topographical Global Optimization [5]. Objective function

modification techniques transform the multimodal objective

function in an attempt to remove undesired local minimizers,

and are not directly connected with a particular optimization

algorithm [6]–[8].

On the other hand, niching methods divide the popula-

tion into semi-isolated subpopulations (niches), in an attempt

to maintain a sufficient number of solutions at each sub-

population, preventing premature convergence. Subsequently,
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they encourage local competition between certain members

of the population, so as to allow the formation of solution

clusters [9]–[11].

Algorithms that try to learn the objective function, do not

try to provide multi-minima solutions, but rather use data

mining techniques to better guide the evolutionary process.

The Covariance Matrix Adaptation Evolution Strategy (CMA-

ES) algorithm [12] is one of the most successful approaches.

The interested reader can find similar approaches in [13], [14].

Although the majority of these algorithms were introduced as

minimization methods, they can also be used to compute the

maximizers of a multimodal objective function.

III. DATA CLUSTERING

Clustering techniques date back in the fourth century B.C.

from the attempts by Aristotle and Theophrastos to categorize

plants according to their morphological characteristics. How-

ever, the first comprehensive foundations of these methods

were published in 1939 [15]. Clustering can be defined as

the process of partitioning a set of patterns into disjoint and

homogeneous meaningful groups, called clusters. Although

there exists an abundance of clustering methods, in this

study we consider two unsupervised clustering algorithms;

namely the Unsupervised k–Windows (UkW) [16] and the

DBSCAN [17] clustering algorithms. This selection was based

on two reasons. Firstly, both algorithms have proven to be

effective and efficient in many data mining tasks. Secondly

and most importantly, both have the ability to automatically

provide approximations for the number of clusters in a dataset.

This is a central issue in modern cluster analysis, since many

popular clustering methods require special handling to provide

this functionality.

A. Unsupervised k–Windows Clustering Algorithm

Density based clustering algorithms operate by identifying

regions of high density in dataset objects, surrounded by

regions of low density. One method in this class is the “Unsu-

pervised k-Windows” (UkW), which utilizes hyperrectangles

to discover clusters. The algorithm makes use of techniques

from computational geometry and encapsulates clusters using

linear containers in the shape of d-dimensional hyperrectangles

that are iteratively adjusted with movements and enlargements

until a certain termination criterion is satisfied [16]. The

movement procedure aims at positioning each window as close

as possible to the center of a cluster, while the enlargement

process attempts to enlarge the window so that it includes as

many objects from the current cluster as possible. These two

steps are illustrated in Figure 1. Notice that with proper tuning,

the algorithm is able to detect clusters of arbitrary shapes.

Additionally, UkW provides an estimate for the number of

clusters that exist in the dataset. The key idea is to initialize

a large number of windows. When the movement and en-

largement of all windows terminate, all overlapping windows

are considered for merging by considering their intersection.

An example of this operation is exhibited in Figure 2. For a

detailed description of the UkW algorithm see [16].
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E2
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Fig. 1. (a) Sequential movements M2, M3, M4 of initial window M1. (b)
Sequential enlargements E1, E2 of window M4.

W2

(a)
W1

W4

W3(b) W5

W6
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Cluster 2
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Fig. 2. (a) W1 and W2 satisfy the similarity condition and W1 is deleted.
(b) W3 and W4 satisfy the merge operation and are considered to belong
to the same cluster. (c) W5 and W6 have a small overlap and capture two
different clusters. (d) An example of how the UkW algorithm can discover
non-convex shaped clusters.

B. The DBSCAN Clustering Algorithm

The DBSCAN [17] clustering algorithm is designed to

discover clusters of arbitrary shape as well as to distinguish

noise. More specifically, the algorithm is based on the idea

that in a neighborhood of a given radius (Eps) for each point

in a cluster at least a minimum number of objects (MinPts)

should be contained. Such points are called core points and

each point in their neighborhood is considered as “Directly

Density-Reachable” from that. Consequently the algorithm

uses the notion of density reachable chains of objects; i.e.

a point q is “Density-Reachable” from a point p, if there is

a chain of objects p1, . . . , pk such that p1 = q, pk = p and

pi+1 is “Directly Density-Reachable” from pi for i = 1, . . . , k.

Finally, a point p is defined as “Density Connected” to a point

q, if there is a point o that both p, q are “Density-Reachable”

from that. Figure 3, illustrates an example of these definitions.

p and q are density connected 

q is not density reachable from p

p is density reachable from q

p

q

qo

p

Fig. 3. An example of “Density-Reachable” and “Density Connected” points.
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The algorithm considers as a cluster the subset of points

from the dataset that are “Density-Reachable” from each other

and additionally each pair of points inside the cluster is

“Density Connected”. Any point of the dataset not in a cluster

is considered as noise.

To discover the clusters the algorithm retrieves density-

reachable points from the data by iteratively collecting directly

density-reachable objects. The algorithm scans the eps neigh-

borhood of each point in the database. If that neighborhood

has more than MinPts points a new cluster C containing

them is defined. Then, the neighborhood of all points q in C

which have not yet been processed is checked. If the points in

neighborhood of q are more than MinPts, then those which

are not already contained in C are added to the cluster and

their neighborhood will be checked in a subsequent step. This

procedure is iterated until no new point can be added to the

current cluster C.

An initial value of the eps parameter can be determined by

using a k-distance graph of the data, where k can be derived

from the number of dimensions in the data set.

IV. EVOLUTIONARY ALGORITHMS

Among the numerous methods belonging to the class of

EAs, the Differential Evolution (DE) [18] and the Particle

Swarm Optimization (PSO) [19] have been selected to demon-

strate the proposed synergy of clustering and evolutionary

algorithms. DE and PSO are optimization methods capable

of locating one optimum of nondifferentiable, nonlinear and

multimodal objective functions. Note that even though the

benchmarks studied in the paper are mainly minimization

tasks, DE and PSO are optimization methods capable of both

maximizing and minimizing an objective function. Next, an

brief overview of these algorithms is presented.

A. The Differential Evolution Algorithm

DE has been designed as a stochastic parallel direct search

method that typically requires few, easily chosen, control

parameters. Experimental results have shown that DE has good

convergence properties and outperforms other well known

evolutionary algorithms [20], [21]. A population of individuals

is randomly initialized in the optimization domain S, by

uniformly sampling NP n–dimensional vectors in the search

space. Subsequently, the individuals are iteratively evolved in

order to explore S and locate the minima of the objective func-

tion. Note that NP remains constant throughout the evolution.

At each iteration, called generation, new vectors (offsprings)

are generated by a combination of randomly chosen vectors.

This operation in our context can be referred to as mutation. At

a next step, the recombination operation mixes the offspring

vectors with another predetermined vector – the target vector.

This yields the so–called trial vector. The trial vector replaces

the target vector if and only if it yields a reduction in the value

of the objective function f . This last operation can be referred

to as selection. Performing the mutation, recombination and

selection operations for all the population members constitutes

a single iteration of the DE algorithm.

Below, the DE mutation operators used in this paper are

outlined. Specifically, for each individual xi
g, i = 1, . . . , NP,

where g denotes the current generation, a new individual vig+1

(mutant vector) is generated according to one of the following

equations:

vig+1 = xbest
g + µ(xr1

g − xr2
g ), (1)

vig+1 = xr1
g + µ(xr2

g − xr3
g ), (2)

vig+1 = xi
g + µ(xbest

g − xi
g) + µ(xr1

g − xr2
g ), (3)

vig+1 = xbest
g + µ(xr1

g − xr2
g ) + µ(xr3

g − xr4
g ), (4)

vig+1 = xr1
g + µ(xr2

g − xr3
g ) + µ(xr4

g − xr5
g ), (5)

where xbest
g is the best member of the previous generation;

µ > 0 is a real parameter, called mutation constant, which

controls the amplification of the difference between two indi-

viduals so as to avoid the stagnation of the search process; and

r1, r2, r3, r4, r5 ∈ {1, 2, . . . , i− 1, i+ 1, . . . ,NP}, are ran-

dom integers mutually different and not equal to the running

index i.

It is evident that more such relations can be generated using

the above ones as building blocks (see for example [22], where

new DE operators are genetically programmed). Another such

example is the trigonometric mutation operator [23]. For the

rest of the paper, we call DE1 the differential evolution

algorithm that uses Equation (1) as the mutation operator,

DE2 the algorithm that uses Equation (2), and so on. The

trigonometric mutation operator is also tested (DE6).

B. The Particle Swarm Optimization

To illustrate the generality of our approach, we will also

apply it to the Particle Swarm Optimization (PSO) algo-

rithm [24]. PSO, is an optimization method inspired by the

social dynamics and emergent behavior that arises in socially

organized colonies [19]. For this reason, the population is

usually called swarm and the individuals are called particles.

The algorithm operates by iteratively moving each particle

with an adaptable velocity within the search space and retains

a memory of the best positions it ever encountered. Addition-

ally, each particle is assigned to a topological neighborhood

consisting of a predetermined number of particles. If all the

population particles are included in this neighborhood then the

algorithm is characterized as global PSO; otherwise as local

PSO.

Assume a swarm consisting of NP particles. The i–

th particle is in effect an n–dimensional vector Xi =
(xi1, xi2, . . . , xin)

⊤ ∈ S. The velocity of this particle is also

an n–dimensional vector, Vi = (vi1, vi2, . . . , vin)
⊤ ∈ S. The

best previous position encountered by the i–th particle is a

point in S, denoted by Pi = (pi1, pi2, . . . , pin)
⊤ ∈ S. Assume

g to be the index of the particle that attained the best previous

position among all the particles in the swarm neighborhood

and t to be the iteration counter. Then, the evolution of the
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swarm is described by the following equations [24]:

Vi(t+ 1) = χ
[
wVi(t) + c1 r1

(
Pi(t)−Xi(t)

)
+

+ c2 r2
(
Pg(t)−Xi(t)

)]
, (6)

Xi(t+ 1) = Xi(t) + Vi(t+ 1), (7)

where i = 1, . . . , NP ; c1 and c2 are two parameters called the

cognitive and the social parameter, respectively, and they are

used to bias the search of a particle toward its best experience

and the best experience of the whole swarm, respectively; r1,

r2, are random numbers uniformly distributed within [0, 1].
The parameters χ and w are called the constriction factor and

the inertia weight, respectively, and they are used alternatively

as mechanisms for the control of the velocity’s magnitude,

giving rise to the two different PSO versions (CPSO and IPSO,

respectively). The selection of the aforementioned parameters

has been widely discussed and studied (see for example [25]).

V. THE PROPOSED SCHEME

To effectively exploit the above described notions in prac-

tice, we present an algorithmic scheme combining the DE

and an unsupervised clustering algorithm algorithm. Note that

this approach is not DE exclusive, but can be applied to any

EA variant. We have also use it with the PSO algorithm and

the results were similar. The proposed approach applies the

unsupervised clustering method only once, after a user–defined

number of generations. For the case of DE, only a small

number of generations is needed to sufficiently explore the

search space. Afterwards, the clusters of individuals around

the optima are determined and subpopulations are confined

within each region. Each subpopulation has NP/β individuals,

where β is the number of detected clusters. Notice that

β is automatically computed by the unsupervised clustering

algorithm; no user intervention is required. If a region contains

more individuals, the best NP/β of them are selected. On the

other hand, if a cluster contains less individuals, new ones are

randomly initialized in the region. The results obtained in this

manner consist of the minimizers computed in a single run.

This algorithmic scheme (Clustering assisted DE) is outlined

in Algorithm 1.

Although not necessary, to better utilize the proposed ap-

proach it is possible to start the DE algorithm using a mutation

operator that permits adequate exploration of the search space

(for example DE2 or DE6). Once the clusters around the min-

imizers have been determined by the unsupervised clustering

algorithm, one can switch to a DE mutation operator that has

faster convergence speed (for example DE1) [1]. Note that the

DE algorithm in Steps 16 and 17 of the above scheme can be

replaced by any optimization method (even a non evolutionary

one).

For very hard optimization problems, when the objective

function is defined in many dimensions and possesses mul-

titudes of local and global minima, the clustering algorithm

could be called more than once. The same might be true

for real–life optimization tasks, where the function value

Algorithm 1 Clustering assisted DE

1: Initialize the population of NP individuals

2: Evaluate the fitness of each individual

3: repeat

4: for i = 1 to NP do

5: Mutation(xi
g) → Mutantig

6: Recombination(Mutantig) → Trialig
7: if f(Trialig) 6 f(xi

g) then
8: accept Trialig for the next generation

9: end if

10: end for

11: until the search space is sufficiently explored

12: Call an unsupervised clustering algorithm once

13: Automatically estimate the number of clusters (β)

14: Assign each DE individual to its corresponding cluster

15: for j = 1 to β do

16: Confine NP/β individuals within each cluster

17: Use the DE algorithm to compute each minimum

18: end for

19: return all the computed minima

of the global minimum is unknown. Each consecutive call

of the clustering algorithm will result in more promising

subregions of the original search space and will save unneeded

objective function evaluations, since the subpopulations will

stay focused on regions containing desirable minima. For

all the experiments conducted in this paper, one call of the

clustering algorithm is sufficient for the location of many local

and (possibly) global minima.

To determine the applicability and the efficiency of the DE

and clustering synergy, we applied it to the following simple

multimodal 2–dimensional function:

f(x1, x2) = sin(x1)
2 + sin(x2)

2, (8)

where (x1, x2) ∈ R
2. This function has an infinite number of

global minima in R
2, with function values equal to zero, at the

points (κπ, λπ), where κ, λ ∈ Z. Restricted in the hypercube

[−5, 5]2 the function f has 9 global minima. An illustrative

clustering result of the individuals using the UkW algorithm is

exhibited in Figure 4. The final windows of the UkW algorithm

are also depicted.

VI. PRESENTATION OF EXPERIMENTS

To evaluate the performance of the proposed scheme we

have conducted two independent sets of experiments. First, in

Section VI-A, we have employed two popular multimodal test

functions to evaluate the applicability and the properties of the

two unsupervised clustering algorithms considered here. Next,

Section VI-B is devoted to the comparison of our approach

against similar techniques found in the literature.

In the tables below, we report the average number of

Function Evaluations (FE) needed before an algorithm was

stopped by any of the following three termination criteria: i)

the global minimum was located with accuracy 10−6, ii) at

any time the largest Euclidean distance among the population
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Fig. 4. Clusters and global minimizers discovered in f

members is less than 10−6 (i.e. the population is considered

converged), and iii) a predefined number of generations is

reached.

In the first set of experiments, three different approaches are

evaluated: the original DE algorithm (six different mutation

operators), the UkW assisted DE, and the DBSCAN assisted

DE. For the latter two algorithms, we also report the average

number of detected minima. Note that in the first set of

experiments, the UkW assisted DE and the DBSCAN assisted

DE algorithms always located the global minimum of the

objective functions. For the second set of experiments, to

make the comparisons straightforward, we have tried to use

algorithm settings that are as close as possible to the settings

in the original publications. All the simulations mentioned

above were performed 100 times with different random seeds

to ensure statistical accuracy. The mutation and recombination

constants of the DE algorithms had fixed values µ = 0.6 and

ρ = 0.8, respectively. These values are commonly encountered

in DE publications and no attempt was made to fine-tune the

algorithm.

A. Applying and Comparing the Clustering Algorithms

In the first set of experiments the Shekel’s Foxholes and

the 10–dimensional Griewangk test functions were considered.

Note that in the experiments below the clustering step was

applied after 20 generations. The Shekel’s Foxholes is a

relatively easy test function and was included in the exper-

iments to investigate the performance of the unsupervised

clustering algorithms when applied to problems in which the

DE algorithm requires a relatively small number of generations

to locate the global minimum.

In Table I the average performance of the algorithms on the

Shekel’s foxholes test function is exhibited. It is clear that the

use of the unsupervised clustering algorithms results in the

computation of many minima at once, but the problem is so

easy that there is always an increase in the number of function

evaluations needed to locate the global minimum. This fact

indicates that the proposed approach is better suited to difficult

optimization tasks, when more than one minimum exist.

On the contrary, the experimental results from the

original DE UkW assisted DE DBSCAN assisted DE

FE Minima FE Minima FE

DE1 1540 7.81 2516 5.58 3182

DE2 2590 12.58 2738 10.22 4448

DE3 408 9.34 2486 4.40 3572

DE4 2150 8.13 2448 4.63 3844

DE5 2372 9.87 3370 11.02 4558

DE6 552 14.33 2716 8.75 4328

TABLE I
RESULTS FOR THE SHEKEL FUNCTION: AVERAGE NUMBER OF FUNCTION

EVALUATIONS (FE) NEEDED AND AVERAGE NUMBER OF COMPUTED

MINIMA, WITH AND WITHOUT THE AID OF A CLUSTERING ALGORITHM

Griewangk test function, illustrated in Table II, show that the

clustering greatly accelerates the DE algorithms (ranging from

80% to 260%). DE1 is the only exception; although on average

14 minima are located the proposed algorithm requires 27%
additional generations.

original DE UkW assisted DE DBSCAN assisted DE

FE Minima FE Minima FE

DE1 60468 14.19 83110 1.05 85600

DE2 174786 8.58 69262 1.88 191734

DE3 159812 23.36 87964 3.93 242180

DE4 256084 4.40 71304 0.21 255800

DE5 363218 1.65 114260 0.08 224100

DE6 123886 18.09 65662 3.08 177816

TABLE II
RESULTS FOR THE GRIEWANGK FUNCTION: AVERAGE NUMBER OF

FUNCTION EVALUATIONS (FE) NEEDED AND AVERAGE NUMBER OF

COMPUTED MINIMA, WITH AND WITHOUT THE AID OF A CLUSTERING

ALGORITHM

The experimental results indicate that the utilization of

an unsupervised clustering algorithm aids the location of

multiple minima. In relatively easy problems, there may be

an increase in the number of function evaluations needed to

locate the global minimum. However, in difficult optimization

tasks the clustering step usually accelerates the convergence

of the DE algorithms. Additionally, the UkW assisted DE

algorithm exhibited increased convergence speed and located

more minima when compared against the DBSCAN assisted

DE. Thus, the use of the UkW clustering algorithm is proposed

and for the next experiment only UkW experimental results are

reported.

B. Comparison with other approaches

Here we conduct an experimental analysis that allows to

compare the performance of the proposed methodology against

other methods [9], [26]–[30].

Firstly, the proposed approach will be compared against

the method proposed in [27]. To this end, we utilize the

Levy No. 5 test function, which has has about 760 lo-

cal minima and one global minimum with function value

flevy(−1.3068,−1.4248) = −176.1375. The large number of

local optimizers makes it difficult for any method to locate the

global minimizer.
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The experimental results are exhibited in Table III. As

shown the use of the unsupervised clustering algorithm en-

hances the performance of the DE algorithms. In detail, there

is an average acceleration of the algorithm’s convergence

speed ranging from 30% to 80%. Additionally, as many as

20 minima (including the global one) were simultaneously

computed. The only exception is DE1 where a slight increase

in the function evaluations is observed (3%), but the modified

algorithm locates, in average, the global as well as 6 local

minima.

original DE UkW assisted DE

FE Minima FE

DE1 6642 5.97 6872

DE2 14132 20.52 10852

DE3 12818 11.96 7954

DE4 13022 20.22 10050

DE5 26602 22.70 14170

DE6 12978 19.20 10048

TABLE III
RESULTS FOR THE LEVY FUNCTION: NUMBER OF FUNCTION

EVALUATIONS (FE) NEEDED AND AVERAGE NUMBER OF COMPUTED

MINIMA, WITH AND WITHOUT THE AID OF A CLUSTERING ALGORITHM

Using the deflection technique proposed in [27] in combi-

nation with PSO, the authors show that is possible to detect 2

minima of the function, over as many as 3, 026.5 iterations of

a swarm size of 20 particles. This corresponds to a mean total

of 3, 026.5 × 20 = 60, 530 function evaluations. Compared

to the worst results of 14, 170 function evaluations required

by DE5 to discover on average more than 20 minima is a

significant improvement.

Next, we compare the proposed technique against the popu-

lar NichePSO type of methods proposed in [28]–[30]. To allow

direct comparisons, we will employ the same test functions

and we will follow as closely as possible the experimental

design described in the corresponding publications. The five

test functions are defined as follows:

fniche1(x) = sin6(5πx),

fniche2(x) = e−2 log(2)( x−0.1

0.8
)2 sin6(5πx),

fniche3(x) = sin6
(
5π(x3/4 − 0.05)

)
,

fniche4(x) = e−2 log(2)( x−0.1

0.8
)2 sin6

(
5π(x3/4 − 0.05)

)
,

fniche5(x) = 200− (x2 + y − 11)2 − (x+ y2 − 7)2.

Notice that these are maximization problems. The test func-

tions fniche1 and fniche3 both have 5 maxima with a function

value of 1.0. In fniche1 , maxima are evenly spaced, while in

fniche3 maxima are unevenly spaced. Functions fniche2 and

fniche4 are oscillating functions, and the local and global peaks

exist at the same x-positions as in functions fniche1 and fniche3 .

The modified Himmelblau function fniche5(x) has 4 equal

maxima with function values equal to 200. The test functions

fniche1 to fniche4 are investigated in the range [0, 1], while the

optima of fniche5(x) are being sought in the range [−6, 6].

Table IV illustrates the results of the proposed scheme in

terms of Mean Function Value (FV) among the computed

minima and Accuracy as defined in [30] (the proportion of the

total minima discovered). The results in this case are averaged

over 100 independent experiments. Two different approaches

are examined; the UkW assisted CPSO and the UkW assisted

IPSO, corresponding to the constriction factor and the iner-

tia weight versions of the PSO algorithm, respectively. The

population size was set to 500 individuals in all cases.

UkW assisted CPSO UkW assisted IPSO

Mean FV Accuracy Mean FV Accuracy

fniche1 0.99 50% 0.96 50%
fniche2 0.9 50% 0.96 48%
fniche3 0.99 44% 0.99 48%
fniche4 0.99 26% 0.99 28%
fniche5 199.37 90% 199.36 100%

TABLE IV
RESULTS OF THE CLUSTERING ASSISTED PSO METHODS

The parameters of the PSO algorithms had values com-

monly found in many PSO publications, i.e. c1 = c2 = 2.05
and χ = 0.729. All the different neighborhood sizes from 2

to 250 were examined. Using a small neighborhood size (less

than 10) produced on average the best results in terms of accu-

racy. On the other hand, as expected, large neighborhood sizes

(larger than 100) produced the best results in terms of mean

function values. The larger the neighborhood size the better

the search space exploitation. Table IV reports the results for

a neighborhood of size 5 particles. Notice that the reported

results are worse in terms of accuracy for functions fniche1
to fniche4 compared to those reported in [28]–[30]. Visually

inspecting the population of the particles we determined that

the minima in these test functions are located very close to one

another. Thus, the evolution of the swarm is mostly influenced

by one or two of them and the algorithms loses the ability to

cluster around all different minima. However, the proposed

scheme does not aim to locate all the minima, but rather

to exploit whatever clustering structure already exists in the

population. In the case of fniche5 however, PSO shows a clear

clustering structure that is exploited by UkW and in effect the

accuracy of results is increased up to 100%.

To compare against the work reported in [26], we utilize

the Rastrigin test function. This function is a typical example

of a non-linear multimodal function and is a fairly difficult

problem due to its large number of local minima. Table V

summarizes the average results of 100 experiments of the 2-

dimensional Rastrigin function. The results are similar to the

results for the Levy function. Faster convergence is exhibited

for all the DE algorithms (except for DE1). The average

increase in convergence speed was from 10% to 130% and up

to 20 minima were simultaneously located. In [26], the authors

report that the 2-dimensional version of this function, requires

a mean number of 2, 396 function evaluations to discover

approximately 30 minima. They also show the superior results

against SPSO, SCGA and SNGA algorithms [31]–[33]. The
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technique proposed in this paper applied on the DE5 requires

a mean number of approximately 11000 function evaluations

to discover approximately 19 minima. While these results

are worse than those reported in [26], we should note that

they utilize iterative execution of the clustering algorithm that

strengthens the explicative capabilities of the evolution, but

also increases the computational cost.

original DE UkW assisted DE

FE Minima FE

DE1 4186 1.00 5268

DE2 12334 17.19 9144

DE3 16022 11.23 6976

DE4 9434 13.89 8528

DE5 19738 19.43 10948

DE6 11052 15.72 8856

TABLE V
RESULTS FOR THE 2-DIMENSIONAL RASTRIGIN FUNCTION: AVERAGE

NUMBER OF FUNCTION EVALUATIONS (FE) NEEDED AND AVERAGE

NUMBER OF COMPUTED MINIMA, WITH AND WITHOUT THE AID OF A

CLUSTERING ALGORITHM

On the contrary, when the 6-dimensional form of the Rast-

rigin function is optimized, the results are different. Table VI

illustrates the results obtained using UkW assisted DE. These

results are fairly comparable with those reported in [26], since

in this case the method proposed here manages to discover an

equivalent numbers of minima using less function evaluations.

In [26] it is reported that the proposed method requires more

than 40000 function evaluations to discover 21 minima. Note

also that their method is unable to discover the global optimum

in all cases. The latter is also happening in this case for

DE2,DE4 and DE5, which is the reason that their results

are not reported in Table VI. The enhanced performance

exhibited by the remaining DE variants can be attributed to the

unsupervised UkW clustering algorithm used here, compared

to the supervised fuzzy k-means variant used in [26].

Finally, to compare our approach against [9], we try to

locate the minimum of the Weierstrass function, which is a

multimodal and non-separable minimization problem. Follow-

ing the experimental approach reported in [9], we use the

same parameter values. In this case there exist 16 minima,

when xi ∈ {−1.5,−0.5, 0.5, 1.5}. The algorithm proposed

in [9] is able to discover the 16 minima (requiring a change

of the parameters) and it achieves that using a population size

of 1000 individuals evolved over 100 generations, resulting

in 100000 function evaluations. Our approach employed a

population of just 100 individuals that was initially evolved

for 10 generations. Subsequently, as the proposed scheme

suggests, the unsupervised clustering algorithm was applied

and the population was dynamically divided in clusters. The

experimental results are reported in Table VII. Although the

proposed scheme may fail to locate every minimum, it needs

far less function evaluations and exhibit increased convergence

speed. So not only faster optimization procedure is facilitated,

but also additional information (the location of other minimis-

ers) is extracted.

Mean Minima Function Variance of Function

Detected Evaluations Evaluations

DE1 35.05 32939.5 32.55

DE3 37.44 32682.8 117.63

DE6 16.05 36412.1 131.51

TABLE VI
RESULTS FOR THE 6-DIMENSIONAL RASTRIGIN FUNCTION: AVERAGE

NUMBER OF COMPUTED MINIMA, AVERAGE NUMBER AND VARIANCE OF

FUNCTION EVALUATIONS NEEDED.

Mean Minima Function Variance of Function

Detected Evaluations Evaluations

DE1 6.4 4689.75 119.51

DE2 14.25 8615.41 250.91

DE3 13.4 7225.55 217.84

DE4 14.05 8594.65 239.84

DE5 14.05 9438.75 228.77

DE6 14 8690.11 237.94

TABLE VII
RESULTS FOR THE WEIERSTRASS FUNCTION: AVERAGE NUMBER OF

COMPUTED MINIMA, AVERAGE NUMBER AND VARIANCE OF FUNCTION

EVALUATIONS NEEDED.

The experimental results indicate the the proposed approach

aid to the location of the many optima of high–dimensional

objective functions. Furthermore, in general, fewer function

evaluations are required for the EA to converge Finally,

comparisons against other well known similar techniques have

shown the applicability of the combination of Unsupervised

Clustering and Evolutionary Algorithms.

VII. CONCLUDING REMARKS

Evolutionary Algorithms have the tendency to concentrate

large portions of their population in the vicinity of various

local or global optima. This can be exploited to further

improve the convergence properties of the EAs. In this work

we propose to utilize unsupervised clustering algorithms to

identify those concentration regions and subsequently confine

the evolutionary search inside them. Especially in the case

of multimodal objective functions, the determination of more

than one regions can lead to the computation of many global

and local minima simultaneously.

The UkW and the DBSCAN algorithms studied in this

paper are density based clustering methods, having few and

easily tuned control parameters. They have the potential to

discover clusters of arbitrary shapes (e.g. non-convex shaped

clusters) [16]. In brief, the proposed scheme has the following

properties:

1) is able to locate the many local optima and (possibly)

the global one,

2) there is no need for additional function evaluations,

3) fewer function evaluations are generally required for the

EA to converge,

4) is better suited to high–dimensional objective functions

having many optima.
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Thus, even in the case that there is a single global optimum,

the usage of the proposed approach is beneficial in terms of

function evaluations. Note that there is a computational cost

associated the clustering steps, that needs to be taken under

consideration. Compared against other similar approaches the

proposed methodology proved effective, although does not try

to explicitly enforce a clustering structure on the population.

Promising future research directions include the utilization

of niching techniques, like those described in [9]. This would

probably enhance the explorative capabilities of the EA al-

gorithm and thus further improve the multi-optima discovery

potential of our method.
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