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Abstract—To solve high-dimensional function optimization 
problems, many swarm intelligent algorithms have been 
proposed. Inspired by hunting behavior and distribution mode of 
uncultivated and barbarous wolf pack, we proposed a method, 
named uncultivated wolf pack algorithm (UWPA). Experiments 
are conducted on a suit of high-dimensional benchmark functions 
with different characteristics. What’s more, the compared 
simulation experiments with other three typical intelligent 
algorithms, show that UWPA has better convergence and 
robustness. At last, this algorithm is successfully applied in 
parameters searching for PID controller. 

Keywords—evolutionary computation; swarm intelligence; wolf 
pack algorithm (WPA) ;  function optimization  

I. INTRODUCTION  
Warm intelligence (SI) is an artificial intelligence technique 

based on the study of behavior of simple individuals[1]. There 
are many marvelous swarm intelligence phenomena in natural 
world, which can give us endless inspiration. Inspired by 
swarm phenomenon of animals, people have developed many 
optimization computation methods to solve complicated 
problems in recent decades[2-4]. In 1995, inspired by social 
behaviors and movement dynamics of birds, Kennedy 
proposed the particle swarm optimization algorithm (PSO) [5]. 
In 1996, inspired by social division and foraging behavior of 
ant colonies, Dorigo M proposed the Ant Colony Optimization 
algorithm (ACO) [6]; In 2002, inspired by foraging behavior of 
fish schools, Li Xiaolei proposed the Artificial Fish Swarm 
Algorithm(AFSA)[7]. In 2005, motivated by the specific 
intelligent behaviors of honey bee swarms, Karaboga proposed 
the artificial bee colony (ABC) algorithm [8].  Birds, fishes 
ants and bees do not have any human complex intelligence 
such as logical reasoning and synthetic judgment, but under the 
same aim, food, they stand out powerful swarm intelligence 
through constantly adapting environment and mutual 
cooperation, which give us many new ideas for complex 
problem solution.    

In order to solve complex optimization problems, 
researchers have learned from the marvelous collective 
behavior of wolves [9-11]. In this paper, we reanalyze the 
characteristics of wolves.  

Wolves are gregarious animals and have clear social work 
division. Generally, for the common wolf pack, there is a lead 
wolf, some scout wolves and ferocious wolves.  

Firstly, the lead wolf, as a leader under the law of the 
jungle, is always the smartest and most ferocious one. It is 
responsible for commanding the wolves and constantly make 
decision by evaluating surrounding situation and perceiving 
information from the wolf pack. So lead wolf has more hunting 
experience and possess the best gene. It is also the only male 
one who have the qualification to possess female wolves and 
have the reproductive rights, which ensure the best gene  get 
saved and passed to next generation. 

Secondly, the lead wolf send some elite wolves to hunt 
around and look for prey in the probable scope rather than let 
everyone out. They walk around and independently make 
decision according to the concentration of smell left by prey, 
the thicker the smell is becoming, the nearer from the prey. So 
they always move towards the direction of getting stronger 
smell.  

Thirdly, once a scout wolf find the trace of the prey, it will 
howl and summon the ferocious wolves to round up the prey. 
The ferocious wolves will move fast towards the direction of 
the scout wolf.  

Fourthly, there is a rule of prey distribution. After captured 
the prey, the prey is distributed equitably in an order from the 
strong to the weak. Although this distribution rule will make 
some weak wolf dead for lack of food, it make sure the wolves, 
who have the ability of capturing the prey, get more food so as 
to keep them strong and can capture more prey successfully in 
next time.  

But for the uncultivated and barbarous wolf pack, there is a 
difference. It doesn’t have a rule of prey distribution from the 
strong to the weak. After captured the prey, the prey is 
distributed randomly. Though this mode of distribution can not 
make the strong wolves much stronger, it also doesn’t make the 
weak wolves much weaker. So, it can maintain the population 
diversity of wolf pack at the most, which is very important for 
complex problems in a high-dimensional solution space.  

All above highlight great charm of swarm intelligence of 
uncultivated wolf pack. Inspired by these, uncultivated wolf 
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pack algorithm (UWPA) for high-dimensional functions 
optimization is proposed and successfully applied in parameter 
optimization for PID controller.   

The rest of the paper is structured as follows. In Section 2,   
the hunting behavior and distribution rules of uncultivated wolf 
pack are analyzed, and then UWPA algorithm is described. In 
Section 3, the compared simulation results between GA, PSO, 
ASFA and UWPA are presented and discussed, respectively. 
Section 4 presents the application of the proposed algorithm to 
parameter optimization for PID controller. Finally, in Section 5 
the conclusions are discussed. 

II. UNCULTIVATED WOLF PACK ALGORITHM 
In what follows, author made detailed description and 

realization for the behavior and rules of uncultivated wolf pack. 

A. Some definitions 
If the space of the artificial wolves is an N×D Euclidean 

space, N is the number of wolves, D is the number of variables. 
The position of wolf i is a vector Xi=(xi1, xi2, ……, xiD),  and xid 
is the dth variable value of the ith artificial wolf. Y=f(X) 
represents the concentration of prey’s smell perceived by 
artificial wolves, which is also the objective function value. 
The distance between wolf p and wolf q is definite as their 
Manhattan distance such as follows.  

1
( , )

D

pd qd
d

L p q x x
=

= −∑                              (1) 

Moreover, because the problems of maximum value and 
minimal value can convert with each other, only the maximum 
value problem is discussed in what follows. 

B.  The description of intelligent behaviors and rules 
The cooperation between the lead wolf, scout wolves and 

ferocious wolves makes nearly perfect predation, while prey 
distribution randomly maintain the population diversity of wolf 
pack. The whole predation behavior of uncultivated wolf pack 
are abstracted three artificial intelligent behaviors,  scouting, 
calling and besieging behavior, and two intelligent rules, 
winner-take-all generating rule for the lead wolf, the randomly-
survive renew rule for the wolf pack. 

(1)The winner-take-all generating rule for the lead wolf. 
The artificial wolf with best objective function value is lead 
wolf. During each iteration, compare the function value of the 
lead wolf with the best one of other wolves, if the value of lead 
wolf is not better, it will be replaced. Then the best wolf 
become lead wolf. Rather than acting the three intelligent 
behaviors, the lead wolf directly goes into the next iteration 
until it is replaced by other better wolf.   

(2)Scouting behavior. The best S_num artificial wolves 
except the lead wolf are considered as the scout wolves, they 
search the solution in predatory space. Yi is the concentration of 
prey smell perceived by the scout wolf i. Ylead is the 
concentration of prey smell perceived by the lead wolf.  

sin(2 / )p d
id id ax x p h stepπ= + × × , p = {1, 2 ,  … , h}   (2) 

It should be noted that h is different for each wolf because 
of their different seeking ways. In actual computation, h is 
randomly selected in [hmin, hmax] and it must be an integer. Yi0 is 
the concentration of prey smell perceived by the scout wolf i 
and Yip represents the one after it took a step towards the pth 

direction. If max {Yi1, Yi2,  …, Yih}> Yi0, the wolf i step forward 
and its state Xi is updated. Then repeat the above until Yi >Ylead 
or the maximum number of repetition Tmax is reached. 

(3)Calling behavior. The lead wolf will howl and summon 
M_num ferocious wolves to gather towards the prey. Here, the 
position of the lead wolf is considered as the one of the prey so 
that the ferocious wolves aggregate towards the position of the 
lead wolf. stepb is the step length, k

dg is the position of artificial 
lead wolf in the dth variable space at the kth iteration. The 
position of the ferocious wolf i in the kth iterative calculation is 
updated according to “(3)”. 

1 ( ) /k k d k k k k
id id b d id d idx x step g x g x+ = + ⋅ − −

          
 (3) 

This formula consists of two parts, the former is the current 
position of wolf i, which represents the foundation for prey 
hunting; the latter represents the aggregate tendency of other 
wolves towards the lead wolf, which shows the lead wolf’s 
leadership to the wolf pack. 

If Yi >Ylead, the ferocious wolf i become lead wolf and Ylead 
=Yi, then the wolf i take the calling behavior; If Yi<Ylead, the 
ferocious wolf i keep on aggregating towards the lead wolf 
with a fast speed until L(i, l)<Lnear, the wolf take besieging 
behavior. L(i, l) is the distance between the wolf i and the lead 
wolf l, Lnear is the distance determinant coefficient as a judging 
condition, which determine whether wolf i change state from 
aggregating towards the lead wolf to  besieging behavior.  

 Calling behavior shows information transferring and 
sharing mechanism in wolf pack and blends the ideas of social 
cognition. Other wolves are all in response to the best wolf, the 
lead wolf, which fully shows that the algorithm is intelligent 
and sociality. 

(4)Besieging behavior. After large-steps running towards 
the lead wolf, the wolves are close to the prey, then all wolves 
except the lead wolf will take besieging behavior for capturing 
prey. Now, the position of lead wolf is considered as the 
position of prey. In particular, k

dG represents the position of 
prey in the dth variable space at the kth iteration. The position of 
wolf i is updated according to “(4)”. 

1k k d k k
id id c d idx x step G xλ+ = + ⋅ ⋅ −               (4) 

λ  is a random number uniformly distributed at the interval 
[-1, 1], stepc is the step length of wolf i when it takes besieging 
behavior. Yi0 is the concentration of prey smell perceived by the 
wolf i and Yik represents the one after it took this behavior. If 
Yi0<Yik, the position Xi is updated, otherwise it not be updated. 

There are stepa, stepb, stepc in the three intelligent 
behaviors, and the three steps length in dth variable space have 
the relationship follows. 

/ 2 2d d d
a b cstep step step S= = ⋅ =                        (5) 
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S is step coefficient and represents the fineness degree of 
artificial wolf searching for prey in resolution space. 

(5)The randomly-survive renew rule for the wolf pack. In 
order to maintain the population diversity, the prey is 
distributed randomly, which will result in some weak wolves 
dead randomly. The algorithm will generate R wolves while 
randomly delete R wolves. Specifically, with the help of the 
lead wolf, in the dth variable space, the position of ith one of R 
wolves is defined as follows.  

id dx g rand= ⋅  , i = {1, 2, … , R}                 (6) 

gd is the position of artificial lead wolf in the dth variable 
space, rand is a random number uniformly distributed at the 
interval [-0.1, 0.1].  

The larger the value of R, the better for sustaining wolf’s 
diversity and making the algorithm have the ability of opening 
up new resolution space. But if R is too large, the algorithm 
will nearly be a random search approach. Because the number 
and scale of prey captured by wolves are different in natural 
word, which will lead to different number of weak wolf dead. 
R is an integer and randomly selected at the interval 
[ / (2 * ), / ]n nβ β . β is the population renewal proportional 
coefficient. 

C. Algorithm description 
As described in the previous section, WPA has three 

artificial intelligent behaviors and two intelligent rules. There 
are scouting behavior, calling behavior and besieging behavior, 
winner-take-all rule for generating lead wolf, the randomly-
survive renew rule for wolves.  

Firstly, the scouting behavior accelerating the possibility 
that WPA can fully traverse the solution space;  Secondly, the 
winner-take-all rule for generating lead wolf and the calling 
behavior make the wolves move towards the lead wolf whose 
position is the nearest to the prey and most likely capturing 
prey. The winner-take-all rule and calling behavior also make 
wolves arrive at the neighborhood of the global optimum only 
after a few iterations elapsed, since the step of wolves in 
calling behavior is the largest one. Thirdly, with a small step 
stepc, besieging behavior makes UWPA algorithm have the 
ability of opening up new solution space and carefully 
searching the global optima in good solution area. Fourthly, 
with the help of randomly-survive renew rule for the wolves, 
the algorithm can get several new wolves whose positions are 
near the best wolf, lead wolf, which allows more latitude of 
search space to anchor the global optimum while keep 
population diversity in each iteration. 

All the above make UWPA possess superior performance 
in accuracy and robustness, Which will be seen in section Ⅲ.  

Having discussed all the components of UWPA, the 
important computation steps are detailed below.  

Step1 Initialization. Initialize the follow parameters,  the 
initial position of artificial wolf  i (Xi), the number of the 
wolves (N),  the maximum number of iterations(kmax),  the step 
coefficient (S), the distance determinant coefficient (Lnear), the 

maximum number of repetition in scouting behavior(Tmax), the 
population renewal proportional coefficient( β );  

Step2 The wolf with best function value is considered as 
lead wolf. In practical computation, S_num=M_num=n-1, 
which means that wolves except for lead wolf act different 
behavior as different status. So, here except lead wolf, refer to 
“(2)”, the rest n-1 wolves firstly act as the artificial scout 
wolves to take scouting behavior until Yi>Ylead or the maximum 
number of repetition Tmax is reached, and then go to step3;  

Step3 Except the lead wolf, the rest n-1 wolves secondly 
act as the artificial ferocious wolves and gather towards the 
lead wolf according to (3), Yi is the concentration of prey smell 
perceived by wolf i, if Yi ≥Ylead, go to step2; otherwise the wolf 
i continue running until L(i, l)≤Lnear,  then go to step 4;  

Step4 The position of artificial wolves who take besieging 
behavior is updated according to “(4)”;  

Step5 Update the position of lead wolf under the winner-
take-all generate rule and update the randomly-survive renew 
rule for wolves according to “(6)”;  

Step6 If the program reaches the precision requirement or 
the maximum number of iterations, the position and function 
value of lead wolf, the problem optimal solution,  will be 
outputted, otherwise go to step2. 

III. RESULTS ON FUNCTIONS OPTIMIZATION 
The ingredients of the UWPA method have been described 

in Section Ⅱ. In this section, experiments are given to validate 
UWPA and compare UWPA with GA, PSO and ASFA. 

A.  Validation 
There are many benchmark functions for validating new 

algorithms. Here, we have chosen the well-known Rosenbrock 
function . 

2 2 2( , ) 100( ) (1 )f x y y x x= − + − , [ ], 2.048,2.048x y ∈ −     (7) 
and the Eggcrate function 

( )2 2 2 2( , ) 25 sin sing x y x y x y= + + + , [ ], 2 ,2x y π π∈ −     (8) 
Global minimum value for Rosenbrock function is 0 and 

optimum solution is (x, y) = (1, 1). But it is difficult to 
converge to the global optimum of this function. As shown in 
Fig.1, the global optimum is inside a long, narrow, parabolic-
shaped flat valley.  
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Fig.  1.   Rosenbrock function: (a) surface plot and (b) contour lines 

Global minimum value for Eggcrate function is also 0 and 
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and optimum solution is (x, y) = (1, 1). But it is also difficult 
to converge to the global optimum. As shown in Fig. 2, 
Eggcrate is a multimodal function so that there are many local 
extrema near the global optimum.  
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Fig.  2.  Rosenbrock function: (a) surface plot and (b) contour line s 

So these problem are suitable to test the performance of the 
algorithms. For Rosenbrock function, the distribution of 100 
artificial wolves during the consecutive 40 time steps are 
shown in Fig. 3 where we can see that the artificial wolves 
converge at the global optimum (1, 1). For Eggcrate function, a 
snapshot of the last iterations is shown in Fig. 4 again, all 
wolves move towards the global optimum (0, 0).  And finally 
at iteration 20 nearly all of wolves are on the best position, 
which is the global minimum of the problem. All these show 
the effectiveness of this algorithm.  
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Fig.  3.  Distribution of artificial wolves in solution space for Rosenbrock  
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Fig.  4.  Distribution of artificial wolves in solution space for Eggcrate 

B. UWPA vs PSO, ASFA and GA 
In this section, we compared PSO, AFSA, GA and UWPA 

algorithms on six high-dimensional functions.  

1) Bohachevsky3 Function (D=2) 
2 2
1 2 1 2( ) 2 0.3cos(3 4 ) 0.3f x x x x xπ π= + − + +             (9) 

2) Bridge Function (D=2) 

2 2
1 2 1 2

2 2
1 2

sin cos2 cos2( ) exp( ) 0.7129
2

x x x xf x
x x

π π+ += + −
+

     (10) 

3) Ackley Function (D=50) 

2

1 1

1 1( ) 20exp( 0.2 ) exp( cos2 ) 20
D D

i i
i i

f x x x e
D D

π
= =

= − − − + +∑ ∑    (11) 

Bohachevsky3, Bridge and Ackley are multimodal and 
non-separable functions, which is difficult to be solved, since 
there are many local extrema near the global extremum [12]. 
Their x are in interval of [-100,100], [-1.5,1.5] and [-32,32], 
and the global values are 0, 3.0054 and 0 respectively. 

4) Griewank Function (D=100) 

2

1 1

1( ) cos( ) 1
4000

DD
i

i
i i

xf x x
i= =

= − +∑ ∏
                 

   (12) 

Griewank function, a multimodal and non-separable 
function, x  is in the interval of [-600, 600]. The global 
minimum value for this function is 0 and the corresponding 
global optimum solution is (x1, x2, … , xm)= (0, 0, …, 0).  

5) Sumsquares Function (D=150) 

2

1
( )

D

i
i

f x ix
=

=∑
                                

   (13) 

6) Sphere Function (D=200) 

2

1
( )

D

i
i

f x x
=

=∑
                               

   (14) 

Sphere and Sumsquares are continuous, convex, unimodal 
and separable functions. They are all high-dimensional 
functions for their 200 and 150 parameters respectively. x  of 
Sphere and Sumsquares are respectively in the interval of [-
100, 100] and [-10, 10], and the global minimum values of 
them are all 0 and optimum solution is (x1, x2, …, xm)= (0,0, …, 
0). 

For each experiment in this section, 50 independent runs 
were conducted with different random seeds. To evaluate the 
algorithm’s efficiency and effectiveness, we adopted several 
criteria, such as the best solutions (Best), the worst value 
(Worst), and the mean value (Mean), standard deviations 
(StdDev) and successful rate of the results (SR). SR provides 
very useful information about how stable an algorithm is [13].  
To calculate the success rate, an error accuracy level 610ε −=  
must be set ( 610ε −=  also used in [14]). Thus, it is considered 
that a run of the algorithm reaches a solution F which meets 
(15). F* is the ideal solution value.  

 
* * *

* *

/ , 0

, 0

F F F F

F F F

ε

ε

⎧ − < ≠⎪
⎨

− < =⎪⎩
                      (15) 
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The SR is a percentage value that is calculated as: 

#
#

successful runsSR
runs

=                      (16) 

In order to fully compare the performance of different 
algorithms, we take the simulation under the same situation. So 
the values of the common parameters used in each algorithm 
such as population size and evaluation number were chosen to 
be the same. Population size was 100 and the maximum 
evaluation number was 2000 for all algorithms on all functions. 
Besides, other main parameters are setted as TABLE Ⅰ. 

TABLE I.  THE PARAMETERS OF FOUR ALGORITHMS 

Method Main parameters 

UWPA 
The step coefficient S=0.10, distance determinant 

coefficient Lnear=0. 08,  the maximum number of repetition in 
scouting Tmax=8,  population renewal coefficient 3β =  

PSO The inertia weight w=0. 7298, the learning factor c1=c2=1. 
4946 , individual speed limitation is [-0. 5, 0. 5] 

AFSA 
The maximum number of tentative times try_num=100, the 

cognitive distance v=1, the factor of congestion degree delta=0. 
618, the length of step s=0. 1 

GA 
The crossover probability pc=0. 7, the mutation probability 

pm=0. 01, taking the roulette selection operator and a strategy 
of self-adapting multi-point cross and random mutation 

We compared GA, PSO, AFSA and UWPA algorithms on 
four functions, the results of Best, Worst, Mean, StdDev, and 

SR are given in TABLE Ⅱ. The best results for each case are 
highlighted in boldface.  

In the experiments, there are 6 high-dimensional functions 
with variables ranging from 2 to 200.  It can be drawn that the 
efficiency of UWPA becomes much clearer as the number of 
variables increases. UWPA performs statistically better than 
the three other state-of-the-art algorithms on high-dimensional 
functions. Griewank function is a good example for promising 
UWPA, as it traps other algorithms into local optima or 
premature at a bad solution in such a great search space, while 
UWPA successfully avoids falling into the deep local optimum 
which is far from the global optimum, and get the global 
optimum 0 in 50 runs computation.  

As is also shown in TABLE Ⅱ, SR shows the robustness of 
every algorithms, and it means how consistently the algorithm 
achieves the threshold during all runs performed in the 
experiments. UWPA achieves 100% success rate for high- 
dimensional functions with different characteristics and 
variable numbers, which shows its good robustness.  

Nowadays, high-dimensional problems have been a focus 
in evolutionary computing domain, since many recent real-
world problems (bio-computing, data mining, design, etc.  ) 
involve optimization of a large number of variables [15]. It is 
convincing that UWPA has extensive application in science 
research and engineering practices. 

TABLE II.  STATISTICAL RESULTS OF 50 RUNS OBTAINED BY GA, PSO, AFSA AND UWPA ALGORITHMS 

Function Global extremum D Algorithms Best Worst Mean StdDev SR/% 

Bohachevsky3 min ( ) 0f x =  2 

GA 4.07e-9 2.34e-8 3.78e-9 1.09e-8 100% 
PSO 8.19e-12 3.19e-9 5.68e-10 6.70e-10 100% 

AFSA 3.66e-11 7.11e-8 9.32e-9 4.27e-9 100% 
UWPA 0 0 0 0 100% 

Bridge max ( ) 3.0054f x =  2 

GA 3.0054 2.9463 2.9981 0.0136 10% 
PSO 3.0054 2.9736 3.0029 0.0092 36% 

AFSA 3.0054 3.0041 3.0052 5.12e-5 52% 
UWPA 3.0054 3.0054 3.0054 6.24e-8 100% 

Ackley min ( ) 0f x =  50 

GA 11. 4570 12. 6095 12. 1612 0. 2719 0 
PSO 0. 0469 1. 7401 0. 6846 0. 6344 0 

AFSA 20. 1600 20. 6009 20. 4229 0. 1009 0 
UWPA 8. 88e-16 8. 88e-16 8. 88e-16 0 100 

Griewank min ( ) 0f x =  100 

GA 317. 4525 399. 6376 363. 4174 17. 2922 0 
PSO 0. 0029 0. 0082 0. 0052 0. 0011 0 

AFSA 2. 05e+3 2. 55e+3 2. 33e+3 109. 6821 0 
UWPA 0 0 0 0 100 

Sumsquares min ( ) 0f x =  150 

GA 5. 93e+4 7. 15+4 6. 63e+4 2. 88e+3 0 
PSO 39. 7098 91. 1145 55. 9050 10. 4165 0 

AFSA 1. 43e+5 1. 79e+5 1. 64e+5 9. 58e+3 0 
UWPA 2. 08e-170 3. 77e-168 5. 13e-169 0 100 

Sphere min ( ) 0f x =  200 

GA 1. 56e+5 1. 81e+5 1. 71e+5 5. 78e+3 0 
PSO 1. 0361 1. 5520 1. 2883 0. 1206 0 

AFSA 5. 12e+5 5. 79e+5 5. 51e+5 1. 63e+4 0 
UWPA 8. 69e-172 4. 75e-170 2. 11e-170 0 100 

IV. RESULTS ON FUNCTIONS OPTIMIZATION 
Proportional-Integral-Derivative (PID) controllers are still 

used extensively in many control fields because of their 
robust performance and simplicity. Three parameters of PID 
controller must be determined and tuned to obtain a 
satisfactory closed-loop performance.  

So, the key for the performance of PID controller is 
parameters selection [16]. The unstable system is selected as 
controlled object, its transfer function is shown in  (17).  

4 3 2

2( )
8 4 0.4

sG s
s s s s

+=
+ + − +

              (17) 
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The input signal is unit-step signal. The parameters of 
PID controller is optimized by uncultivated wolf pack 
algorithm, and its Simulink model is shown in Fig.5. 
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Fig.  5.   The Simulink model of PID controller 

The parameters of algorithms are the same as ones listed 
in TABLE Ⅰ. Kp is proportion coefficient, Ki is integral time 
constant, Kd is differential time constant and Kp, Ki, Kd is 
searched at the interval [0, 300]. Integral of time-weighted 
absolute value of the error (ITAE) is the evaluation function 
according to (18).  

           
0

( )J t e t dt
∞

= ∫                       (18) 
The reciprocal of J is considered as objective function.  

There is a comparison between UWPA, PSO and GA. After 
optimization, the optimized result of PID parameters is 
shown in TABLE Ⅲ . And t is regulating time, 

 

σ
 

is 
exceeding quantity.  

TABLE III.  THE OPTIMIZED RESULTS OF PID PARAMETERS  

Method Kp Ki Kd J t σ  

UWPA 139. 136 0. 157 165. 071 1. 122 3. 182 0. 96% 

PSO 33. 646 0. 166 38. 799 1. 058 3. 257 5. 91% 

GA 234. 035 0. 256 269. 389 1. 209 3. 579 5. 42% 

By analyzing the TABLE Ⅲ, naturally uncultivated wolf 
pack algorithm gets the best exceeding quantity. With the 
help of UWPA, PID controller can get suitable parameters of 
Kp, Ki, Kd, which make the objective system be controlled 
well. That validate UWPA again.  

V. CONCLUSION 
Inspired by the intelligent behavior of wolves, 

uncultivated wolf pack algorithm (UWPA) is presented for 
locating the global optima of high-dimensional functions. 
Compared UWPA with PSO, ASFA and GA on high-
dimensional functions such as Sphere (D=200), Sumsquares 
(D=150), Ackley (D=50) and Griewank (D=100), UWPA 
possesses superior performance in term of accuracy, 
convergence speed, stability and robustness.  What’s more, 
UWPA also achieves comparative performance on 
parameters optimization of PID controller.  

After all, UWPA is a new attempt, in future, different 
improvements should be made on the UWPA algorithm and 

tests can be made on more different test functions. 
Meanwhile, practical applications in areas of classification, 
parameters optimization, engineering process control, would 
also be worth further studying. 
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