

Abstract— In the last decade evolutionary multi-objective
optimizers have been employed in studies concerning
evolutionary robotics. In particular, the majority of such studies
involve the evolution of neuro-controllers using either a genetic
algorithm approach or an evolution strategies approach. Given
the fundamental difference between these types of search
mechanisms, a valid question is which kind of multi-objective
optimizer is better for such applications. This question, which is
dealt with here, is raised in view of the permutation problem
that exists in evolutionary neural-networks.

Two well-known Multi-objective Evolutionary Algorithms
are used in the current comparison, namely MO-CMA-ES and
NSGA-II. A multi-objective navigation problem is used for the
testing, which is known to suffer from a local Pareto problem.
For the employed simulation case MO-CMA-ES is better at
finding a large sub-set of the approximated Pareto-optimal
neuro-controllers, whereas NSGA-II is better at finding a
complementary sub-set of the optimal controllers. This suggests
that, if this phenomenon persists over a large range of case
studies, then future studies should consider some modifications
to such algorithms for the multi-objective evolution of
neuro-controllers.

I. INTRODUCTION
MPLOYING Multi-Objective Evolutionary Algorithms
(MOEAs) to support design under contradicting

objectives is becoming widespread [1]. As described in the
background section, below, this trend is also evident in the
field of Evolutionary Robotics (ER), which involves the use
of Evolutionary Computations (EC) to support robot design.

A large part of ER studies deals with the evolution of
Neuro-Controllers (NCs) [2, 3]. Such a problem involves
complicated search spaces, which may include not just the
connection weights but also the network morphology, and the
activation parameters that define the NCs. Given the
peculiarities of such search spaces, there is a need to
investigate the computational aspects of the use of MOEAs
for the evolution of NCs in ER applications. This need is
apparent when considering the state-of-the-art of the research
on Evolutionary Neural Networks (ENN) and on ER, as well
as the existing knowledge on MOEAs, as described in the
following background section. At present, existing MOEAs
are compared using test functions, which are not necessarily
indicative of the peculiar search difficulties that may
inherently exist in the evolution of NCs.

The current study focuses on a multi-objective navigation

1 The authors are with the School of Mechanical Engineering, The Iby and
Aladar Fleischman Faculty of Engineering, Tel-Aviv University, Israel,
email: moshaiov@eng.tau.ac.il

problem. The performance of two MOEAs is compared with
respect to their ability to find approximated Pareto-optimal
NCs for the problem. The MOEAs used here represent two
distinct types of EC. The first algorithm is NSGA-II, [4],
which uses a Genetic Algorithm (GA) approach, whereas the
second is MO-CMA-ES, [5], which employs a self-adaptive
Evolution Strategies (ES) approach.

The current study is restricted to Feed-Forward Networks
(FFNs) with fixed morphology. It follows the investigations
in [6, 7], which suggest that the explored navigation problem
suffers from multiple local Pareto fronts. This phenomenon
makes the search difficult. Given the lack of analytical
solution, and the stochastic nature of the search, the
comparison is based on the relative statistical performance as
obtained by the employed algorithms.

The rest of this paper is organized as follows. Section II
deals with the relevant background for the understanding of
the motivation and rational behind this study. Section III
describes the methodology including the details of the tested
case, and some information on the algorithms and search
parameters which are used here. Section IV provides the
results and finally section V outlines the conclusions from
this study.

II. BACKGROUND

A. Evolution Strategies vs. Genetic Algorithms
Both GA and ES are generic search methods, which are

bio-inspired by natural evolution [8]. The main features of
such algorithms are the use of a population of candidate
solutions as well as mutation, crossover and selection
operators, which are devised to drive the evolutionary process
towards improved solutions. In GA crossover is the major
reproduction mechanism when compared with mutation. ES
differs from GA by having mutation as the main reproduction
factor, and often the only one. Modern ES variants are based
on the capability to self-adapt the internal strategy
parameters. Most notable is CMA-ES, [9, 10], which
self-adapts the mutation co-variance matrix. Adapting the
mutation steps makes it possible to use only (or mainly)
mutation for both exploration and exploitation elements of
the search. In [11] Kita compares the self-adaptive
mechanisms of ES and Real-Coded GA (RCGA) for
optimization in continuous search spaces. It has been argued
there that crossover in RCGA generates offspring adaptively
according to the distribution of parents without any adaptive
parameters. According to [11], both adaptation of mutation in
ES and adaption by crossover in RCGA work well in function
optimization.

Is MO-CMA-ES Superior to NSGA-II for the Evolution of
Multi-objective Neuro-controllers?

Amiram Moshaiov and Omer Abramovich1

E

2809

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

Recent comparisons of ES variants with other evolutionary
algorithms on black-box optimization benchmarks have
shown that the former are better than RCGA (e.g., [12, 13]).
However, as argued in [14], while performing better in such
benchmarks studies, an algorithm cannot be declared better
for a real-world problem without further analysis. With this
respect, it should be noted, that test problems, which are
commonly used in benchmark studies, usually include no
situations with a difference between genotypes and
phenotypes. This is in contrast to neuro-evolution where the
codes substantially differ from the phenotypes, i.e. from the
neural-networks.

In spite of the potential superiority of ES variants, as
indicated by studies such as in [12, 13], the use of GAs is
much more common when compared with that of ES. Given
the above arguments, comparative studies on actual
applications, such as the one which is carried out here, are
needed.

B. Evolutionary Multi-Objective Optimization
Tradeoffs play a major role in engineering design. To

understand tradeoffs, optimization with a vector-valued
quality criterion can be used. This is apparent in the literature
on Multi-Objective Optimization (MOO) (e.g., [15, 16]).
Most past studies on MOO involved non-Pareto approaches,
but this has changed dramatically over a decade ago, with the
appearance of MOEAs. The goal of such modern algorithms
is to provide a good approximation to the set of
Pareto-optimal solutions, i.e., those solutions that cannot be
improved in one objective without getting worse in another.
In such algorithms, selection is based on comparing solutions
in objective space by the relation of dominance. A
Pareto-optimal set constitutes the non-dominated set of
solutions, and the Pareto front is the associated set of
performance vectors.

Nowadays, MOEAs are well accepted as a general
computational paradigm for MOO. MOEAs have been
proven successful in many application areas and have become
the method of choice for MOO. MOEAs have successfully
been applied to the design of complex systems and
in-particular for neural networks (e.g., [17]). The interested
reader is referred to a recent review, [1], which describes the
current issues concerning the development of MOEAs. In the
following some ES-based MOEAs are described to provide a
background on possible alternatives to the MO-CMA-ES
algorithm, which has been selected for the current study.

Pareto Archived Evolution Strategy (PAES), [18], is one of
the earliest well-known classical MOEAs. As an ES
algorithm, its main search operator is mutation. The original
PAES is a (1+1)-ES, meaning that during each iteration one
parent is used to create one mutant, and that their union is
used in the selection. Yet the concept is not restricted to such
population and mutant sizes. Given the general ES class of
evolutionary algorithms, the original PAES has set the stage
for a class of ES-based MOEAs, with potentially many
alternative algorithms.

The incorporation of the idea of self-adaptive co-variance
matrix into multi-objective optimization has been suggested
and studied in [5], where MO-CMA-ES has been presented.

The adaptive grid for archiving, which was used in PAES has
been recently merged with the CMA-ES approach, in [19].
Various ideas, which were originated in non-ES studies, have
been adapted into ES-based MOEAs. For example, in [20],
the ES-based SMS-EMOA has been suggested, which
incorporates selection by hyper-volume domination. Sarker et
al., [21], developed an ES-based MOEA where the number
of mutants varies from generation to generation based on the
number of solutions in the Pareto-archive. A mixture of ideas
from ε - MOEA, [22], and PAES, [18], have been attempted
recently by Zhao et al., [23], and by Moshaiov and Elias [24].
In the later study the proposed ε -PAES is shown to be
superior to ε -MOEA, which is a GA-based MOEA.

The current study deals with the question of what type of
MOEA should be used for multi-objective search and
optimization of NCs. As evident from reviews such as in [1],
there is a wide range of alternative "off-the-shelf" algorithms
to potentially be used. It is likely that such algorithms might
also be tailored to the evolution of NCs. At present, this study
is restricted to the comparison of existing MOEAs. In
addition, currently we are not interested in an extensive study
that compares a large number of MOEAs for the application.
Rather, we are interested in comparing a well-known
GA-based MOEA with a well-known ES-based MOEA, to
see the effect of the different search mechanisms. For this
purpose we use NSGA-II, [4], and MO-CMA-ES, [5].

C. Evolutionary Neural Networks
Studies on ENNs deal with the use of EC to evolve Neural

Networks (NNs). Reviews on such studies, e.g. [25-27],
reveal the special computational considerations, which are
required for the evolution of NNs. One well-known
peculiarity is the existence of multiple genotypes for the same
phenotype, which results in numerical difficulties during the
convergence phase of the search. This phenomenon has been
referred to as the permutation problem. According to [25],
one possible solution to the permutation problem is to use a
search method which is primarily based on mutation rather
than re-combination. Namely, ES–based algorithms should
be advantageous as compared with GA-based algorithms,
unless the later are modified to overcome the permutation
problem.
A large part of the existing ENN studies concerns
single-objective search, and as such does not provide an
answer to the research question which is raised here. In fact,
to the best of our knowledge, no previous ENN study has
dealt with research questions such as what kind of MOEA is
better for the multi-objective evolution of NCs. In view of the
permutation problem and the suggestion of [25], we aim to
investigate the performance differences between typical
ES-based and GA-based MOEAs, when employed to evolve
NCs.
 Nowadays, much of the focus of ENN studies is on
TWEAN, namely Topology and Weight Evolutionary Neural
Networks. Most notable algorithms are NEAT, [28] and
CMA-TWEAN, [29]. The current study, however,
concentrates on problems with fixed network structure.

To substantiate our selection of MO-CMA-ES, we note the
results of a recent comparative study, in [30], on various ENN

2810

algorithms using the pendulum benchmark problem in the
context of reinforcement learning. In [30] CMA-NeuroES is
proposed and evaluated on five different variants of the
common pole balancing problem. The comparison with other
ENN algorithms shows that the proposed CMA-ES based
algorithm has the overall best performance.

D. Evolutionary Robotics
Born in the 1990s, ER might be perceived as a

computational methodology to automatically develop robot
controllers as well as other aspects of robots including the
mechanics, sensors and actuators. A comprehensive
background on ER in the 90's can be found in [2], whereas
more current surveys, analyses, and trends can be found in [3,
31]. The evolutionary process in ER may be viewed as
reinforcement learning. In such a type of learning an agent
learns from interactions with the environment. A major part
of ER studies deals with finding useful controllers, and
in-particular NCs. ER studies with NCs generally employ
ENN methods.

In ER, a major role of the designers is the choosing of the
appropriate fitness function, which is crucial for a successful
evolutionary process [31]. While most ER studies deals with
problems which are defined either as a single objective one or
as an aggregated multi-objective one, this trend is changing.
A Pareto-approach using MOEAs is finding its way into the
ER research community. There are two main reasons for the
use of MOEAs in ER. First, as in most engineering design
applications, it can produce a set of optimal solutions with
respect to contradicting design objectives. For example, in
[32], the robotic navigation problem is defined as a MOO
problem and solved using a modification of NSGA-II to
obtain a Pareto-optimal set of NCs. Second, MOEAs can be
used to overcome numerical problems in single objective ER
problems. For example, [33] and [34] used MOEAs to
overcome the bootstrap problem, which is common to the
evolution of complex behaviors.

In a recent study on the multi-objective evolution of NCs
for robot navigation, [6, 7], a local Pareto problem has been
reported. In view of this problem, and the permutation
problem of ENN, existing MOEAs should be carefully
examined to check their search and convergence behaviors in
multi-objective evolution of NCs.

ES was used in early ER studies during the mid 90's [35].
According to [35], when compared with the use of GA, the ES
approach was shown to be superior by an order of magnitude.
In [36] an ES approach is used for on-line adaptation of robot
controllers. In such applications the quality of the optimizer is
critical. It is stated there that ES was chosen for its very good
reputation, but no comparisons with other optimizers are
given.

In most ER studies that use MOEAs, NSGA-II or some
variant of it are used. This situation appears to be a result of
the availability of NSGA-II code and its reputation as a good
optimizer for problems with a few objectives. In contrast,
ES-based MOEAs, while promising, are relatively less
known to the community of ER researchers. Given the

potential of ES-based MOEAs for ER applications, and in
particular for evolving NCs, it seems important to perform a
comparative study as done here.

III. METHODOLOGY
This comparative study is based on a simulation, which

consists of a simulated environment, a simulated robot, and
simulated Neuro-Controllers (NCs). These are described in
the following subsections A, B, and C, respectively. The
simulation involves a bi-objective navigation problem, which
is described in subsection D. Additional aspects of the
evaluation of the NCs are given in subsection E. Details on
the use of MO-CMA-ES and NSGA-II are given in
subsection F.

A. The Simulated Arena
The simulated arena follows the one used in [6, 7]. It

contains rooms and corridors as shown in figure 1. Also
shown in the figure are food-targets, marked by red crosses,
which are located in most areas of the arena excluding the
large room on the left side.

Fig. 1: Simulated Arena

The bi-objective problem, which is described in subsection

D, is defined such that the Pareto optimal set of NCs will
include both controllers that find the food-targets, as well as
controllers that move the robot into the large empty room.
Once a robot touches a target the target is removed from the
arena. After the removal of the last target, the initial target
setup appears once again and so on.

In our research we used one starting point located at x=95
and y=5. The initial direction of the robot is such that it faces
to the left.

B. The Simulated Robot
The model of the robot is based on the well-known

Khepera robot as described in [6, 7]. The robot has a 5.5 cm
diameter circular body with two wheels of 1 cm diameter
which are turned by two independent motors. Each motor
rotates the associated wheel in a rotational speed within the
range [-0.5, 0.5] rad/second. Each simulation step is 5
seconds long and the associated maximal movement distance
is 2.5 cm. The Khepera is a modular platform which can
generally occupy various sensors. Specifically in our
experiments we simulate 16 sensors: 8 Infra-Red (IR) sensors
which act as obstacle identifiers and 8 target identifying

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

X [cm]

Y

[c

m
]

2811

sensors. The sensor configuration is depicted in figure 2. At
each marked location there is one obstacle sensor and one
target sensor. Two locations are for rear sensors and six
locations cover the front and sides. Sensor characteristics are
the same for all sensors of the same type. The maximal
sensing range of the IR sensors is 5 cm with beam width span
of 6°. Maximum sensing range of the target sensors is 100 cm
with beam width span of 30°. The sensors output is a value
between the range [0, 1], where 0 is the value for objects at
the maximum sensed distance (and beyond) and 1 is for the
maximal proximity. All of the sensors are idle with no sensor
noise considered.

Fig. 2 Khepera robot model with sensors configuration

C. The Neuro-Controller
The control of the simulated robot is achieved by a

Feed-Forward Neural-network (FFN). The FFN acts as a
non-linear controller which maps input sensor data into motor
commands. Although one may use quite a minimal network
structure, as in [32], here a larger network is used following
[6, 7]. The reason for using a larger network than the minimal
one is that we want the evolutionary process to involve a
search space of a higher dimension with an apparent
permutation problem. With the current number of inputs and
outputs, a minimal network with no hidden layer will have
only 32 weights, whereas here we use a search space of a
much larger dimension as detailed in the following. The
selected FFN is based on the studies in [6, 7] where nine
classifications of the sensed information have been suggested.
The employed network is constructed as follows. The input
layer includes 16 components, one per each sensor. The
hidden layer includes 9 neurons, and the output layer contains
2 neurons, where each is associated with one of the two
wheels. Namely the dimension of the search space in the
current study is equal to 16X9 + 9X2 = 162. More details on
the used FFN can be found in [7].

D. Objective Functions
Two objective functions are used for evaluating the NC’s

performance (as in [6, 7]). They are marked by 1F and 2F .
The desire is to maximize both of them. 1F is based on [37]
and is defined as follows:

() () ()
1

1
1 1; 1 1 1

0 1
0 1
0 1

final step

i
i ii

f
F f V v I

max step
V

v
I

== = − Δ −

≤ ≤
≤ Δ ≤
≤ ≤

∑

Where:

• V is the absolute sum value of the 2 rotational
wheel speeds. V is high when the robot is moving
straight and fast.

• vΔ is the absolute difference value between the
two rotational wheel speeds. 1 v− Δ is high
when the robot is not making any turns.

• I is the normalized activation value of the sensor
with the highest value. 1 I− is high when the
robot does not sense any obstacle.

1F is calculated as an average of the accumulated

temporary step performances marked as 1f . The sum is
taken from the initial step to the final step of the robot. We
note that during the evolution some NCs do not manage to
complete the maximum allowable number of steps (marked
max step). The purpose of 1F is to achieve fast and straight
motions while avoiding obstacles. In this case there is no
specific destination.

2F is based on [32], and is defined as follows:

() ()
2

1
2 2; 2

1/ 1

final step

i
robot reaches target

else

f H
F f

dmax step
= ⎧

= = ⎨ +⎩

∑

Where:
• H is a score the robot gets for reaching a target.

Here it is set to 50.
• d is the distance from the robot to the closest of

the remaining targets
Similar to 1F , 2F is calculated as an average over the

accumulated temporary step performances marked as 2f .
The purpose of 2F is to achieve an NC that collects as many
targets as possible with no concern for obstacle avoidance.

It is shown in [32] that these objectives are contradicting.
More specifically, as shown in [6, 7] they are contradicting as
related to the current arena and target setup. Hence a
Pareto-optimal set of NCs is expected to be found.

E. Evaluation of an NC
Evaluation of an NC is done by a simulation run of the

robot roaming the simulated arena. In every run, the robot
starts at the same starting location as described in subsection
II-A. The maximum number of steps is set to 200 steps. At
each step the robot NC receives inputs from the sensors. The
output of the NC provides the commands to the wheels, and
the robot moves to a new location. Each simulation run with a
NC provides the bi-objective performance vector for the NC.

2812

In the evolutionary process any NC that moves the robot into
a wall results with a zero performance vector. This prevents
any non-physical behavior of passing through walls.
Furthermore, a NC that results with the robot going back and
forth more than 3 times, without any advancement, stops the
simulation and both performance values are set to zero. In
such a case, the setting of the performance vector to zero
effectively eliminates the NC from being selected as a parent
for the next generation.

F. Evolutionary Algorithms
This section describes the implementation of the two

well-known MOEAs studied here. The first is NSGA-II,
based on [4] and the second is MO-CMA-ES based on [5]. In
order to have a fair comparison, similar configurations of
both algorithms were taken (e.g., number of objective
evaluation, number of generation). The particular details of
the implementations are outlined in Table I and Table II
below. Parameters are denoted as in []4 and []5 . All values
that are marked by * are calculated as in [5] with n=162 being
the dimension of search space.

IV. RESULTS
In this section we present the result of our comparative

experiment. Due to the stochastic nature of both algorithms,

we use a large number of repetitive simulations. A total of 61
simulations have been made for both algorithms. Given the
lack of an analytical Pareto-optimal solution and the nature of
the studied problem, such multiple runs helps to better
approximate the solution.

A. Pareto Fronts Spread
The Pareto fronts, which were achieved by the multiple

runs of the MO-CMA-ES and NSGA-II algorithms, are
depicted in Fig. 3 and Fig. 4, respectively. Each front is
depicted with a single color for all the performance vectors of
that front. Each performance vector represents the
performance of a NC. The approximated Pareto front of each
algorithm was deduced by finding the non-dominated set of
the union of the fronts. For each algorithm, the approximated
(combined) front is depicted with a black continuous line
connecting the best performance vectors of the combined
front. It should be noted that the values of F2 appears to be
quantized, which is due to the way F2 is defined.

Fig. 3: MO-CMA-ES Pareto Fronts Spread

Fig. 4: NSGA-II Pareto Fronts Spread

In each of the figures (3 & 4), we see that the majority of

the fronts is concentrated in an area close to the combined
front. This supports our approach for analyzing the results by

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4
MO-CMA-ES, Pareto Fronts Spread, 61 Fronts @ Generation=300

F1

F
2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4
NSGA-2, Pareto Fronts Spread, 61 Fronts @ Generation=300

F1

F
2

TABLE II
MO-CMA-ES CONFIGURATION PARAMETERS

Symbol Description Specifications

- Number of Generation 300

MOλ Parent population size 11

λ Offspring number 4
target
succp Target success probability

(initialization) 0.1667 *

d
Step size damping
(initialization) 21.25 *

pc Success rate averaging parameter
(initialization) 0.25 *

cc Cumulating time horizon parameter
(initialization) 0.0122 *

covc Covariance matrix learning rate
(initialization) 7.61904e-5 *

threshp Success rate threshold 0.44 *

TABLE I
NSGA-II CONFIGURATION PARAMETERS

Symbol Description Specifications

- Number of Generation 300
N Parent population size 44
N Offspring population size 44

cp Crossover probability 0.2

mp Mutation probability 0.2

cη Crossover distribution index 20

mη Mutation distribution index 20
- Crossover operator SBX
- Mutation operator Polynomial mutation

2813

means of statistical inference. It should be noted that different
scales are used in the figures, and that in the case of NSGA-II
there are quite bad outliers. In contrast the worst front of
MO-CMA-ES is relatively close to the combined front.

Regarding the combined fronts, it is discernible that the
MO-CMA-ES achieved a much better score in objective 1F
than the one achieved by NSGA-II. On the other hand, it
achieved a lower score concerning objective 2F . The reader is
referred to figure 12 in subsection C for some insight about
the difference in the best F2 performance.

B. s-Measure Comparison
Fig. 5 and Fig. 6 depict the s-measure versus generation of

MO-CMA-ES and NSGA-II, respectively. The figures
display, every 10 generations, a boxplot description of the
statistics of the s-measure from the multiple runs. The red line
inside the boxes marks the median of all runs at each relevant
generation. The bottom and top edges of each block are the
25th and 75th percentiles, respectively. The whiskers in each
box denotes the most extreme data points still considered as
valid measurements and not outliers. Outliers are depicted as
red crosses. We note that the number of evaluations at each
generation of the ES and GA based evolutions is equal since
that the number of mutants in the ES case is equal to the
population size in the GA case.

Fig. 5: s-Measure versus Generations (MO-CMA-ES)

Fig. 6: s-Measure versus Generations (NSGA-II)

It is clear that from an overall viewpoint, as obtained by the

s-measure, MO-CMA-ES outperforms the NSGA-II both

during the evolution and at the final generation. For example,
at 300 generations, when the evolution is stopped the median
of the s-measure reaches, in the case of MO-CMA-ES, a
value of about 125% of the value obtained by NSGA-II. This
large difference is not equal to the difference between the
combined fronts, as it is based on the difference between the
medians and not on the difference between the combined
fronts (see figures 3& 4).

With respect to convergence, it can be seen that in each of
the cases, although different, the median value at about
generation #220 is quite close to that of generation #300.

C. Best F1 and F2 Performances
In the next four figures we present the statistical results for

the evolution of the best 1F and best 2F as obtained by both
algorithms. In all of these figures a clear elitism behavior is
depicted. Comparing figures 7 and 8, it can easily be observed
that with respect to the best F1, MO-CMA-ES is superior both
from the actual value that was reached and from the lower
variance viewpoints. In each of the cases, while different, the
median value at generation 100 is similar to the value at
generation 300.

Fig. 7: Best F1 (MO-CMA-ES)

Fig. 8: Best F1 (NSGA-II)

While being superior to NSGA-II for the F1 case, the

performance of MO-CMA-ES for the F2 case is not as good
as that of NSGA-II. This is easily observed when comparing

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Generations (X10)

MO-CMA-ES Algorithm, s-Measure as Function of Generations, 61 Statisitical Runs / Generation

s-
M

ea
su

re

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Generations (X10)

NSGA-II Algorithm, s-Measure as Function of Generations, 61 Statisitical Runs / Generation

s-
M

ea
su

re

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Generations (X10)

MO-CMA-ES Algorithm, Best F1 as Function of Generations, 61 Statisitical Runs / Generation

F
1

V
al

ue

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Generations (X10)

NSGA-II Algorithm, Best F1 as Function of Generations, 61 Statisitical Runs / Generation

F
1

V
al

ue

2814

figures 9 and 10. The median reached at generation 80, by
NSGA-II, is higher than the one reached at generation 300 by
MO-CMA-ES.

Fig. 9: Best F2 (MO-CMA-ES)

Fig. 10: Best F2 (NSGA-II)

Figures 11 and 12 provide illustrations of typical paths as
obtained by a typical best F1 controller and by a typical best
F2 controller, respectively. It should be noted that in figure 12
two best F2 controllers are shown, one typically found by
NSGA-II and one typically found by MO-CMA-ES. These
results are similar in nature to those obtained in [6] and in [7],
where the reader can find some detailed explanations
concerning the nature of these paths.

Fig. 11: Typical Path of Best F1

Fig. 12: Typical Path of Best F2 (left: NSGA-II, right: MO-CMA-ES)

V. DISCUSSION
Summarizing the observations from the above section, and

considering all aspects of the comparisons, it is concluded
that neither algorithm is superior over the other. Yet, careful
examination of the comparison of the best F2 and its vicinity
indicates that the advantage of NSGA-II is limited to a
restricted part of the front. In contrast the MO-CMA-ES is
superior over a large part of the front. It should be noted that
these conclusions are based on the case examined here.
Without an exhaustive study with other NCs applications the
generalization of the conclusions is questionable.

As already been suggested in [6] and [7], the
multi-objective optimization of the NCs, with the current
objective functions and the considered arena, is suspected to
involve a multiple local Pareto phenomenon. However, due to
the lack of analytical solution and the continuous nature of the
decision space, it is impossible to fully verify it. Using
sampling near the vicinity of the suspected local Pareto
optimal solutions, substantiation of the occurrence of local
Pareto fronts has been done (not reported here). This
observation suggests that we should examine our comparison
of MO-CMA-ES and NSGA-II in view of their comparison
using test functions such as ZDT4.

In [5], an s-measure comparison between MO-CMA-ES
and NSGA-II has been made for the ZDT4 test function,
which has multiple local Pareto fronts. It has been concluded
in [5] that NSGA-II is significantly better than MO-CMA-ES
for the ZDT4 case. Yet, in contrast to the ZDT4 comparison
results of [5], here MO-CMA-ES produces better scores, as
compared with NSGA-II.

Originally our hypothesis was that MO-CMA-ES would be
superior to NSGA-II due to the permutation problem, which
is exhibited in a GA-based optimization of a neural-network
(as reported in [25]). However, the results concerning the best
F2 contradict this hypothesis.

In the current study we do not try to provide a substantiated
explanation to the observed differences in the performances
of the algorithms. As hinted above, one possible explanation
to the fact that MO-CMA-ES is better, over a large part of the
front, is that NSGA-II may suffer from the permutation
problem. However, given the elitism operation of NSGA-II,
the permutation mechanism should not be able to destroy
elitist solutions. It is perceivable that the permutation effect,
as realized in NSGA-II, should help diversification even
during the convergence stage; hence increasing exploration
capabilities without destroying exploitation. This puts any
arguments concerning the harmful nature of the permutation
phenomenon in question.

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Generations (X10)

MO-CMA-ES Algorithm, Best F2 as Function of Generations, 61 Statisitical Runs / Generation

F
2

V
al

ue

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Generations (X10)

NSGA-II Algorithm, Best F2 as Function of Generations, 61 Statisitical Runs / Generation

F
2

V
al

ue

2815

VI. CONCLUSIONS
This study compares two well-known MOEAs, which

differs primarily by the creation process of offspring. ES
versus GA comparison is done for the domain of NCs as
applied for robot navigation. In contrast to our expectations
MO-CMA-ES is not fully superior when compared with
NSGA-II for the studied application. Yet, for a large portion
of the sought approximated Pareto optimal solutions it does
provide better search capabilities.

It is suggest here that the permutation phenomenon cannot
be easily used to explain the observed results. Given the lack
of a simple explanation, future studies should try to provide
an answer to why there is no clear superior algorithm to all
portions of the sought solutions. It is acknowledged that the
scope of the employed simulation case is limited and
therefore future work should include a wider range of
examples. If the observed phenomenon will be persistent in
other case studies, then it may lead to a conclusion that an
hybrid of search methods should be used to ensure an
effective search.

REFERENCES
[1] A. Zhou, B. Y. Qu, H. Li, S. Z. Zhao, P. N. Suganathan, and Q. Zhang,

"Multiobjective evolutionary algorithms: A survey of the state of the
art," Swarm and Evolutionary Computation, vol. 1, pp. 32-49, 2011.

[2] S. Nolfi and D. Floreano, Evolutionary Robotics: The Biology,
Intelligence and Technology of Self-Organizing Machines. Bradford
Book, 2000.

[3] S. Doncieux, J.-B. Mouret, N. Bredeche, and V. Padois, "Evolutionary
robotics: exploring new horizons," in New Horizons in Evolutionary
Robotics, pp. 3-25, Springer (Ed.), 2011.

[4] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, "A fast elitist
multi-objective genetic algorithm: NSGA-II," Evolutionary
Computation, IEEE Transactions, vol. 6, pp. 182-197, April 2002.

[5] C. Igel, N. Hansen, S. Roth, "Covariance matrix adaptation for
multi-objective optimization," Evolutionary Computation, vol 15, pp.
1-28, 2007.

[6] A. Moshaiov and M. Zadok, "Evolution of CPN controllers for
multi-objective robot navigation in various environments,"
Proceedings of the International Workshop on Evolutionary and
Reinforcement Learning for Autonomous Robot Systems, (ERLARS
2012), Montpellier, France, 2012.

[7] A. Moshaiov and M. Zadok, "Evolving counter-propagation
neuro-controllers for multi-objective robot navigation," Proceedings of
the 16th European Conference, EvoApplications 2013, Lecture Notes
in Computer Science, LNCS 7835, pp 589-598, 2013.

[8] T. Bäck, Evolutionary Algorithms in Theory and Practice:
Evolutionary Strategies, Evolutionary Programming, and Genetic
Algorithms. Oxford Press, 1996.

[9] N. Hansen, D. S. Muller and P. Koumoutsakos, "Reducing the time
complexity of the derandomized evolution strategy with covariance
matrix adaptation (CMA-ES)," Evolutionary Computation, vol. 11, pp.
1-18, 2003.

[10] A. Auger and N. Hansen, "A restart CMA evolution strategy with
increasing population size," The 2005 IEEE Congress on Evolutionary
Computation , Vol. 2 , 2-5 Sept. 2005, pp. 1769 – 1776.

[11] H. Kita, "A comparison study of self-adaptation in evolution strategies
and real-coded genetic algorithms", Evolutionary Computation
Volume 9 Issue 2, Pages 223 – 241, June 2001.

[12] A. Auger, S. Finck, N. Hansen, and R. Ros, "BBOB 2010: Comparison
tables of all algorithms on all noiseless functions, INRIA report N°
0388 ", July 2010.

[13] A. Auger, S. Finck, N. Hansen, R. Ros, "BBOB 2010: Comparison
tables of all algorithms on all noisy functions, INRIA report N° 0389",
July 2010.

[14] O. Mersmann, M. Preuss, H. Trautmann, "Benchmarking evolutionary
algorithms: Towards exploratory landscape analysis," Parallel Problem
Solving from Nature, PPSN XI , Part I, LNCS 6238, pp. 73–82, 2010.

[15] K. Deb, Multi Objective Optimization Using Evolutionary Algorithms.
Wiley, 2001.

[16] C. A. C. Coello and G. B. Lamont, Applications of Multi-objective
Evolutionary Algorithms. World Scientific 2004.

[17] Y. Jin (Ed.) Multi-objective Machine Learning. Springer, 2006.
[18] J. Knowles, D. Crone, "Approximating the nondominated front using

the Pareto archived evolution strategy," Evolutionary Computation, vol
8, pp. 149-172, 2000.

[19] S. Rostami and A. Shenfield, " CMA-PAES: Pareto archived evolution
strategy using covariance matrix adaptation for Multi-Objective
Optimisation, " The 12th UK Workshop on Computational Intelligence,
Edinburgh, pp. 1 – 8, 5-7 September 2012.

[20] N. Beume, B. Naujoks, and M. Emmerich, "SMS-EMOA:
Multiobjective selection based on dominated hypervolume," European
J. of Operational Research, vol 181, pp. 1653-1669, September 2007.

[21] R. Sarker, K-H. Liang, and C. Newton, "A new multiobjective
evolutionary algorithm," European J. of Operational Research, Vol.
140, 1, pp. 12–23, 2002.

[22] K. Deb, M. Mohan and S. Mishra, "Evaluating the ε-domination based
multi-objective evolutionary algorithm for a quick computation of
Pareto-optimal solutions," Evolutionary Computation, vol. 13, pp.
501-525, 2006.

[23] F. Zhao, Z. Zhang, and W. Ma, "The ε -pareto archived evolutionary
strategy (ε -PAES) for multi-objective problem," J. of Computational
Information Systems 8: 20 pp. 8447-8454, 2012.

[24] A. Moshaiov and M. Elias, "Variable-based ε – PAES with Adaptive
Fertility Rate," Proceedings of the 13th Annual UK Workshop on
Computational Intelligence (UKCI 2013), Guildford, UK, 2013.

[25] X. Yao, "A review of evolutionary artificial neural networks,"
International Journal of Intelligent Systems, vo. 8, pp. 539-567, 1998.

[26] D. Floreano, P. Duerr, and C. Mattiussi, "Neuroevolution: From
architectures to learning," Evolutionary Intelligence, vol. 1, pp. 47-62,
2008.

[27] A. Azzini and A. Tettamanzi, "Evolutionary ANNs: A State-of-the-art
survey," Intelligenza Artificiale, vol. 5, 2011.

[28] K. Stanley and R. Miikkulainen, "Evolving neural networks through
augmenting topologies," Evolutionary Computation, 10(2):99–127,
2002.

[29] H. Moriguchi and S. Honiden, " CMA-TWEANN: Efficient
Optimization of Neural Networks via Self-Adaptation and Seamless
Augmentation, " GECCO 2012.

[30] V. Heidrich-Meisner and C. Igel, "Neuroevolution strategies for
episodic reinforcement learning," J. Algorithms, Cognition, Informatics
and Logic, 64 pp. 152–168, 2009.

[31] A. L. Nelson, G. J. Barlow, and L. Doitsidis, "Fitness Functions in
Evolutionary Robotics: A Survey and Analysis," Robotics and
Autonomous Systems, vol. 57, pp. 345-370, 2009.

[32] A. Moshaiov and A. Ashram, "Multi-objective Evolution of Robot
Neuro-Controllers," Proceedings of the IEEE Congress on
Evolutionary Computation, 2009.

[33] J.-B. Mouret and S. Doncieux, "Overcoming the Bootstrap Problem in
Evolutionary Robotics Using Behavioral Diversity," Proceedings of the
IEEE Congress on Evolutionary Computation, 2009.

[34] S. Israel and A. Moshaiov, "Bootstrapping Aggregate Fitness Selection
with Evolutionary Multi-Objective Optimization," Parallel Problem
Solving from Nature - PPSN XII, Lecture Notes in Computer Science,
LNCS 7492, pp: 52-61, 2012.

[35] R. Salomon, " Increasing Adaptivity through Evolution Strategies,"
The 4th Int. Conf. on Simulation of Adaptive Behavior (SAB96).

[36] E. Haasdijk, A.E. Eiben, and G. Karafotias, "On-line evolution of robot
controllers by an encapsulated evolution strategy," CEC 2010.

[37] D. Floreano and F. Mondada, "Evolution of homing navigation in a real
mobile robot," Systems, Man and Cybernetics, Part B, vol.26, no.3,
pp.396-407, Jun 1996.

2816

