
 
 

 

 

  

Abstract— In the last decade evolutionary multi-objective 
optimizers have been employed in studies concerning 
evolutionary robotics. In particular, the majority of such studies 
involve the evolution of neuro-controllers using either a genetic 
algorithm approach or an evolution strategies approach. Given 
the fundamental difference between these types of search 
mechanisms, a valid question is which kind of multi-objective 
optimizer is better for such applications. This question, which is 
dealt with here, is raised in view of the permutation problem 
that exists in evolutionary neural-networks.  

Two well-known Multi-objective Evolutionary Algorithms 
are used in the current comparison, namely MO-CMA-ES and 
NSGA-II. A multi-objective navigation problem is used for the 
testing, which is known to suffer from a local Pareto problem. 
For the employed simulation case MO-CMA-ES is better at 
finding a large sub-set of the approximated Pareto-optimal 
neuro-controllers, whereas NSGA-II is better at finding a 
complementary sub-set of the optimal controllers. This suggests 
that, if this phenomenon persists over a large range of case 
studies, then future studies should consider some modifications 
to such algorithms for the multi-objective evolution of 
neuro-controllers.     

I. INTRODUCTION 
MPLOYING Multi-Objective Evolutionary Algorithms 
(MOEAs) to support design under contradicting 

objectives is becoming widespread [1]. As described in the 
background section, below, this trend is also evident in the 
field of Evolutionary Robotics (ER), which involves the use 
of Evolutionary Computations (EC) to support robot design.  

A large part of ER studies deals with the evolution of 
Neuro-Controllers (NCs) [2, 3]. Such a problem involves 
complicated search spaces, which may include not just the 
connection weights but also the network morphology, and the 
activation parameters that define the NCs. Given the 
peculiarities of such search spaces, there is a need to 
investigate the computational aspects of the use of MOEAs 
for the evolution of NCs in ER applications. This need is 
apparent when considering the state-of-the-art of the research 
on Evolutionary Neural Networks (ENN) and on ER, as well 
as the existing knowledge on MOEAs, as described in the 
following background section. At present, existing MOEAs 
are compared using test functions, which are not necessarily 
indicative of the peculiar search difficulties that may 
inherently exist in the evolution of NCs. 

The current study focuses on a multi-objective navigation 
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problem. The performance of two MOEAs is compared with 
respect to their ability to find approximated Pareto-optimal 
NCs for the problem. The MOEAs used here represent two 
distinct types of EC. The first algorithm is NSGA-II, [4], 
which uses a Genetic Algorithm (GA) approach, whereas the 
second is MO-CMA-ES, [5], which employs a self-adaptive 
Evolution Strategies (ES) approach.  

The current study is restricted to Feed-Forward Networks 
(FFNs) with fixed morphology. It follows the investigations 
in [6, 7], which suggest that the explored navigation problem 
suffers from multiple local Pareto fronts. This phenomenon 
makes the search difficult. Given the lack of analytical 
solution, and the stochastic nature of the search, the 
comparison is based on the relative statistical performance as 
obtained by the employed algorithms.  

The rest of this paper is organized as follows. Section II 
deals with the relevant background for the understanding of 
the motivation and rational behind this study. Section III 
describes the methodology including the details of the tested 
case, and some information on the algorithms and search 
parameters which are used here. Section IV provides the 
results and finally section V outlines the conclusions from 
this study. 

II. BACKGROUND 

A. Evolution Strategies vs. Genetic Algorithms  
Both GA and ES are generic search methods, which are 

bio-inspired by natural evolution [8]. The main features of 
such algorithms are the use of a population of candidate 
solutions as well as mutation, crossover and selection 
operators, which are devised to drive the evolutionary process 
towards improved solutions. In GA crossover is the major 
reproduction mechanism when compared with mutation. ES 
differs from GA by having mutation as the main reproduction 
factor, and often the only one. Modern ES variants are based 
on the capability to self-adapt the internal strategy 
parameters. Most notable is CMA-ES, [9, 10], which 
self-adapts the mutation co-variance matrix. Adapting the 
mutation steps makes it possible to use only (or mainly) 
mutation for both exploration and exploitation elements of 
the search. In [11] Kita compares the self-adaptive 
mechanisms of ES and Real-Coded GA (RCGA) for 
optimization in continuous search spaces. It has been argued 
there that crossover in RCGA generates offspring adaptively 
according to the distribution of parents without any adaptive 
parameters. According to [11], both adaptation of mutation in 
ES and adaption by crossover in RCGA work well in function 
optimization.  
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Recent comparisons of ES variants with other evolutionary 
algorithms on black-box optimization benchmarks have 
shown that the former are better than RCGA (e.g., [12, 13]). 
However, as argued in [14], while performing better in such 
benchmarks studies, an algorithm cannot be declared better 
for a real-world problem without further analysis. With this 
respect, it should be noted, that test problems, which are 
commonly used in benchmark studies, usually include no 
situations with a difference between genotypes and 
phenotypes. This is in contrast to neuro-evolution where the 
codes substantially differ from the phenotypes, i.e. from the 
neural-networks.  

In spite of the potential superiority of ES variants, as 
indicated by studies such as in [12, 13], the use of GAs is 
much more common when compared with that of ES. Given 
the above arguments, comparative studies on actual 
applications, such as the one which is carried out here, are 
needed. 

B. Evolutionary Multi-Objective Optimization 
Tradeoffs play a major role in engineering design. To 

understand tradeoffs, optimization with a vector-valued 
quality criterion can be used. This is apparent in the literature 
on Multi-Objective Optimization (MOO) (e.g., [15, 16]). 
Most past studies on MOO involved non-Pareto approaches, 
but this has changed dramatically over a decade ago, with the 
appearance of MOEAs. The goal of such modern algorithms 
is to provide a good approximation to the set of 
Pareto-optimal solutions, i.e., those solutions that cannot be 
improved in one objective without getting worse in another. 
In such algorithms, selection is based on comparing solutions 
in objective space by the relation of dominance. A 
Pareto-optimal set constitutes the non-dominated set of 
solutions, and the Pareto front is the associated set of 
performance vectors.  

Nowadays, MOEAs are well accepted as a general 
computational paradigm for MOO. MOEAs have been 
proven successful in many application areas and have become 
the method of choice for MOO. MOEAs have successfully 
been applied to the design of complex systems and 
in-particular for neural networks (e.g., [17]). The interested 
reader is referred to a recent review, [1], which describes the 
current issues concerning the development of MOEAs. In the 
following some ES-based MOEAs are described to provide a 
background on possible alternatives to the MO-CMA-ES 
algorithm, which has been selected for the current study.   

Pareto Archived Evolution Strategy (PAES), [18], is one of 
the earliest well-known classical MOEAs. As an ES 
algorithm, its main search operator is mutation. The original 
PAES is a (1+1)-ES, meaning that during each iteration one 
parent is used to create one mutant, and that their union is 
used in the selection. Yet the concept is not restricted to such 
population and mutant sizes. Given the general ES class of 
evolutionary algorithms, the original PAES has set the stage 
for a class of ES-based MOEAs, with potentially many 
alternative algorithms.   

The incorporation of the idea of self-adaptive co-variance 
matrix into multi-objective optimization has been suggested 
and studied in [5], where MO-CMA-ES has been presented. 

The adaptive grid for archiving, which was used in PAES has 
been recently merged with the CMA-ES approach, in [19]. 
Various ideas, which were originated in non-ES studies, have 
been adapted into ES-based MOEAs. For example, in [20], 
the ES-based SMS-EMOA has been suggested, which 
incorporates selection by hyper-volume domination. Sarker et 
al., [21], developed an ES-based   MOEA where the number 
of mutants   varies from generation to generation based on the 
number of solutions in the Pareto-archive.  A mixture of ideas 
from ε - MOEA, [22], and PAES, [18], have been attempted 
recently by Zhao et al., [23], and by Moshaiov and Elias [24]. 
In the later study the proposed ε -PAES is shown to be 
superior to ε -MOEA, which is a GA-based MOEA. 

The current study deals with the question of what type of 
MOEA should be used for multi-objective search and 
optimization of NCs. As evident from reviews such as in [1], 
there is a wide range of alternative "off-the-shelf" algorithms 
to potentially be used. It is likely that such algorithms might 
also be tailored to the evolution of NCs. At present, this study 
is restricted to the comparison of existing MOEAs. In 
addition, currently we are not interested in an extensive study 
that compares a large number of MOEAs for the application. 
Rather, we are interested in comparing a well-known 
GA-based MOEA with a well-known ES-based MOEA, to 
see the effect of the different search mechanisms. For this 
purpose we use NSGA-II, [4], and MO-CMA-ES, [5].  

C. Evolutionary Neural Networks 
Studies on ENNs deal with the use of EC to evolve Neural 

Networks (NNs). Reviews on such studies, e.g. [25-27], 
reveal the special computational considerations, which are 
required for the evolution of NNs. One well-known 
peculiarity is the existence of multiple genotypes for the same 
phenotype, which results in numerical difficulties during the 
convergence phase of the search. This phenomenon has been 
referred to as the permutation problem. According to [25], 
one possible solution to the permutation problem is to use a 
search method which is primarily based on mutation rather 
than re-combination. Namely, ES–based algorithms should 
be advantageous as compared with GA-based algorithms, 
unless the later are modified to overcome the permutation 
problem. 
A large part of the existing ENN studies concerns 
single-objective search, and as such does not provide an 
answer to the research question which is raised here. In fact, 
to the best of our knowledge, no previous ENN study has 
dealt with research questions such as what kind of MOEA is 
better for the multi-objective evolution of NCs. In view of the 
permutation problem and the suggestion of [25], we aim to 
investigate the performance differences between typical 
ES-based and GA-based MOEAs, when employed to evolve 
NCs.  
 Nowadays, much of the focus of ENN studies is on 
TWEAN, namely Topology and Weight Evolutionary Neural 
Networks. Most notable algorithms are NEAT, [28] and 
CMA-TWEAN, [29]. The current study, however, 
concentrates on problems with fixed network structure.  

To substantiate our selection of MO-CMA-ES, we note the 
results of a recent comparative study, in [30], on various ENN 
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algorithms using the pendulum benchmark problem in the 
context of reinforcement learning. In [30] CMA-NeuroES is 
proposed and evaluated on five different variants of the 
common pole balancing problem. The comparison with other 
ENN algorithms shows that the proposed CMA-ES based 
algorithm has the overall best performance.   

D. Evolutionary Robotics 
Born in the 1990s, ER might be perceived as a 

computational methodology to automatically develop robot 
controllers as well as other aspects of robots including the 
mechanics, sensors and actuators. A comprehensive 
background on ER in the 90's can be found in [2], whereas 
more current surveys, analyses, and trends can be found in [3, 
31]. The evolutionary process in ER may be viewed as 
reinforcement learning. In such a type of learning an agent 
learns from interactions with the environment. A major part 
of ER studies deals with finding useful controllers, and 
in-particular NCs. ER studies with NCs generally employ 
ENN methods.  

In ER, a major role of the designers is the choosing of the 
appropriate fitness function, which is crucial for a successful 
evolutionary process [31]. While most ER studies deals with 
problems which are defined either as a single objective one or 
as an aggregated multi-objective one, this trend is changing. 
A Pareto-approach using MOEAs is finding its way into the 
ER research community. There are two main reasons for the 
use of MOEAs in ER. First, as in most engineering design 
applications, it can produce a set of optimal solutions with 
respect to contradicting design objectives. For example, in 
[32], the robotic navigation problem is defined as a MOO 
problem and solved using a modification of NSGA-II to 
obtain a Pareto-optimal set of NCs. Second, MOEAs can be 
used to overcome numerical problems in single objective ER 
problems.  For example, [33] and [34] used MOEAs to 
overcome the bootstrap problem, which is common to the 
evolution of complex behaviors. 

In a recent study on the multi-objective evolution of NCs 
for robot navigation, [6, 7], a local Pareto problem has been 
reported. In view of this problem, and the permutation 
problem of ENN, existing MOEAs should be carefully 
examined to check their search and convergence behaviors in 
multi-objective evolution of NCs.  

ES was used in early ER studies during the mid 90's [35]. 
According to [35], when compared with the use of GA, the ES 
approach was shown to be superior by an order of magnitude. 
In [36] an ES approach is used for on-line adaptation of robot 
controllers. In such applications the quality of the optimizer is 
critical. It is stated there that ES was chosen for its very good 
reputation, but no comparisons with other optimizers are 
given. 

In most ER studies that use MOEAs, NSGA-II or some 
variant of it are used. This situation appears to be a result of 
the availability of NSGA-II code and its reputation as a good 
optimizer for problems with a few objectives. In contrast, 
ES-based MOEAs, while promising, are relatively less 
known to the community of ER researchers. Given the 

potential of ES-based MOEAs for ER applications, and in 
particular for evolving NCs, it seems important to perform a 
comparative study as done here.     

III. METHODOLOGY 
This comparative study is based on a simulation, which 

consists of a simulated environment, a simulated robot, and 
simulated Neuro-Controllers (NCs).  These are described in 
the following subsections A, B, and C, respectively. The 
simulation involves a bi-objective navigation problem, which 
is described in subsection D. Additional aspects of the 
evaluation of the NCs are given in subsection E. Details on 
the use of MO-CMA-ES and NSGA-II are given in 
subsection F.  

A. The Simulated Arena  
The simulated arena follows the one used in [6, 7]. It 

contains rooms and corridors as shown in figure 1. Also 
shown in the figure are food-targets, marked by red crosses, 
which are located in most areas of the arena excluding the 
large room on the left side. 

    

 
Fig. 1: Simulated Arena 

 
The bi-objective problem, which is described in subsection 

D, is defined such that the Pareto optimal set of NCs will 
include both controllers that find the food-targets, as well as 
controllers that move the robot into the large empty room. 
Once a robot touches a target the target is removed from the 
arena. After the removal of the last target, the initial target 
setup appears once again and so on. 

In our research we used one starting point located at x=95 
and y=5. The initial direction of the robot is such that it faces 
to the left.  

B. The Simulated Robot 
The model of the robot is based on the well-known 

Khepera robot as described in [6, 7].  The robot has a 5.5 cm 
diameter circular body with two wheels of 1 cm diameter 
which are turned by two independent motors. Each motor 
rotates the associated wheel in a rotational speed within the 
range [-0.5, 0.5] rad/second. Each simulation step is 5 
seconds long and the associated maximal movement distance 
is 2.5 cm. The Khepera is a modular platform which can 
generally occupy various sensors. Specifically in our 
experiments we simulate 16 sensors: 8 Infra-Red (IR) sensors 
which act as obstacle identifiers and 8 target identifying 
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sensors. The sensor configuration is depicted in figure 2. At 
each marked location there is one obstacle sensor and one 
target sensor. Two locations are for rear sensors and six 
locations cover the front and sides. Sensor characteristics are 
the same for all sensors of the same type. The maximal 
sensing range of the IR sensors is 5 cm with beam width span 
of 6°. Maximum sensing range of the target sensors is 100 cm 
with beam width span of 30°. The sensors output is a value 
between the range [0, 1], where 0 is the value for objects at 
the maximum sensed distance (and beyond) and 1 is for the 
maximal proximity. All of the sensors are idle with no sensor 
noise considered. 

 

 
Fig. 2 Khepera robot model with sensors configuration 

 

C. The Neuro-Controller  
The control of the simulated robot is achieved by a 

Feed-Forward Neural-network (FFN). The FFN acts as a 
non-linear controller which maps input sensor data into motor 
commands. Although one may use quite a minimal network 
structure, as in [32], here a larger network is used following 
[6, 7]. The reason for using a larger network than the minimal 
one is that we want the evolutionary process to involve a 
search space of a higher dimension with an apparent 
permutation problem. With the current number of inputs and 
outputs, a minimal network with no hidden layer will have 
only 32 weights, whereas here we use a search space of a 
much larger dimension as detailed in the following.  The 
selected FFN is based on the studies in [6, 7] where nine 
classifications of the sensed information have been suggested. 
The employed network is constructed as follows. The input 
layer includes 16 components, one per each sensor. The 
hidden layer includes 9 neurons, and the output layer contains 
2 neurons, where each is associated with one of the two 
wheels. Namely the dimension of the search space in the 
current study is equal to 16X9 + 9X2 = 162. More details on 
the used FFN can be found in [7].  

D. Objective Functions 
Two objective functions are used for evaluating the NC’s 

performance (as in [6, 7]). They are marked by 1F  and 2F . 
The desire is to maximize both of them. 1F  is based on [37] 
and is defined as follows: 
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Where: 

• V  is the absolute sum value of the 2 rotational 
wheel speeds. V is high when the robot is moving 
straight and fast. 

• vΔ  is the absolute difference value between the 
two rotational wheel speeds. 1 v− Δ  is high 
when the robot is not making any turns. 

• I  is the normalized activation value of the sensor 
with the highest value. 1 I−  is high when the 
robot does not sense any obstacle. 

 
1F  is calculated as an average of the accumulated 

temporary step performances marked as 1f  . The sum is 
taken from the initial step to the final step of the robot. We 
note that during the evolution some NCs do not manage to 
complete the maximum allowable number of steps (marked 
max step). The purpose of 1F  is to achieve fast and straight 
motions while avoiding obstacles. In this case there is no 
specific destination. 

 
2F is based on [32], and is defined as follows: 

( ) ( )
2

1
2 2; 2

1/ 1

final step

i
robot reaches target

else

f H
F f

dmax step
= ⎧

= = ⎨ +⎩

∑
  

Where: 
• H  is a score the robot gets for reaching a target. 

Here it is set to 50. 
• d  is the distance from the robot to the closest of 

the remaining targets 
Similar to 1F , 2F  is calculated as an average over the 

accumulated temporary step performances marked as 2f . 
The purpose of 2F  is to achieve an NC that collects as many 
targets as possible with no concern for obstacle avoidance. 

It is shown in [32] that these objectives are contradicting. 
More specifically, as shown in [6, 7] they are contradicting as 
related to the current arena and target setup. Hence a 
Pareto-optimal set of NCs is expected to be found. 

E. Evaluation of an NC 
Evaluation of an NC is done by a simulation run of the 

robot roaming the simulated arena. In every run, the robot 
starts at the same starting location as described in subsection 
II-A. The maximum number of steps is set to 200 steps. At 
each step the robot NC receives inputs from the sensors. The 
output of the NC provides the commands to the wheels, and 
the robot moves to a new location. Each simulation run with a 
NC provides the bi-objective performance vector for the NC. 
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In the evolutionary process any NC that moves the robot into 
a wall results with a zero performance vector.  This prevents 
any non-physical behavior of passing through walls. 
Furthermore, a NC that results with the robot going back and 
forth more than 3 times, without any advancement, stops the 
simulation and both performance values are set to zero. In 
such a case, the setting of the performance vector to zero 
effectively eliminates the NC from being selected as a parent 
for the next generation. 

F. Evolutionary Algorithms 
This section describes the implementation of the two 

well-known MOEAs studied here. The first is NSGA-II, 
based on [4] and the second is MO-CMA-ES based on [5]. In 
order to have a fair comparison, similar configurations of 
both algorithms were taken (e.g., number of objective 
evaluation, number of generation). The particular details of 
the implementations are outlined in Table I and Table II 
below. Parameters are denoted as in [ ]4  and [ ]5 . All values 
that are marked by * are calculated as in [5] with n=162 being 
the dimension of search space. 

 
 

 

IV. RESULTS 
In this section we present the result of our comparative 

experiment. Due to the stochastic nature of both algorithms, 

we use a large number of repetitive simulations. A total of 61 
simulations have been made for both algorithms. Given the 
lack of an analytical Pareto-optimal solution and the nature of 
the studied problem, such multiple runs helps to better 
approximate the solution.   

A. Pareto Fronts Spread 
The Pareto fronts, which were achieved by the multiple 

runs of the MO-CMA-ES and NSGA-II algorithms, are 
depicted in Fig. 3 and Fig. 4, respectively. Each front is 
depicted with a single color for all the performance vectors of 
that front. Each performance vector represents the 
performance of a NC. The approximated Pareto front of each 
algorithm was deduced by finding the non-dominated set of 
the union of the fronts. For each algorithm, the approximated 
(combined) front is depicted with a black continuous line 
connecting the best performance vectors of the combined 
front. It should be noted that the values of F2 appears to be 
quantized, which is due to the way F2 is defined.  

   

 
Fig. 3: MO-CMA-ES Pareto Fronts Spread 

 

 
Fig. 4: NSGA-II Pareto Fronts Spread 

 
In each of the figures (3 & 4), we see that the majority of 

the fronts is concentrated in an area close to the combined 
front. This supports our approach for analyzing the results by 
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TABLE II 
MO-CMA-ES CONFIGURATION PARAMETERS 

Symbol Description Specifications 

- Number of Generation 300 

MOλ  Parent population size 11 

λ   Offspring number 4 
target
succp   Target success probability 

(initialization) 0.1667 * 

d   
Step size damping  
(initialization) 21.25 * 

pc   Success rate averaging parameter 
(initialization) 0.25 * 

cc   Cumulating time horizon parameter 
(initialization) 0.0122 * 

covc   Covariance matrix learning rate 
(initialization) 7.61904e-5 * 

threshp   Success rate threshold 0.44 * 

 

TABLE I 
NSGA-II CONFIGURATION PARAMETERS 

Symbol Description Specifications 

- Number of Generation 300 
N  Parent population size 44 
N   Offspring population size 44 

cp   Crossover probability 0.2 

mp   Mutation probability 0.2 

cη   Crossover distribution index 20 

mη   Mutation distribution index 20 
- Crossover operator SBX 
- Mutation operator Polynomial mutation 
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means of statistical inference. It should be noted that different 
scales are used in the figures, and that in the case of NSGA-II 
there are quite bad outliers. In contrast the worst front of 
MO-CMA-ES is relatively close to the combined front.  

Regarding the combined fronts, it is discernible that the 
MO-CMA-ES achieved a much better score in objective 1F  
than the one achieved by NSGA-II. On the other hand, it 
achieved a lower score concerning objective 2F . The reader is 
referred to figure 12 in subsection C for some insight about 
the difference in the best F2 performance. 

B. s-Measure Comparison 
Fig. 5 and Fig. 6 depict the s-measure versus generation of 

MO-CMA-ES and NSGA-II, respectively. The figures 
display, every 10 generations, a boxplot description of the 
statistics of the s-measure from the multiple runs. The red line 
inside the boxes marks the median of all runs at each relevant 
generation. The bottom and top edges of each block are the 
25th and 75th percentiles, respectively. The whiskers in each 
box denotes the most extreme data points still considered as 
valid measurements and not outliers. Outliers are depicted as 
red crosses. We note that the number of evaluations at each 
generation of the ES and GA based evolutions is equal since 
that the number of mutants in the ES case is equal to the 
population size in the GA case.  

 
Fig. 5: s-Measure versus Generations (MO-CMA-ES) 

 

 
Fig. 6: s-Measure versus Generations (NSGA-II) 

 
It is clear that from an overall viewpoint, as obtained by the 

s-measure, MO-CMA-ES outperforms the NSGA-II both 

during the evolution and at the final generation. For example, 
at 300 generations, when the evolution is stopped the median 
of the s-measure reaches, in the case of MO-CMA-ES, a 
value of about 125% of the value obtained by NSGA-II. This 
large difference is not equal to the difference between the 
combined fronts, as it is based on the difference between the 
medians and not on the difference between the combined 
fronts (see figures 3& 4).   

With respect to convergence, it can be seen that in each of 
the cases, although different, the median value at about 
generation #220 is quite close to that of generation #300. 

C. Best F1 and F2 Performances 
In the next four figures we present the statistical results for 

the evolution of the best 1F  and best 2F  as obtained by both 
algorithms. In all of these figures a clear elitism behavior is 
depicted. Comparing figures 7 and 8, it can easily be observed 
that with respect to the best F1, MO-CMA-ES is superior both 
from the actual value that was reached and from the lower 
variance viewpoints. In each of the cases, while different, the 
median value at generation 100 is similar to the value at 
generation 300.  

 

 
Fig. 7: Best F1 (MO-CMA-ES) 

 

 
 

Fig. 8: Best F1 (NSGA-II) 
 
While being superior to NSGA-II for the F1 case, the 

performance of MO-CMA-ES for the F2 case is not as good 
as that of NSGA-II. This is easily observed when comparing 
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figures 9 and 10. The median reached at generation 80, by 
NSGA-II, is higher than the one reached at generation 300 by 
MO-CMA-ES.  

 

 
Fig. 9: Best F2 (MO-CMA-ES) 

 

 
Fig. 10: Best F2 (NSGA-II) 

 
Figures 11 and 12 provide illustrations of typical paths as 
obtained by a typical best F1 controller and by a typical best 
F2 controller, respectively. It should be noted that in figure 12 
two best F2 controllers are shown, one typically found by 
NSGA-II and one typically found by MO-CMA-ES. These 
results are similar in nature to those obtained in [6] and in [7], 
where the reader can find some detailed explanations 
concerning the nature of these paths. 
 

 
 

Fig. 11: Typical Path of Best F1 

     
 

Fig. 12: Typical Path of Best F2 (left: NSGA-II, right: MO-CMA-ES) 
 

V. DISCUSSION 
Summarizing the observations from the above section, and 

considering all aspects of the comparisons, it is concluded 
that neither algorithm is superior over the other. Yet, careful 
examination of the comparison of the best F2 and its vicinity 
indicates that the advantage of NSGA-II is limited to a 
restricted part of the front. In contrast the MO-CMA-ES is 
superior over a large part of the front. It should be noted that 
these conclusions are based on the case examined here. 
Without an exhaustive study with other NCs applications the 
generalization of the conclusions is questionable.  

As already been suggested in [6] and [7], the 
multi-objective optimization of the NCs, with the current 
objective functions and the considered arena, is suspected to 
involve a multiple local Pareto phenomenon. However, due to 
the lack of analytical solution and the continuous nature of the 
decision space, it is impossible to fully verify it. Using 
sampling near the vicinity of the suspected local Pareto 
optimal solutions, substantiation of the occurrence of local 
Pareto fronts has been done (not reported here).  This 
observation suggests that we should examine our comparison 
of MO-CMA-ES and NSGA-II in view of their comparison 
using test functions such as ZDT4.  

In [5], an s-measure comparison between MO-CMA-ES 
and NSGA-II has been made for the ZDT4 test function, 
which has multiple local Pareto fronts. It has been concluded 
in [5] that NSGA-II is significantly better than MO-CMA-ES 
for the ZDT4 case. Yet, in contrast to the ZDT4 comparison 
results of [5], here MO-CMA-ES produces better scores, as 
compared with NSGA-II. 

Originally our hypothesis was that MO-CMA-ES would be 
superior to NSGA-II due to the permutation problem, which 
is exhibited in a GA-based optimization of a neural-network 
(as reported in [25]). However, the results concerning the best 
F2 contradict this hypothesis. 

In the current study we do not try to provide a substantiated 
explanation to the observed differences in the performances 
of the algorithms. As hinted above, one possible explanation 
to the fact that MO-CMA-ES is better, over a large part of the 
front, is that NSGA-II may suffer from the permutation 
problem. However, given the elitism operation of NSGA-II, 
the permutation mechanism should not be able to destroy 
elitist solutions. It is perceivable that the permutation effect, 
as realized in NSGA-II, should help diversification even 
during the convergence stage; hence increasing exploration 
capabilities without destroying exploitation. This puts any 
arguments concerning the harmful nature of the permutation 
phenomenon in question.   
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VI. CONCLUSIONS 
This study compares two well-known MOEAs, which 

differs primarily by the creation process of offspring. ES 
versus GA comparison is done for the domain of NCs as 
applied for robot navigation. In contrast to our expectations 
MO-CMA-ES is not fully superior when compared with 
NSGA-II for the studied application. Yet, for a large portion 
of the sought approximated Pareto optimal solutions it does 
provide better search capabilities.  

It is suggest here that the permutation phenomenon cannot 
be easily used to explain the observed results. Given the lack 
of a simple explanation, future studies should try to provide 
an answer to why there is no clear superior algorithm to all 
portions of the sought solutions. It is acknowledged that the 
scope of the employed simulation case is limited and 
therefore future work should include a wider range of 
examples. If the observed phenomenon will be persistent in 
other case studies, then it may lead to a conclusion that an 
hybrid of search methods should be used to ensure an 
effective search.    
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