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Abstract—This paper shows the possibility of using Metabolic
P systems (MP systems) for chaotic system identification-
reconstruction and it compares presented results with previous
ones obtained by evolutionary algorithms. An important poten-
tiality of MP theory is given by its powerful computational
chaos generation that can be also used as an internal module
of evolutionary algorithms by increasing their ability in specific
cases of their application. Reported numerical experiments are
discussed at the end.

I. INTRODUCTION

This paper shows the possibility of an alternative way for
the analysis and generation of chaotic systems. In previous
experiments it has been demonstrated that beside classical
methods it is also possible to use evolutionary algorithms
for this task [30]. It was shown that evolutionary algorithms
are capable of the reconstruction of chaotic systems without
any partial knowledge of the internal structure, i.e. based
only on measured data. Five different evolutionary algorithms
are presented in [30] and tested in two different sets of
experiments. The system selected for numerical experiments
was the well-known logistic map (1). For each algorithm,
100 repeated simulations were conducted for each set of
experiments. According to obtained results it can be stated that
evolutionary reconstruction is an alternative and a promising
way to identify chaotic systems.

Also another, more classical and non-evolutionary ap-
proach for chaotic system reconstruction was presented in [3].
Such an approach is based on the design of unknown inputs
multiple observers using Linear Matrix Inequalities (LMI)
formulation. The objective is to estimate state variables of a
multiple model subject to unknown inputs affecting both states
and outputs of the system.

In this paper we introduce another alternative method
for chaotic system identification-reconstruction based on
Metabolic P systems (MP systems) [11]. The paper is orga-
nized as follows: in Section II the evolutionary identification
of chaotic systems is shortly presented, by recalling some
results recently achieved in the identification of the logistic
map (1). In Section IIT MP systems are then introduced and
finally applied to the problem of reconstructing chaotic systems
in Section IV. At the end of the paper a conclusion section
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is also provided, which recalls the results presented in this
contribution by indicating the main points of strength of the
approaches herein described.

II. EVOLUTIONARY IDENTIFICATION OF CHAOTIC
SYSTEMS

An approach for reconstructing chaotic systems, entirely
different from classical methods, is based on evolutionary
algorithms. In [30] such algorithms have been applied on
selected examples to test their capability to reconstruct chaotic
systems. The well-known logistic map [28], [27], [23]

x = rz(l —x) (1

has been selected for experiments and the cost function has
been designed so that its minimization should lead to the
reconstruction of a system with the same behavior of (1).
Four versions of SOMA [29], six versions of differential
evolution [26], one version of genetic algorithm [7], simulated
annealing [8], [2] and some evolutionary strategies [1] have
been applied to identify the logistic map in a total of 1300
simulation cases. Among them, in [30] the original logistic
map has been identified in 73 occasions (5.6% of the 1300
simulations) and similar systems that fit the behavior of the
logistic map in 186 occasions (14.3%). Therefore, there was a
total of 259 identified cases (19.92%). Best identifications of
the logistic map are given in (2) - (8), while the identification
of different structures that exhibit very close behavior (e.g. the
same bifurcation diagram) are given in (9) - (12):
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As a comparative method to evolutionary algorithms, we
would like to introduce here a method based on Metabolic P
systems (MP systems) [11], which can be used mutually with
evolutionary algorithms for the identification-reconstruction of
black-box dynamical systems.

; (1)

12)

III. INTRODUCTION TO MP SYSTEMS

Metabolic P systems (MP systems), based on Pdun’s P
systems [24], [25], were introduced in [12], [9] for modeling
metabolic systems by means of suitable multiset rewriting
grammars. An MP system is essentially given by: (i) an
MP grammar, which provides the set of variables and rules
specifying the system evolution; (ii) the temporal interval T of
the dynamics discretization; (iii) the conventional mole size v
of variable quantities [11]. In the following systems the values
of 7 and v are always unitary. Each rule of an MP grammar
is given by a couple reaction/regulator, as in the following
example:

:0.047 +0.087- A
0.002- A+0.0002-A-C

ri:0— A 01
ro: A— B Y2 :

rg: A—C w3 :0.002- A+0.0002-A-B (13)
ry:B =0 04 :0.04-B
rs:C — 0 5 :0.04 - C.

Reactions specify variable introduction/transformation/expul-
sion by means of a standard arrow notation. Regulators are
instead formulae on the state of the system that permit to
compute the speed of reactions at each step, by considering
the temporal interval 7 (therefore MP systems are deterministic
and discrete systems).

In MP grammar (13) we have five rules over three variables
(A, B and C). The first rule is an input rule, that is, it
introduces quantity of type A in the system; rules 2 and 3 apply
some transformations between variables and, finally, rules 4

1484

600

400

Values

200

Time

Fig. 1. The first 1000 steps of the dynamics of the MP system defined by MP
grammar (13), computed by means of the EMA formula (14). The dynamics
starts from initial values: A[0] = 100, B[0] = 100, and C[0] = 0.

and 5 expel quantities of type B and C' from the system (output
rules).

Regulators permit the computation of the amounts that
are consumed or produced by reactions at each simulation
step. According to the type of the MP system, regulators
are used during simulation according to different strategies
(please refer to [11] for details). The most classical way of
considering regulators is that defined in MPF systems (MP
systems with fluxes), where regulators directly provide the
fluxes of rules in the current state. In the following all the
provided examples will be based on such kind of system. For
example, by considering MP grammar (13), if at step ¢ variable
A has a value of A[i] = 5, then the flux wuq[i] of rule 1 at
step ¢ is computed by:

uy[i] = 0.047 4 0.087 - A[i] = 0.047 + 0.087 - 5 = 0.482.

Therefore, in the next step the value of variable A will be
increased by r; of this amount.

Let us assume to consider a system at some time steps
i = 0,1,2,..., with ¢+ € N. Let us also assume that a
variable x is produced by rules r1,7r3 and consumed by rule
ro. If wqli], usli], usli] are the fluxes of the rules r1,r9,7s,
respectively, in the passage from step ¢ (at time ¢) to step ¢+ 1
(at time ¢t + 7), then the variation A, [¢] of variable x at step
i is given by:

Ayl = xfi + 1] — z[i] = ui[i] — uzli] + usli].

In MP systems, variables, reactions, and regulators specify
the following discrete dynamics («[¢]|¢ € N) for any variable z,
starting from a given value z[0], called Equational Metabolic
Algorithm (EMA):

Apli] = wli +1] — 2i] = Z(ﬁj(ﬁf) — (@) -ugli] - (14)

where r; = a; — §; for j = 1,...,m are the rules, o;,
B; are multisets, of reactants and products respectively, and
aj(z), B;j(x) denote the multiplicity of variable z in «j,
B;, respectively. In the following, the MP dynamics we will
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Fig. 2. Examples of complicated oscillators that can be obtained with simple
MP grammars with linear regulators (see [15] for details).

present are computed in MATLAB' by applying the EMA
formula given in (14). The first 1000 steps of the dynamics
of the MP system defined by MP grammar (13) is depicted in
Fig. 1.

The dynamics which can be modeled by MP systems can
be very complicated even by considering simple MP grammars
(i.e. with few variables and linear regulators). In [15] MP
systems were successfully applied to the field of real periodical
function approximation. In that work, we presented some in-
teresting MP oscillators which are obtained by approximating
the plot of some given periodical functions’. In Fig. 2 the
dynamics of two MP oscillators are depicted, which have been
computed by means of an MP grammar with only six variables
and linear regulators.

The results obtained in [15] suggested some possible appli-
cations to specific cases of interest. In particular, the procedure
introduced to define the models has been widely extended
in [16], [17], [18] for defining LGSS (Log—Gain Stoichiometric
Stepwise Regression), a regression algorithm which derives MP
models from the time series of observed dynamics.

LGSS provides a solution, in terms of MP systems, of
the dynamics inverse problem (DIP), that is, of the identi-
fication of (discrete) mathematical models exhibiting an ob-
served dynamics and satisfying all the constraints required by
the specific knowledge about the modeled phenomenon. The
LGSS algorithm combines and extends the log—gain principles
developed in the MP system theory [11] with the classical
method of Stepwise Regression [6], which is a statistical
regression technique based on Least Squares Approximation
and statistical F—tests [4].

ISee http://www.mathworks.it/index.html for details on the
MATLAB software.

2The approximation order ranges from 10~% to 1014, depending on the
considered model.
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Fig. 3. The approach implemented by LGSS for the inference of MP models.
The algorithm automatically computes regulator formulae for each reaction
of the system starting from time series of variable observations and a set of
basic functions (called regressors) that are used to compute regulators as linear
combination of some of them. In this example, regulators have been inferred
by considering as regressors all the monomials of A, B, and C' of first, second
and third degree (A, B, C, A%, B2, C?, AB, AC, BC, A3, B3, C3, A%B,
A2C, B2C, AB2, AC?, BC?, ABO).

LGSS has been initially implemented in 2010 as a set of
MATLAB functions and it is now part of a new Java library
that will be soon distributed as open—source project. In order
to start, LGSS requires the stoichiometry of the system (i.e.
the set of reactions), the time series of observed variables, and,
finally, a set of basic functions, called regressors, that will be
used to infer regulators as linear combination of some of them.

It is important to stress that LGSS not only finds optimal
values of system parameters, but it suggests also the form of
regulators as a linear combination of basic functions among
those specified by the user. This possibility could be very im-
portant in the case where the knowledge about the phenomenon
under investigation is so poor that no clear idea is available
about the kind of model underlying the observed behavior
(see Fig. 3). Successful modeling results comprise metabolic
dynamics, gene expression networks, and population dynamics
[22], [21], [19], [15], [14], [20], [13].

IV. MP CHAOTIC SYSTEMS

In this section we will discuss some hints about the
relationship between chaotic systems and MP systems. As
introduced in the previous section, MP systems are essen-
tially deterministic discrete systems which can be translated,
by means of the EMA equation (14), as a suitable system
of difference equations. In such systems, regulators play a
role that is analogous to that played by derivatives in ODE
systems. Despite these analogies, MP systems proved to be
advantageous in many modeling situations which ranged from
the theoretical field of real function approximation [15] to
the modeling of complicated biological dynamics relevant in
Systems Biology [22], [21], [19], [15], [14], [20].

From what emerged in our work, one of the big advantages
of MP systems is related to the rule-based view of systems
realized by MP grammars. In fact, such perspective is often
more intuitive and closer to the logic of the phenomenon under
examination than that provided by equations. Interestingly, this
fact emerged in all the modeling fields approached with the MP
theory, even the ones that are more theoretical and less related
to biology. Encouraged by these considerations, we recently
started a new line of investigation aiming at the definition of
grammatical schemata that lead the system to reach a chaotic
dynamics, under suitable conditions.
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Fig. 4. The abstract schema of three overlapping transformation cycles (see
also MP grammar (15)). Variable B is divided into three transformation cycles
that cause the appearance of quantities of type A after a delay of 1, 2, or 3
simulation steps.
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Fig. 5. The first 1000 steps of the dynamics of the MP system defined by MP
grammar (15), computed by means of the EMA formula (14). The dynamics
starts from initial values: A[0] = B[0] = C[0] = D[0] = E[0] = 100.

From our initial results emerged that grammatical schemata
based on overlapping transformation cycles permit to reach
quite easily chaotic dynamics. Fig. 4 provides an abstract
schema of the concept of overlapping transformation cycles.
The intuition behind this schema, which leads to a chaotic
behavior, relies on the fact that the “matter” is continuously
mixed up between transformation cycles of different length.
The idea comes from [10], where it was introduced in the study
of complex MP oscillators. The following MP grammar:

r:A—B p1: A
2

ry: B — A @21%

. N B2
rg: B —C ¥3 300420007+ B 5
rg: B—D P4 15502 (15)
7“520—)14 905:0
r¢ : D —FE e : D
r:EBE— A w7 B

is based on the abstract schema of Fig. 4. The dynamics of the
MP system based on this grammar is depicted in Fig. 5. The
behavior of all the variables of such system exhibits a chaotic
pattern. In fact, the score computed by means of the 0-1 test
[5], by considering the first 1000 steps of the time series of
each one of the variable of the system, has been in all cases
greater than 0.99 (the test returns a score close to 0 for non
chaotic patterns and close to 1 for chaotic behaviors).

The importance of overlapping transformation cycles in MP
grammar (15) is emphasized by the fact that the only non
linear regulators are those of the rules having as reactant the
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Fig. 6. Mosaic map which represents the value of the score computed by
means of the 0-1 test [5], by considering the first 1000 steps of the time
series generated by the logistic map, according to the considered initial value
of x and the value of the parameter r. The most of the map is red (score near
1) indicating that the behavior generated by the map is chaotic. Blue areas
represent islands of stability that arise for some isolated ranges of r.

variable B. In fact, these rules are those responsible of the
its distribution between cycles. All the other rules implement
delays of different length and are all linearly regulated.

A. Relationship between the logistic map and MP models
based on overlapping transformation cycles

The logistic map is a polynomial mapping of second degree
often cited as an archetypal example of how complex, chaotic
behavior can arise from very simple non-linear dynamical
equations [28], [27], [23]. According to (1), the logistic map
is defined as:

x[i + 1] = ra[i](1 — z[i]), (16)

where z is a variable having a value between zero and one and
r is a positive parameter. It is well known in literature that,
regardless of the initial value of x, the map provides a chaotic
behavior for values of r that range between 3.57 and 4 (except
for some isolated ranges of r called islands of stability, see
the mosaic map depicted in Fig. 6).

In the following we will show that the chaotic behavior
of the logistic map can be generated by MP models based on
overlapping transformation cycles. To do this, we rewrite (16)
in order to define the MP grammar related to the logistic map.
According to what introduced in Section III, the value of the
variation A, [i] of variable x at step ¢ is given by:

ALli] = zfi + 1] — ). (17)

Therefore, if we substitute (16) in (17), we obtain:

Agli] = rafi)(1 - xfi]) — 2[d] (13)
Al = rafi] — ra[i] — x[i] (19)
ALl = (r—1Dxfi] —ra?[d]. (20)

Equation (20) indicates that variable x is increased in terms
of (r — 1)z and decreased in terms of rx? at each simulation
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Fig. 7. The first 1000 steps of the dynamics of the MP system defined by MP
grammar (22), computed by means of the EMA formula (14). The behavior
generated is the same of a logistic map (z[0] = 0.7, » = 3.75). The behavior
of variable y at each step 4 is such that x[¢] + y[i] = 1.

step. This considerations can be translated to the following MP
grammar:

r ) —x o1:(r—1ax

roix— 0 g 1 T’ o2

that expresses in terms of input and output rules the variation
of variable x. If we add to the system another variable y,
initialized as y[0] = 1—x[0], then we can rewrite the grammar
(21) in this way:

TLIY —T p1:(r— Dz

(22)
roixT =Y P 1 TT

where input and output rules are replaced by transformations
between x and y (see Fig. 7). This last grammar shows that
the behavior of the logistic map can be generated by an MP
grammar with one transformation cycle. Therefore the MP
grammar (22), derived from the logistic map, constitutes the
most simple MP model, generating a chaotic behavior, which
is based on the concept of transformation cycles, as depicted
in Fig. 4 (where only one transformation cycle is enough to
obtain the chaotic behavior).

Starting from MP grammar (22) it is possible to define
many other grammars exhibiting different chaotic behaviors by
adding variables and reactions in order to increase the length or
the number of overlapping transformation cycles in the system.
The following MP grammars have been all derived from MP
grammar (22):

e three variables, one transformation cycle:

TLIY — T e1:(r—1z
ro i X —> 2 0o 1 a2 23)
r3iz—Y Y3z

e three variables, two overlapping transformation cycles:

rYy—T p1:TT
ro:T =Y 0y 1 ra? (24)
T3 — 2 p3: T
T4tz —Y Y42
e four variables, one transformation cycle:
riiYy — T w1:(r—z
oIl x — W 0o i TT? 25)
r3giw — 2 Y3 T w
T4z — Y P4z
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Fig. 8. The first 1000 steps of the dynamics of the MP system defined
by MP grammar (26), computed by means of the EMA formula (14). The
dynamics starts from initial values: z[0] = 0.7, y[0] = 2.0, z[0] = 3.0, and
w[0] = 4.0.

e four variables, two overlapping transformation cycles:

TiiYy — T v1:(r—z

Ty i T —Ww Y2 1 TX

r3Iw — 2 3G (26)
ryiw— Y Y45

s 12— Y P52

All the MP grammars above provide chaotic behaviors (the
score computed by means of the 0-1 test [5], by considering
the first 1000 steps of the time series of each variable, has
been in all cases greater than 0.99, see Fig. 8 for an example
of dynamics).

B. Inference of the logistic map by means of LGSS

In previous sections we addressed the problem of defining
deterministic chaotic systems by means of MP systems and
we showed that the rule-based perspective of MP grammars
provide important modeling advantages in the definition of
such systems. In this section we would like to address the
inverse problem, that is, we would like to start from a chaotic
time series generated by a logistic map and then we would
like to infer an MP grammar like the one in (21) that is able
to generate that time series.

The possibility of inferring the logic behind a chaotic
behavior is an interesting research area that grounds on the
necessity of discerning between real noise and too compli-
cated deterministic behaviors. The inference process will be
computed by means of the regression algorithm LGSS, by
providing as input the grammar

ri:0—x p1:0

ro:ix — 0 w2 : 0, @n

a time series for x (that has been generated by a logistic map
using a specific value of z[0] and r) and a set of regressors
for inferring regulators that comprehend the constant and
monomials of z of first, second and third degree (z, x2, z3).

Even if the regression model seems to be quite simple,
the inference process is not trivial because regressors are
inserted in regulator formulae according to a stepwise approach
based on least squares approximation and statistical partial F—
tests [4]. The performance of such statistical tests, however,
may be affected by the fact that the behavior we are trying
to reconstruct is chaotic, and therefore hardly distinguishable
from Gaussian noise.
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Fig. 9. The fit of an MP model inferred by LGSS approximating the chaotic
behavior generated by a logistic map with z[0] = 0.7 and » = 3.75. Blue
points give the chaotic behavior passed as input to LGSS, red line provides
the simulation of the inferred model (1000 steps). The fit error is always of
the same magnitude order of the precision accuracy reachable by the computer
hosting the computation.

Despite this, in all the cases we considered LGSS has been
able to reconstruct the MP grammar generating the chaotic
profile by providing a very reliable estimate of the parameter
r used for generating the input time series (the approximation
error was in all the considered cases lower than 10~ !4, which is
the precision accuracy reachable by the computer hosting the
computation). As a test we tried to reconstruct 40,000 time
series generated by means of a logistic map by considering
initial values of x ranging between 0 and 1, and values of r
ranging between 3.6 and 4.0. The high performance of LGSS
made possible to complete all the regressions in less than ten
minutes (on a standard laptop with a dual core CPU and 4
Gbyte of RAM memory, see Fig. 9 for an example of fit).

During the 40,000 LGSS regressions we discovered also
another important relationship between the values of x[0] and
r, used to generate a behavior by means of a logistic map,
and the quantity of information that is necessary to reconstruct
that behavior. In fact, we discovered that the minimum length
of the time series of x that is necessary to pass as input
to LGSS in order to complete the regression process (with
an approximation error of r lower than 10~!*) depends on
both z[0] and r. Fig. 10 displays this relationship as a mosaic
map. The pattern that is possible to distinguish has been never
observed before and it emphasizes the power of LGSS in
deciphering the regulation logic which is behind an observed
phenomenon. In fact, even if the quantity of information that
is present in a time series generated by a logistic map depends
mostly by the value of 7 regardless of the value used for x[0]
(as represented in Fig. 6), the quantity of information that is
necessary to reconstruct a logistic behavior seems to depend
on both 7 and z[0] with the same importance. A future research
work will better investigate this aspect.

V. CONCLUSION

In the previous sections we showed that MP theory is com-
parable with evolutionary algorithms and both are capable of
model identification-reconstruction of chaotic systems. In this
paper the MP approach has been applied to some examples and
mainly to the logistic map (16). In particular, both direct and
inverse problems of chaotic systems have been addressed. In
Section IV we discussed the importance of the rule-based view
of systems provided by MP grammars in driving the process
of definition of new models exhibiting chaotic behavior. Such
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Fig. 10.  Mosaic map which represents the minimum length of the z
time series required by LGSS to complete the regression process (with an
approximation error of r lower than 10~14), according to the value of x[0]
and the value of the parameter r used for generating the behavior passed
as input to the regression algorithm. In all the 40,000 considered cases the
minimum length of the required time series ranges between 5 and 31 points
and varies according to the value of both x[0] and r. The pattern that is
possible to recognize shows that there is a relationship between the values of
2[0] and r used to generate a behavior by means of a logistic map and the
quantity of information that is necessary to reconstruct that behavior.

a perspective permitted to introduce the abstract schema of
overlapping transformation cycles that proved to be very useful
for defining chaotic MP models. In Section I'V-B, instead, we
addressed the problem of inferring chaotic behaviors generated
by the logistic map using the LGSS regression algorithm. In all
the 40,000 regressions we did, we were able to reconstruct the
original behavior by providing a very reliable approximation of
the logistic parameter (approximation error lower than 10~1%),
Moreover, we were also able to find a relationship between
logistic parameters (2:[0] and r) and the quantity of information
needed to reconstruct a logistic behavior. Such a relationship,
represented in Figure 10 as a pattern of a mosaic map, has
been never observed before and it emphasizes the power of
LGSS in deciphering the regulation logic which is behind an
observed phenomenon.
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