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Abstract— Recently, probability models on rankings have
been proposed in the field of estimation of distribution al-
gorithms in order to solve permutation-based combinatorial
optimisation problems. Particularly, distance-based ranking
models, such as Mallows and Generalized Mallows under the
Kendall’s-τ distance, have demonstrated their validity when
solving this type of problems. Nevertheless, there are still many
trends that deserve further study. In this paper, we extend
the use of distance-based ranking models in the framework
of EDAs by introducing new distance metrics such as Cayley
and Ulam. In order to analyse the performance of the Mallows
and Generalized Mallows EDAs under the Kendall, Cayley and
Ulam distances, we run them on a benchmark of 120 instances
from four well known permutation problems.

The conducted experiments showed that there is not just one
metric that performs the best in all the problems. However, the
statistical test pointed out that Mallows-Ulam EDA is the most
stable algorithm among the studied proposals.

I. INTRODUCTION

In combinatorics, many optimisation problems are defined
as ”the way of arranging n number of objects” such that
a specific criterion is maximised (or minimised). Codified
naturally as permutations, these problems, referred to as
permutation-based problems, are a subset of NP-Complete
combinatorial optimisation problems. Vehicle routing [1], job
scheduling [2] or assignment problems [3] are some of the
several examples that can be found in the literature. Due
to their high complexity and relevance, permutation-based
problems have been frequently addressed in the field of
combinatorial optimization.

Among the wide variety of exact, heuristic and meta-
heuristic algorithms, Branch and Bound [4], Constructive
Heuristics [5], Local Search [6], Genetic Algorithms [7], Ant
Colony Optimization [8], Particle Swarm Optimization [9],
or Estimation of Distribution Algorithms (EDA) [10], [11]
are a few of the algorithms that have been proposed in the
combinatorial optimisation literature.
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In this paper, we are particularly interested in the devel-
opment of EDAs [12], [13] for solving permutation-based
problems. EDAs are a type of evolutionary algorithm that,
based on machine learning techniques, learn at each iteration
a probabilistic model from a set of candidate solutions in
order to capture the most relevant information. By sampling
the model, EDAs guide the search towards promising areas
of the search space. Numerous papers have demonstrated
the validity of EDAs when solving combinatorial optimisa-
tion problems [11], [13]–[18]. Permutation-based problems,
however, present a real challenge for EDAs, since in most
cases, the typical compact and factorized probability models
cannot capture the mutual exclusivity constraints associated
with permutations [19].

Recently, a number of papers have proposed using prob-
ability models on rankings in the framework of EDAs [20]–
[23]. Ceberio et al. [20] published the first attempt of using
probability models on rankings in the framework of EDAs.
In that work, a distance-based ranking model called Mallows
model (MM) [24]–[27] was used. This model, defined by two
parameters, a central permutation σ0 and a spread parameter
θ, is analogous to the Gaussian distribution over the domain
of permutations. As an extension to the MM, the Generalized
Mallows EDA was presented in [21]. Proposed for the first
time by Fligner et al. [28], the Generalized Mallows model
(GMM) is defined by a central permutation σ0 and a vector
of n−1 spread parameters θ, each of which affect a particular
component of the solution.

The MM and the GMM assign to each permutation in
the search space a probability that decays exponentially with
respect to its distance to σ0. Commonly, the Kendall’s-
τ metric is the distance used to learn and sample these
models [20], [21]. Nevertheless, there exist other distance
metrics that could be studied beyond the Kendall’s-τ [27].
In this sense, with the aim of exploring other possibilities, in
this paper we extend previous works by introducing efficient
implementations of the Mallows and Generalized Mallows
models for the Cayley [29] and Ulam [30] distances.

In order to study the performance of the Kendall’s-τ ,
Cayley and Ulam metrics in the Mallows and the Generalized
Mallows EDAs, we test these algorithms on a benchmark of
120 instances from the Traveling Salesman Problem (TSP),
the Quadratic Assignment Problem (QAP), the Linear Order-
ing Problem (LOP) and the Permutation Flowshop Schedul-
ing Problem (PFSP). The conducted experiments show that
there is not just one algorithm that performs the best in
all the proposed instances. However, the statistical analysis
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concluded that the Mallows EDA under Ulam distance is the
preferred algorithm due to its stable performance in all the
problems. In addition, the experiments reveal that Mallows
EDA under Cayley is the algorithm that performs the worst.

The remainder of the paper is organised as follows: in
the next section, the permutation problems considered in
the experimental study are briefly introduced. Afterwards,
in Section III the Mallows and the Generalized Mallows
models are described in detail. In Section IV, Kendall’s-
τ , Cayley and Ulam distances are introduced, and their
respective learning and sampling procedures are detailed.
In Section V, an experimental study of the Mallows and
the Generalized Mallows EDAs under the different distance
metrics is performed. Finally, some conclusions and ideas
for future work are presented in Section VI.

II. PERMUTATION-BASED COMBINATORIAL
OPTIMIZATION PROBLEMS

Permutation-based problems are combinatorial optimiza-
tion problems whose solutions can be naturally represented
as a permutation. A permutation is understood as a bijection
σ of indexes {1, . . . , n} onto {1, . . . , n}, where σ(i) (also
denoted as σi)1 denotes the item at position i, and σ−1(i)
stands for the position of item i in σ (denoted also as σ〈i〉).

In what follows, we briefly describe the problems we
consider in this paper.

A. Linear Ordering Problem

Given a matrix B = [bij ]n×n of numerical entries, the
Linear Ordering Problem (LOP) [31], [32] consists of finding
a simultaneous permutation σ of the rows and columns of B
such that the sum of the entries above the main diagonal is
maximised (or equivalently, the sum of the entries below the
main diagonal is minimised). The equation below formalises
the LOP function:

f(σ) =
n−1∑
i=1

n∑
j=i+1

bσiσj

where σi denotes the index of the row (and column) located
at position i in the solution σ. A particular feature of this
problem worth noting is that the contribution of an index σi
to the objective function depends on the previous and poste-
rior sets of indexes, but not on their relative ordering [32].

B. Permutation Flowshop Scheduling Problem

In the permutation flowshop scheduling problem
(PFSP) [33], n jobs (i = 1, . . . , n) have to be scheduled
on m machines (j = 1, . . . ,m) in such a way that a given
criterion is minimized. A job consists of m operations and
the j-th operation of each job must be processed on machine
j for a given specific processing time without interruption.
The processing times are fixed, non-negative values and
every job is available at time zero. At a given time, a job
can start on the j-th machine when its (j − 1)-th operation

1With readability purposes we will use σ(i) and σi interchangeably
throughout the paper.

has finished on machine (j − 1), and machine j is free. A
solution for the problem is codified as a permutation σ of
length n where σi denotes the job at position i.

With respect to the optimisation criterion, we considered
the total flow time (TFT), which optimises the sum of the
completion times of each job. Eq. 1 expresses mathematically
the concept of TFT for a solution σ, where cσi,m stands for
the completion time of job σi on machine m.

F (σ) =
n∑
i=1

cσi,m (1)

Being pσi,j the processing time required by job σi on
machine j, the completion time of job σi on machine j can
be recursively calculated as:

cσi,j =


pσi,j i = j = 1

pσi,j + cσi−1,j i > 1, j = 1

pσi,j + cσi,j−1 i = 1, j > 1

pσi,j +max{cσi−1,j , cσi,j−1} i > 1, j > 1

Note that the completion time of each job σi depends on the
ordering of the previous {σ1, . . . , σi−1} jobs, and therefore
the contribution of each job is highly determined by its
processing times as well as by the ordering of the previously
scheduled jobs.

C. Traveling Salesman Problem

The Traveling Salesman Problem (TSP) [34] consists of
looking for the shortest path, in terms of time, distance, or
any similar criterion, to go over n different cities visiting
each city only once and returning to the city of departure.
A solution for the problem is codified as a permutation
σ of cities where σi denotes the city visited in the i-th
position. The objective function f is defined as the sum of
the distances of going from city i − 1 to i, denoted as dij ,
through all cities in the order specified in σ:

f(σ) =

n∑
i=2

dσi−1σi + dσnσ1

In the TSP we note that due to the cyclic nature of the
solutions, the relevant information to calculate the fitness
function of a solution σ is given by the relative ordering
of the cities in the permutation, and not by their absolute
position, which in this case is irrelevant.

D. Quadratic Assignment Problem

The Quadratic Assignment Problem (QAP) [35] is the
problem of allocating a set of facilities to a set of locations,
with a cost function associated to the distance and flow be-
tween the facilities. The objective is to assign each facility to
a location such that the total cost is minimized. Specifically,
given two n×n numerical matrices H = [hij ] and D = [dij ],
where hij is the flow between facility i and facility j, and dij
denotes the distance between the location i and j, the goal
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is to find a permutation σ (where σi represents the facility
allocated at position i), such that the function

f(σ) =
n∑
i=1

n∑
j=1

hσiσj
∗ dij

is minimised. In this problem, the quality of the solution
depends on the absolute position of each facility in the
permutation.

III. MALLOWS AND GENERALIZED MALLOWS MODELS

The Mallows model (MM) [24] is one of the most popular
probability models for permutation spaces. Under this model,
the probability value of every permutation σ ∈ Sn (where Sn
stands for the set of n! permutations of n items) depends on
just two parameters: a spread parameter θ, and the distance to
a central permutation σ0, which is calculated by a particular
metric D(σ, σ0). Formally, the MM is defined as follows:

P (σ) = ψ(θ)−1exp(−θD(σ, σ0)) (2)

where ψ(θ) is a normalization constant. When θ > 0, the
central permutation σ0 is the mode of the distribution. The
model assigns to each permutation σ ∈ Sn a probability that
decays exponentially with respect to its distance to σ0. On
the one hand, the larger the value of θ, the more peaked the
distribution becomes around the central permutation. On the
other hand, when θ equals 0, Eq. 2 assigns equal probability
to every permutation σ in Sn, and for θ < 0 then σ0 is the
antimode.

As an extension to the MM, the Generalized Mallows
model (GMM) was proposed in [28]. Under the GMM, the
central permutation σ0 is also the mode of the distribution.
However, instead of a single spread parameter θ, the GMM
makes use of a vector of n − 1 spread parameters θ =
(θ1, θ2, ... , θn−1), each θj affecting a particular position j in
the permutation. This allows modelling a distribution with
more emphasis on the consensus of certain positions of the
permutation while having more uncertainty in some of the
others. The GMM requires the metric to be decomposed into
n− 1 terms in such a way that it can be expressed as

D(σ, σ0) =
n−1∑
j=1

Sj(σσ
−1
0 ) (3)

where σ−1
0 stands for the inverse permutation of σ0, σσ−1

0

denotes the composition operation between σ and σ−1
0 and

Sj(σσ
−1
0 ) is the term associated to the position j. For such

a metric, the GMM model is formalised as

P (σ) = ψ(θ)−1exp(
n−1∑
j=1

−θjSj(σσ−1
0 )) (4)

In order to introduce these models in the framework
of EDAs, it is necessary to define efficient learning and
sampling methods for each model-metric. As regards the
learning, this process consists of two steps that are similar
for all the model-metric combinations: first, given a sample
of permutations, the consensus permutation σ0 is calculated,

and then, the spread parameter θ for MM (or θ for GMM) is
estimated. Usually, this process is approached via maximum
likelihood estimation (MLE). However, the time required
for an exact learning scales factorially with the number of
items [21], [29], [30], and thus, in this work we carry out an
approximate learning of the parameters:

1) The estimated consensus permutation σ̂0 is calcu-
lated as the set median permutation, which is the
permutation in the sample that minimizes the sum
of the distances to the rest of the permutations in
the sample. Although one can find in the literature
many approximation algorithms for the MLE for the
consensus permutation [36], we have decided to use the
set median permutation in this work for two reasons:
(1) Computing the set median permutation is a quick
process, carried out in time O(dm2), where d denotes
the time complexity of computing the distance between
two permutations and m the number of permutations in
the sample. (2) Using the same approximation method
for the consensus permutation for every distance met-
ric, we try to compare the EDAs independently of the
quality of the learning algorithm.

2) Once σ̂0 is estimated, the MLE for the spread param-
eter θ for MM (or θ for GMM) is computed. The
expression for this parameter is obtained by equaling
to zero the derivative of the likelihood. This expression
differs depending on the distance metric, however,
we solved them by means of the Newton-Raphson
algorithm. For further details we refer the interested
reader to [21], [37].

As regards the sampling process, each metric has a par-
ticular procedure, and thus, in the next section we introduce
the Kendall’s-τ , Cayley and Ulam metrics in detail, including
the method for sampling (obtain a new permutation).

IV. DISTANCE METRICS

Due to its applications in preference modelling, Kendall’s-
τ metric is the metric that has captured the attention of the
research community the most [38]–[40]. However, recently,
new techniques for efficiently learning and sampling the MM
and the GMM models for Cayley [29] and Ulam [30] dis-
tance metrics have been proposed. This fact has encouraged
us to study the performance of the MM and the GMM under
these three distance metrics inside the framework of EDAs.

Before going into details, it is important to point out
that the three metrics considered in this study are right
invariant, which means that D(σ, π) = D(σπ−1, ππ−1) =
D(σπ−1, e). e stands for the identity permutation of size
n, (1, 2, . . . , n), as a consequence, the distance from/to e
is denoted as a one parameter function so D(σπ−1, e) =
D(σπ−1).

In what follows, a detailed description of the metrics is
introduced:

A. Kendall’s-τ distance

The Kendall’s-τ distance Dτ (σ, π) measures the number
of pairs of items for which σ and π have opposing ordering,
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or equivalently the minimum number of adjacent transposi-
tions needed to bring σ−1 into π−1. It can be computed in
O(n2).
Dτ (π) can be decomposed in n − 1 terms (as in Eq.

3) as Vj(π) =
∑n
i=j+1 I[π(j)>π(i)], where I[·] denotes

the indicator function. Basically, Vj(π) is the number of
positions of the permutation on the right of j with values
smaller than π(j). It follows from the definition that Vj(π)
ranges from 0 to n − j for 1 ≤ j < n. This decomposition
allows the GMM given in Eq. 4 to be explicitly written for
the Kendall’s-τ distance as follows:

P (σ) = ψ(θ)−1exp(
n−1∑
j=1

−θjVj(σσ−1
0 )) (5)

Under this distance, the normalisation constant ψ(θ), which
if calculated naively requires n! sums, can be simplified as
the product of n− 1 terms,

ψ(θ) =

n−1∏
j=1

ψj(θj) =

n−1∏
j=1

1− exp(−θj(n− j + 1))

1− exp(−θj)
(6)

1) Sampling the distribution: The moment generating
function for V (π) = (V1(π), . . . , Vn−1(π)) defines the
probability of each Vj(π) as follows [26]:

P (Vj(σσ
−1
0 ) = rj) =

exp(−θjrj)
ψj(θj)

rj ∈ {0, ..., n− j}
(7)

Moreover, there is a bijection between each possible value
of V (π) and each possible σ ∈ Sn. As a consequence, the
sampling process for each permutation is carried out in three
stages. First, from Eq. 7, we randomly generate a vector
V (σσ−1

0 ). Then, from this vector we calculate the associated
σσ−1

0 . The final permutation σ is obtained by composing
σσ−1

0 with σ0, so σσ−1
0 σ0 = σe = σ. The complexity of

sampling σ under the Kendall’s-τ distance is O(n2).

B. Cayley distance

The Cayley distance Dc(σ, π) counts the minimum num-
ber of swaps (not necessary adjacent) to convert σ into π. It
can be computed in O(n).

This distance is related to the cyclic structure of permuta-
tions. The Cayley distance Dc(π) can be decomposed in n−1
boolean terms Dc(π) =

∑n−1
j=1 Xj(π) where Xj(π) = 0 iff

j is the largest item of a cycle in π, and 1 otherwise. Since
this decomposition complies with Eq. 3, the GMM under the
Cayley distance can be given as follows:

P (σ) = ψ(θ)−1exp(
n−1∑
j=1

−θjXj(σσ
−1
0 )) (8)

for every σ ∈ Sn. The normalisation constant ψ(θ), under
the Cayley distance, is formalised as

ψ(θ) =
n−1∏
j=1

ψj(θj) =
n−1∏
j=1

(n− j)exp(−θj) + 1 (9)

1) Sampling the distribution: In this case, the moment
generating function is given by the probability of each Xj(π)
as follows [26]:

p(Xj(σσ
−1
0 ) = 1) =

(n− j)exp(−θj)
ψj(θj)

(10)

Unfortunately, although each π has a unique X(π) =
(X1(π), . . . , Xn−1(π)), the opposite is not necessarily true.
And thus, a method for the random generation of a per-
mutation π given X(π) [29] is used. According to that
method, the process of sampling a solution from a GMM
model under the Cayley distance can be carried out in three
stages: First, from Eq. 10, we randomly generate a boolean
vector X(σσ−1

0 ). Secondly, we calculate the associated σσ−1
0

with the techniques described in [29]. Finally, by right
invariance we obtain the final permutation σ. The complexity
of sampling σ under the Cayley distance is O(n2).

C. Ulam distance

The Ulam distance between two permutations σ and π,
Du(σ, π), is exactly the size of the complement of the longest
common subsequence of σ and π or, equivalently, n minus
the length of the longest increasing subsequence (LIS) of
σπ−1. Therefore, Du(π) is n minus the length of the LIS
in π. It can be exactly computed in O(n log n). Since the
Ulam distance can not be decomposed as in Eq. 3, the GMM
can not be coupled with the Ulam distance, and thus, just the
MM case is considered. It is expressed as follows:

P (σ) = ψ(θ)−1exp(−θDu(σ, σ0)) (11)

Unfortunately, there is no closed form for ψ(θ). Both
exact and approximate expressions for ψ(θ) can be found
in [30]. Due to the lack of space in this paper, the algebraic
machinery has not been included. However, we give a brief
intuition of the process here. Let Su(n, d) be the number of
permutations of n items at Ulam distance d. Then, ψ(θ) can
be given as follows.

ψ(θ) =

n−1∑
d=0

Su(n, d)exp(−θd) (12)

1) Sampling the distribution: Sampling the MM is based
on the fact that every permutation at the same distance has
equal probability. Note that the probability of obtaining a
permutation at distance d from the identity permutation is as
follows.

P (π|Du(π) = d) = ψ(θ)−1Su(n, d)exp(−θd) (13)

In this way, the process of sampling a solution from the
model can be performed in three stages. First, by means
of Eq. 13, randomly select a distance d. In order to speed
the process up, the approximated version of the algorithm
restricts the maximum distance at which to sample to dmax =
n/2. Then, generate uniformly at random a permutation at
distance d from e, using the techniques detailed in [30].
Finally, by right invariance we obtain the final permutation
σ.
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TABLE I: Summary of the most successful interpretations (a
or b) for each algorithm-problem pair. a/b denotes that no
statistical differences were found.

EDAs LOP PFSP QAP TSP
Mk b b b a/b
Mc a/b a/b a/b a/b
Mu a/b b b b
GMk b b b a/b
GMc b b b a/b

In the previous sections, the methods for learning and
sampling the MM and the GMM under the Kendall’s-τ ,
Cayley and Ulam distance were introduced. However, there
is a final concern that needs to be addressed in order to
integrate these models into the framework of EDAs. We
refer to the interpretation of the individuals (permutation)
when calculating their fitness in the evaluation step. Given
an individual σ, there exist two possible interpretations of
the solution: a) to consider σi as the item at position i
(introduced in Section II), or b) to consider σi as the position
at which item i is located. Let σ = (2, 3, 1) be a solution for
the PFSP. Interpretation a) considers that job 2 is scheduled
first, next job 3 and job 1 is scheduled last. Inversely,
interpretation b) considers that job 1 is ranked in the 2nd

position (σ1 = 2), job 2 is ranked 3rd, and job 3 is ranked
1st.

According to our experience, we think that the appropriate
interpretation of the solutions is b. Nevertheless, in order to
confirm our intuition we have performed some experiments
with the EDAs proposed in the following section for both
interpretations. Moreover, in order to assess whether there
exist statistical differences between the two interpretations,
we have applied a non-parametric Wilcoxon test to the
average results obtained. A level of significance α = 0.05
was set. Table I shows a summary of the most successful
interpretation in each case. In the view of the results, we will
use interpretation b as the preferred one in the experimental
study.

V. EXPERIMENTS

In order to compare the performance of the Kendall’s-
τ , Cayley and Ulam distances within the Mallows and
Generalized Mallows models, we ran five different EDAs:
the Kendall’s-τ (Mk), Cayley (Mc) and Ulam (Mu) Mal-
lows EDAs, and the Kendall’s-τ (GMk) and Cayley (GMc)
Generalized Mallows EDAs. Recall that the GMM of the
Ulam is not defined.

All the EDAs were implemented in C++ programming
language. The experimentation was conducted on a cluster
of 20 nodes, each of them equipped with two Intel Xeon
X5650 CPUs and 48GB of memory.

In relation to the experimentation instances, a benchmark
of 120 instances of the TSP, QAP, LOP and PFSP problems
was proposed (30 instances of each problem). The instances
of the TSP were downloaded from TSPLIB [41], and the
instances of the QAP and PFSP were obtained from the
Taillard’s Benchmark [42]. As regards the LOP, the smallest

15 instances were obtained from the LOLIB benchmark, and
the rest were artificially generated as specified in [32]2.

A. Parameter Settings

In the list below we summarise the parameters employed
in the EDAs:

• Population size is set to 10n.
• n individuals are selected to learn the model.
• 10n− 1 individuals are sampled at each generation.
• Elitism criteria is used.
• A maximum number of 1000n2 evaluations are consid-

ered as stopping criterion.
Other particular settings of the algorithms:
• A maximum number of 100 iterations, and a minimum

accuracy improvement of 0.001 are used in the Newton-
Raphson procedure.

• For feasibility purposes, θ values range in [0,10] for the
three metrics.

B. Results

Each algorithm - instance pair was run 10 times. The
performance measure employed in our study is the average
relative percentage deviation (ARPD):

ARPD =
|AvgRes−Best|

Best

where AvgRes denotes the average results obtained through-
out the 10 repetitions, Best stands for the best solution
obtained throughout the experimental study by any of the
EDAs. The ARPD results of the executions are collected
in Table II. Results in bold correspond to the algorithm
that obtained the lowest ARPD (best) among the compared
approaches.

The conducted experiments show that the performance of
the proposed EDAs vary depending on the problems. In the
following list we summarise the results obtained for each
problem, highlighting the most remarkable results:

• In the LOP, we observe that Mu is the algorithm that
most frequently obtained the best results, in 18 instances
out of 30.

• As regards the QAP benchmark, we appreciate that the
size of the instance has a remarkable influence on the
results. GMc obtained the best result for 17 instances,
the small ones, whereas Mu obtained the best results
for 10 instances (mostly large).

• In the PFSP, Mu and GMc were the best performing
algorithms. Mu obtained the best results in 16 instances
out of 30, and GMc was the best in the remaining 14
instances.

• In the TSP, although we do not have all the results for
the Mu, this algorithm is clearly the best performing
EDA, obtaining the best result in 20 out of 23 com-
pleted instances. In the remainder instances, GMc is
the algorithm that stands out over the rest.

2Supplementary results, source codes, instances, and ex-
tended material of the experiments can be downloaded from
http://www.sc.ehu.es/ccwbayes/members/jceberio/CEC2014/CEC2014.html.
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TABLE II: ARPD results of 10 repetitions of the EDAs for full benchmark of instances. Results in bold denote the best
performing algorithm. Missing results, denoted as ’-’, indicate the executions that, due to their computational cost, did not
finish.

Problem Instance Size Mk Mc Mu GMk GMc Problem Instance Size Mk Mc Mu GMk GMc

LOP N-t59b11xx 44 0.0166 0.1376 0.0265 0.0127 0.0188 QAP tai15a 15 0.0619 0.0248 0.0641 0.0571 0.0213
N-t59d11xx 44 0.0198 0.1201 0.0018 0.0120 0.0109 tai15b 15 0.0079 0.0040 0.0098 0.0083 0.0029
N-t59f11xx 44 0.0217 0.1336 0.0429 0.0190 0.0167 nug17 17 0.0362 0.0160 0.0628 0.0478 0.0223
N-be75eec 50 0.0211 0.1462 0.0030 0.0157 0.0788 nug18 18 0.0403 0.0235 0.0686 0.0439 0.0130
N-be75np 50 0.0159 0.1560 0.0518 0.0131 0.0034 nug20 20 0.0553 0.0456 0.0790 0.0644 0.0285
N-be75oi 50 0.0072 0.0865 0.0017 0.0098 0.0525 tai20a 20 0.0985 0.0838 0.0814 0.1002 0.0451
N-be75tot 50 0.0261 0.1721 0.0010 0.0200 0.0449 tai20b 20 0.0460 0.0154 0.1282 0.0653 0.0115
N-tiw56r58 56 0.0357 0.1775 0.0016 0.0152 0.0139 nug21 21 0.1204 0.0695 0.0621 0.1082 0.0218
N-tiw56r66 56 0.0360 0.1662 0.0259 0.0185 0.0246 tai25a 25 0.0693 0.0700 0.0578 0.0760 0.0433
N-tiw56r67 56 0.0364 0.1558 0.0458 0.0183 0.0284 tai25b 25 0.1098 0.2101 0.1941 0.1799 0.0132
N-tiw56r72 56 0.0317 0.1615 0.0020 0.0160 0.0332 bur26a 26 0.0173 0.0126 0.0102 0.0139 0.0011
N-stabu70 60 0.0389 0.1532 0.0015 0.0298 0.0738 bur26b 26 0.0164 0.0090 0.0097 0.0176 0.0012
N-stabu74 60 0.0397 0.1475 0.0026 0.0196 0.0772 bur26c 26 0.0199 0.0092 0.0135 0.0152 0.0008
N-stabu75 60 0.0415 0.1443 0.0012 0.0269 0.0728 bur26d 26 0.0216 0.0094 0.0137 0.0207 0.0021
N-usa79 79 0.0551 0.1321 0.0385 0.0548 0.0738 tai30a 30 0.0764 0.0742 0.0579 0.0778 0.0646
N-t65d11xx 100 0.1672 0.2233 0.1388 0.1648 0.1748 tai30b 30 0.1213 0.1988 0.0893 0.0964 0.0492
N-t65f11xx 100 0.1564 0.2028 0.1096 0.1515 0.1650 tai35a 35 0.0232 0.0258 0.0073 0.0254 0.0227
N-t65i11xx 100 0.1384 0.2009 0.1942 0.1458 0.1509 tai35b 35 0.1190 0.2379 0.1441 0.0881 0.0649
N-t65l11xx 100 0.1284 0.1791 0.1075 0.1327 0.1350 tai40a 40 0.0342 0.0340 0.0121 0.0341 0.0313
N-t65n11xx 100 0.1438 0.2125 0.1696 0.1567 0.1597 tai40b 40 0.2517 0.3213 0.1922 0.2558 0.2072
N-t65w11xx 110 0.1823 0.2214 0.1668 0.1672 0.1688 tai50a 50 0.0362 0.0371 0.0127 0.0376 0.0363
N-t69r11xx 110 0.1558 0.2143 0.2009 0.1607 0.1621 tai50b 50 0.2009 0.2897 0.0705 0.1201 0.2739
N-t70b11xx 110 0.1768 0.2198 0.1724 0.1734 0.1662 tai60a 60 0.0059 0.0076 0.0066 0.0063 0.0062
N-t70d11xx 110 0.1785 0.2252 0.1426 0.1749 0.1684 tai60b 60 0.1773 0.2295 0.0438 0.0997 0.1440
N-t70d11xxb 110 0.1799 0.2277 0.1442 0.1766 0.1822 tai64c 64 0.0378 0.0361 0.0019 0.0372 0.0064
N-t70f11xx 120 0.1837 0.2132 0.1106 0.1829 0.1704 tai80a 80 0.0041 0.0052 0.0044 0.0051 0.0044
N-t70i11xx 120 0.1777 0.2236 0.1955 0.1716 0.1757 tai80b 80 0.0639 0.0673 0.0123 0.0620 0.0529
N-t70k11xx 120 0.1843 0.2246 0.1914 0.1857 0.1845 tai100a 100 0.0301 0.0296 0.0034 0.0300 0.0301
N-t70l11xx 120 0.1589 0.2091 0.2286 0.1650 0.1544 tai100b 100 0.1417 0.1504 0.1011 0.1340 0.0423
N-t70n11xx 120 0.1717 0.2278 0.1183 0.1818 0.1776 tai150b 150 0.0106 0.0115 - 0.0105 0.0070

PFSP tai50 5 0 50 0.0509 0.1426 0.0393 0.0384 0.0100 TSP burma14 14 0.0765 0.0293 0.0035 0.0491 0.0109
tai50 5 1 50 0.0598 0.1435 0.0472 0.0511 0.0178 ulysses16 16 0.0440 0.0145 0.0417 0.0341 0.0119
tai50 5 2 50 0.0469 0.1289 0.0164 0.0303 0.0472 gr17 17 0.0766 0.0314 0.0161 0.0769 0.0176
tai50 5 3 50 0.0672 0.1287 0.0214 0.0480 0.0628 ulysses22 22 0.1791 0.3612 0.0406 0.0950 0.0271
tai50 5 4 50 0.0450 0.1183 0.0115 0.0397 0.0421 gr24 24 0.3268 0.6673 0.1748 0.2424 0.1385
tai50 10 0 50 0.0835 0.1163 0.0137 0.0730 0.0399 fri26 26 0.3606 0.7356 0.0833 0.2182 0.0887
tai50 10 1 50 0.0914 0.1296 0.0361 0.0659 0.0320 bays29 29 0.5205 0.8591 0.0993 0.4162 0.2772
tai50 10 2 50 0.0813 0.1481 0.0294 0.0616 0.0517 dantzig42 42 1.4397 1.5783 0.0794 1.4117 1.4195
tai50 10 3 50 0.0758 0.1269 0.0092 0.0732 0.0332 swiss42 42 1.4632 1.4596 0.0866 1.4377 1.3774
tai50 10 4 50 0.0764 0.1210 0.0199 0.0649 0.0117 gr48 48 1.5664 1.5779 0.0807 1.5546 1.5371
tai50 20 0 50 0.0728 0.1024 0.0235 0.0640 0.0331 hk48 48 1.5937 1.6374 0.3115 1.5237 1.4873
tai50 20 1 50 0.0644 0.0996 0.0365 0.0524 0.0227 eil51 51 1.7279 1.7347 0.0972 1.7347 1.7080
tai50 20 2 50 0.0797 0.1163 0.0120 0.0614 0.0468 berlin52 52 1.4705 1.5016 0.0506 1.4757 1.2737
tai50 20 3 50 0.0639 0.0939 0.0213 0.0592 0.0204 st70 70 1.8370 1.8110 1.2924 1.8218 1.7954
tai50 20 4 50 0.0738 0.1103 0.0297 0.0570 0.0417 eil76 76 0.2221 0.2223 0.0616 0.2151 0.1953
tai100 5 0 100 0.0958 0.1192 0.1223 0.0854 0.0725 pr76 76 0.2136 0.2129 0.0429 0.2126 0.2015
tai100 5 1 100 0.0922 0.1188 0.1204 0.0916 0.0773 gr96 96 3.1000 3.0816 1.8725 3.0837 3.0407
tai100 5 2 100 0.1047 0.1306 0.1022 0.0946 0.0862 rat99 99 3.1828 3.1798 1.9184 3.1738 3.1281
tai100 5 3 100 0.0870 0.1359 0.1534 0.0889 0.0810 kroA100 100 3.6654 3.6295 1.8218 3.6661 3.6289
tai100 5 4 100 0.0974 0.1376 0.1003 0.0958 0.0926 kroC100 100 3.6350 3.5640 3.3738 3.6081 3.4630
tai100 10 0 100 0.1125 0.1320 0.0908 0.1135 0.0926 eil101 101 2.5547 2.5353 1.2587 2.5464 2.5224
tai100 10 1 100 0.1273 0.1544 0.0478 0.1207 0.1064 pr107 107 4.8875 4.9187 4.1552 4.8558 4.8935
tai100 10 2 100 0.1185 0.1385 0.1010 0.1087 0.0990 pr124 124 5.5217 5.5566 3.7906 5.4682 5.4870
tai100 10 3 100 0.0997 0.1217 0.0498 0.0988 0.0811 ch130 130 0.0298 0.0361 - 0.0304 0.0360
tai100 10 4 100 0.1233 0.1511 0.0866 0.1242 0.0999 pr136 136 0.0241 0.0246 - 0.0227 0.0254
tai100 20 0 100 0.1022 0.1157 0.0659 0.0978 0.0807 gr137 137 0.0297 0.0337 - 0.0270 0.0148
tai100 20 1 100 0.1057 0.1117 0.0674 0.1017 0.0802 pr144 144 0.0386 0.0379 - 0.0365 0.0272
tai100 20 2 100 0.0946 0.1142 0.0888 0.0985 0.0786 kroA150 150 0.0254 0.0356 - 0.0356 0.0243
tai100 20 3 100 0.0997 0.1059 0.0718 0.0974 0.0777 ch150 150 0.0188 0.0210 - 0.0198 0.0213
tai100 20 4 100 0.1065 0.1180 0.0909 0.1005 0.0826 pr152 152 0.0287 0.0315 - 0.0282 0.0250

C. Statistical Testing
In order to state whether there exist statistical differences

among the algorithms, we applied the non-parametric Fried-
man’s test to the average ARPD results obtained by Mk, Mc,
Mu, GMk and GMc for each problem. A level α = 0.05
of significance was set. The statistical test reported signifi-
cant differences among the algorithms in all the problems.
Therefore, a post-hoc method was used to carry out all
the pairwise comparisons and determine which algorithms
are the best performing ones. In particular, Shaffer’s static

procedure is used, as suggested for such cases in [43]. Again,
the significance level was fixed to α = 0.05. In order to avoid
noise in the statistical test, instances with missing values of
Mu were not considered. Results of the statistical test are
summarised as critical difference diagrams in Fig. 1.

The statistical analysis reveals that, except for the TSP,
there is not just one algorithm that performs the best in
the problems. However, critical difference diagrams show
that Mu is the most stable algorithm, being always ranked
first or second. Alternatively, Mk and Mc are the algorithms
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Fig. 1: Critical difference ranking diagrams of the results.

that behave the worst, especially Mc. In addition, the test
shows that in the particular case of the PFSP the EDAs have
very different behaviours, finding 7 pairwise comparisons
statistically different out of 10. Inversely, in the LOP the
algorithms performed similarly, with only four comparisons
being statistically significant. As a final remark, it is worth
mentioning that GMM outperforms MM, when using the
same metric, almost systematically.

VI. CONCLUSIONS & FUTURE WORK

In this paper we extend the use of Mallows and Gen-
eralized Mallows distance-based ranking models, in esti-
mation of distribution algorithms. Beyond the commonly
used Kendall’s-τ distance, two new distance metrics, Cayley
and Ulam, have been introduced. In order to analyse their
performance when solving permutation-based combinatorial
optimisation problems, a benchmark of 120 instances of four
well known problems was proposed.

The conducted experiments demonstrated that there is not
just one EDA that always performs the best. However, the
statistical analysis revealed that Mu is the most stable EDA
among the compared approaches. Alternatively, the results
confirmed that Generalized Mallows EDAs are preferred to
the Mallows EDAs under the same distance, which is quite
obvious taking into account that GMM uses n parameters to
calculate the probability distribution, and the MM only 2.

As future work, there are many trends that deserve further
study. On the one hand, the experimental study showed that
the newly introduced Cayley and Ulam distances are able
to outperform the Kendall’s-τ -based EDAs. Particularly, Mu

is the most competitive proposal for the LOP and the TSP,

while GMc is preferred for the QAP and the PFSP. We think
that the outstanding performance of these two EDAs could
be motivated by the number of permutations that Cayley
and Ulam consider at a given distance, being significantly
larger than for Kendall’s-τ . This aspect could influence the
exploration/exploration abilities of the EDA.

On the other hand, as investigated in [44], it could be
interesting to analyze the relation between Mallows and
Generalized Mallows EDAs, and the neighborhood system
induced by the distance metrics studied in this paper.

Finally, taking into account the large performance varia-
tions observed for the studied algorithms, new EDA solutions
that combine different distance metrics during the search
should be investigated.
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