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Abstract—Probabilistic Boolean networks (PBNs) have been
proved to be a useful tool for modeling genetic regulatory
interactions. The study of the steady-state probability distribution
may help to understand the essential long-run behavior of a
PBN. In this paper we focus on a type of PBNs derived from
gene expression data collected in a study of metastatic melanoma.
The metastatic melanoma model is usually described by a PBN
containing seven genes among which WNT5A plays a significant
role in the development of melanoma and is known to induce
the metastasis of melanoma when highly active. This paper
investigates the issue of how to drive the corresponding PBN
towards desired steady-state probability distributions so as to
reduce the WNT5A’s ability to induce a metastatic phenotype.

I. INTRODUCTION

Genetic regulatory networks are widely used in the research
of systems biology. Understanding the dynamical behavior of
them is essential to advance knowledge of disease, develop
modern therapeutic methods, and identify targets in the cell
needed to reach a desired goal. The dynamical modeling of
gene regulation via network models constitutes a basic problem
for genomics. Boolean Networks (BNs) and their extensions
have received much attention as they are able to capture the
switching behavior of biological processes [1]. Since gene reg-
ulation processes exhibit uncertainty and microarray data sets
used to infer the model have errors due to experimental noise
in the complex measurement processes, it is more realistic to
consider a stochastic extension, probabilistic Boolean networks
(PBNs) [2], [3]. The control of PBN plays a crucial role for
analyzing the behavior of the network. Control inputs may
represent therapeutic intervention strategies, such as whether a
certain medicine is administered or not. Given a PBN, a natural
and important problem is to study its long-run behavior [4]–
[7]. It may guide the design of effective intervention strategies
for the modeled systems [3]. Therapeutic gene intervention or
gene control policy can therefore be developed [8], [9].

The network chosen as an example of gene control in
this paper is one developed from data collected in a study
of metastatic melanoma [10]. Briefly speaking, the PBN con-
cerned consists of seven genes (including the WNT5A gene)
that were chosen from a set of 587 genes that have been
subjected to an analysis of their ability to cross predict each
other’s state in a multivariate setting [11]. Furthermore, it
was found that a control strategy that reduces the WNT5A
gene’s action in affecting biological regulation may reduce

the chance of a melanoma metastasizing, a desirable outcome.
Therefore, the purpose is to control the corresponding PBN
towards desired long-run behavior so that the action of the
WNT5A gene in affecting biological regulation is reduced.

Once a PBN is initialized, it will evolve towards its steady-
state probability distribution which may represent the essential
long-run behavior. Due to the shortage of systematic tools, the
issue concerning optimal control for driving a PBN to achieve
desired steady-state probability distribution is far from being
solved. In [12], a new systematic tool to analyze and control
the BNs, called the semi-tensor product (STP) technique, has
been proposed recently. By using it, the logical dynamics of
BNs is converted into an algebraic iteration in terms of a set
of standard difference equations. In particular, the resulting
algebraic system allows for application of control theory and
methods, giving rigorous analytical results, see, e.g., [13]–[22].

In this paper, we consider how to design control inputs for
driving a metastatic melanoma network to desired steady-state
probability distribution. We first establish an objective function
which explicitly depends on the unknown control inputs,
and thus transform the issue concerned into an optimization
problem subject to explicit constraints. Since the solution set
of the problem is quite huge, a useful algorithm with less
complexity is needed. By using the computationally feasible
genetic algorithm that we proposed in our former work [23],
we can find an optimal solution. To our knowledge, it is
the first time that the STP technique is used in the issue
concerning optimal control of metastatic melanoma networks,
and although very widely used, genetic algorithms are rarely
used in the study of the long-run behavior of BNs.

The rest of this paper is organized as follows. Section
2 provides the necessary preliminaries. Section 3 gives the
problem formation. The main results are presented in Section
4. Section 5 gives conclusion.

II. PRELIMINARY

A. STP technique

Definition 1 ( [12]). Given an m × n matrix A and a p × q
matrix B, the STP of A and B is defined as

A�B = (A⊗ Il/n)(B ⊗ Il/p),
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where “⊗” is the Kronecker product of matrices and l is the
least common multiple of n and p.

Observe that if n = p, then A�B = AB. Hence, the STP
is a generalization of the conventional matrix product.

Let δin be the i-th column of the identity matrix In
and let Δn be the set consisting of δ1n, . . . , δ

n
n . Denote by

Col(A) the set of columns of a matrix A and Coli(A) the
i-th column of matrix A. An n × s matrix L is called a
logical matrix if Col(L) ⊂ Δn. The set of n × s logical
matrices is denoted by Ln×s. We simply write an n×s logical
matrix [δi1n , δ

i2
n , . . . , δ

is
n ] as δn[i1, i2, . . . , is]. Let D = {1, 0}.

A logical function is a mapping F : Dn → D.

Example 1. Consider a simple case with n = 3 and
F (x1, x2, x3) = x1 ∨ x2 ∨ x3. If x1 = x2 = x3 = 0, then
F = 0; otherwise, F = 1.

We identify the elements in D with 2-dimensional vectors
as: 1 ∼ δ12 , 0 ∼ δ22 . Then a logical function F : Dn →
D can be regarded as a mapping from Δn

2 to Δ2. Let x =
�

n
i=1xi ∈ Δ2n . For n = 3 case, x1 = [q1, q̄1]

T , x2 = [q2, q̄2]
T ,

x3 = [q3, q̄3]
T , where qi ∈ D, i = 1, 2, 3, and x = x1 �

x2 � x3 = [q1q2q3, q1q2q̄3, q1q̄2q3, q1q̄2q̄3, q̄1q2q3, q̄1q2q̄3,
q̄1q̄2q3, q̄1q̄2q̄3]

T . Thus x includes all the possible minterms
of the state variables {x1, x2, x3}.

Let F (x1, . . . , xn) be a logical function in the vector form.
Referring to [12], there exists a unique logical matrix MF ∈
L2×2n such that

F (x1, . . . , xn) =MF �
n
i=1 xi. (1)

We call MF the structure matrix of the logical mapping F , and
Eq. (1) is called the algebraic form. It has been proved that
the logical form is equivalent to the algebraic form and some
easily computable formulae have been provided to convert one
from the other. For x1, . . . , xn, if x1� · · ·�xn = δj2n in Eq.
(1), then F (x1, . . . , xn) =MF � δj2n = Colj(MF ). That is,
F (x1, . . . , xn), ∀j ∈ {1, . . . , 2n} can be directly calculated
from MF .

In order to calculate MF , we introduce some special logical
matrices. Let Md denote the structure matrices of the logical
operator, disjunction ∨. Then Md = δ2[1, 1, 1, 2]. For each
n ∈ N, let ϕ(n) = δ22n [1, 2

n+2, 2·2n+3, . . . , (2n−1)2n+2n].
A straightforward computation shows that x � x = ϕ(n) �
x, x ∈ Δ2n . The swap matrix W[m,n] is defined as W[m,n] =
δmn[1,m + 1, . . . , (n − 1)m + 1, 2,m + 2, . . . , (n − 1)m +
2, . . . ,m, 2m, . . . , nm]. It is easy to verify that x2 � x1 =
W[m,n] � x1 � x2, x1 ∈ R

m, x2 ∈ R
n. The dummy logical

matrix Ed is defined as Ed = δ2[1, 2, 1, 2]. Since Edδ
1
2 =

Edδ
2
2 = I2, it follows that Edx = I2 for x ∈ Δ2.

Let us go through an example to understand the process of
the calculation of MF in the STP technique.

Example 2. Consider the logical function in Example 1. We
have

F (x1, x2, x3) =Md � x1 �Md � x2 � x3
=Md � (I2 ⊗Md)� x1 � x2 � x3

Then the structure matrix MF can be easily calculated as

MF = δ2[1, 1, 1, 1, 1, 1, 1, 2].

For more details, readers are referred to [12].

B. Model description

PBNs can be used to model the metastatic melanoma
networks. A PBN with m control input nodes consists of a
set of gene nodes V = {v1, . . . , vn} and a set of logical
functions {f (1), . . . , f (N)}, governing the state transitions of
the nodes. Each logical function determines a BN, also called a
realization, and the governing BN is randomly chosen at every
time step in accordance with a fixed probability distribution.
Let Xi(t) ∈ {0, 1} be the state of vi at time t and U

(j)
i ∈

{0, 1}, j ∈ {1, . . . , N} be the i-th input in the j-th realization.
Notice that all the control inputs are designed to vary with the
realization in this paper. More formally, given a set of logical
functions, f (j) : {0, 1}n×{0, 1}m → {0, 1}n, j = 1, . . . , N ,
then the dynamics of a PBN is expressed as

X(t+ 1) = f (U,X(t)) , t = 0, 1, 2, . . . , (2)

where X(t) denotes the n-dimensional state variable at time
t, taking value from {0, 1}n, the function f is selected
from among {f (1), . . . , f (N)} at each time point, with the
probability of selecting f (j) being the selection probability pj ,
U denotes the m-dimensional control input, taking value from
{0, 1}m, and U = U (j) in the j-th realization.

In the algebraic form, let xi(t), u
(j)
i ∈ Δ2, and let x(t) =

�
n
i=1xi(t), u

(j) = �
m
i=1u

(j)
i . For the logical function of the

i-th node in the j-th realization, denote its structure matrix by
M

f
ji
i

. It follows

xi(t+ 1) =M
f
ji
i

� u(j) � x(t), i = 1, . . . , n. (3)

For the j-th realization, by multiplying all the n state equations
in Eqs. (3), we have

x(t+ 1) = L(j)
� u(j) � x(t), (4)

where L(j) = M
f
j1
1

�
n
i=2 [(I2m+n ⊗ M

f
ji
i
)ϕ(n + m)]. We

call matrix L(j) the network transition matrix of the j-th
realization.

Example 3. Consider a PBN consisting of two genes and one
control input,

{

x1(t+ 1) = f1(u1, x1(t), x2(t))
x2(t+ 1) = f2(u1, x1(t), x2(t))

where
⎧

⎪

⎨

⎪

⎩

f11 = u1 ∧ (x1(t) ∧ x2(t)),
f21 = u1 ∧ (x1(t) ∨ x2(t)),
f12 = x1(t)↔ x2(t),
f22 = x1(t) ∧ x2(t),

and Pr(f1 = f11 ) = 0.2, Pr(f1 = f21 ) = 0.8, Pr(f2 = f12 ) =
0.1, Pr(f2 = f22 ) = 0.9. The probabilities of selecting each
realization are p1 = 0.2× 0.1 = 0.02, p2 = 0.2× 0.9 = 0.18,
p3 = 0.8 × 0.1 = 0.08, p4 = 0.8 × 0.9 = 0.72. The
network transition matrices of each realization are L(1) =
δ4[1, 4, 4, 3, 3, 4, 4, 3], L(2) = δ4[1, 4, 4, 4, 3, 4, 4, 4], L(3) =
δ4[1, 2, 2, 3, 3, 4, 4, 3], L

(4) = δ4[1, 2, 2, 4, 3, 4, 4, 4].

Now we consider the control of PBNs in a real study
of metastatic melanoma [10], [24]. The corresponding PBN
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can be described by a seven-gene network containing the
genes WNT5A, pirin, S100P, RET1, MART1, HADHB, and
STC2. WNT5A is a gene that plays a significant role in
the development of melanoma and is known to induce the
metastasis of melanoma when highly active. This suggests
a control strategy that reduces the action of WNT5A in
affecting biological regulation. There are many ways to do
this, one is to let the WNT5A controlled through pirin [25].
Using the algorithms described in [26], four highly probable
Boolean networks are presented in [27] as the constituent BNs
(realizations) in the PBN, each of which is assumed to be
derived from steady-state gene-expression data. In [27], The
states are ordered as WNT5A, pirin, S100P, RET1, MART1,
HADHB, and STC2. We denote the states of gene WNT5A,
S100P, RET1, MART1, HADHB, and STC2 at time t by
x1(t), x3(t), x4(t), x5(t), x6(t), x7(t). The state of the
second gene, pirin, is deemed as the control input, and is
denoted by u(j) in the j-th realization, j ∈ {1, 2, 3, 4}. Then
we have

x1(t+ 1)� u(j) � x3(t+ 1)� · · ·� x7(t+ 1)

= N (j)x1(t)� u(j) � x3(t)� · · ·� x7(t),

where logical matrices N (j) ∈ L27×27 can be easily obtained
from the figures in [27].

III. PROBLEM FORMULATION

Since the j-th realization can be described by Eq. (4),
the overall expected value of x(t + 1) satisfies Ex(t + 1) =
LEx(t), where L =

∑N
i=1 piL

(i)
� u(i). The matrix L

is called the probability transition matrix. Fix t ≥ 0. If
Ex(t) = [π1, . . . , π2n ]

T ∈ R
2n , then Pr(x(t) = δi2n) = πi,

i = 1, . . . , 2n. The vector π = [π1, . . . , π2n ]
T is called the

steady-state probability distribution, and it satisfies

π = Lπ. (5)

From Eq. (5), the steady-state probability distribution of a PBN
can be easily calculated if the selection probability, the network
transition matrix, and the control inputs of each realization are
given.

Example 4. Reconsider the PBN in Example 3 and suppose
u
(1)
1 = u

(2)
1 = u

(3)
1 = u

(4)
1 = [0, 1]T . Then the probability

transition matrix can be easily calculated as

L =
4
∑

i=1

piL
(i)

� u
(i)
1 =

⎡

⎢

⎣

0 0 0 0
0 0 0 0
1 0 0 0.1
0 1 1 0.9

⎤

⎥

⎦
.

From Eq. (5), the steady-state probability distribution π =
[0, 0, 0.0909, 0.9091]T .

Now we continue to discuss the PBNs in the study of
metastatic melanoma. Without the consideration of the state of
pirin in the metastatic melanoma network, let x(t) = x1(t)�
x3(t)� · · ·�x7(t). The steady-state probability distribution of
the six genes, from state x = δ164 to state x = δ6464 , is shown in
Fig. 1. We observe that the steady-state probability distribution
is fixed if no external control is exerted.

Then it is natural to ask how to control a PBN to evolve
into a desired steady-state probability distribution. The de-
sired steady-state probability distribution is denoted by vector
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Fig. 1. The steady-state probability distribution of the six genes, WNT5A,
S100P, RET1, MART1, HADHB, and STC2 without control. The 42nd
element of the steady-state probability distribution vector is 1, and the other
elements take the value of 0.

π∗ = [π∗1 , . . . , π
∗
2n ]

T hereafter. In the potential applications
of the control of genetic networks, such as drug discovery
and treatment of intractable diseases, some states of the
whole network may be of more concern and their probability
distributions should be guaranteed firstly. Our work takes into
consideration the priority of each state. The priorities of the
states x1, . . . , x2n are described by constant weight values
ω1, . . . , ω2n , respectively, which satisfy ω1 + · · · + ω2n = 1.
Then a measure of distance between π and π∗ is defined as

‖ π − π∗ ‖=
2n
∑

i=1

ωi | πi − π∗i | . (6)

Observe that the set of all possible control inputs of a
PBN is finite, of cardinality 2mN . Thus, in most cases, the
steady-state probability distribution π of a prescribed PBN
can not be controlled into π∗ precisely, and we wish to solve
the following problem.

Problem 1. Consider a PBN (2). The optimal control of
steady-state probability distribution is to find control inputs
u(1), . . . , u(N) such that the distance between the steady-state
probability distribution of the PBN and the desired steady-state
probability distribution (6) is minimized. For the metastatic
melanoma network, the aim is to reduce the steady-state
probability of the states at which the WNT5A gene is active.

IV. MAIN RESULTS

Since the distance in Eq. (6) is not explicitly a function of
the control inputs, we need an adequate objective function to
solve Problem 1. To this end, we first used the Theorem in
our former work [23].

Theorem 1 ( [23]). For a PBN with m control inputs (4), let
the network transition matrices L(j), the selection probability
pj , j = 1, . . . , N , and the desired steady-state probability
distribution π∗ be given, and let matrix A(j) = pjL

(j)
�

W[2n,2m] � π, i = 1, . . . , N. Suppose u(j) = δzi2m . Then
Problem 1 can be equivalently rewritten as the following

1492



Fig. 2. An overview of the genetic algorithm.

problem:

find z = [z1, . . . , zN ],

max H(z) = Σ2n

i=1ωihi(z), (7)
subject to zj ∈ {1, . . . , 2m}, j = 1, . . . , N,

where function hi(z) = − | ΣN
j=1a

(j)
i,zj
− π∗i |, a

(j)
i,zj

is the i-th
element of the column vector Colzj (A

(j)).

Observe that the steady-state probability distribution π
and the matrix A(j) vary with the control inputs. When the
distance between π and π∗ is minimum, matrix A(j) can
be approximated by pjL

(j)
�W[2n,2m] � π∗, j = 1, . . . , N.

Using the swap matrix W[2n,2m] based on the STP technique,
matrix A(j) can be easily obtained. Numerical simulation
results proved that matrices A(j) provide an approximate data
fit. It is worth noting the resulting objective function (7)
involves no logical operators. A possible solution is a vector
z = [z1, . . . , zN ] ∈ {1, . . . , 2m}N .

Exhaustive search is not applicable as it is not easy to check
every possible vector of control inputs in each realization. So
an optimization algorithm is desperately needed. The genetic
algorithms are useful because they are known to cope well with
a large solution space. They have been widely applied in dif-
ferent tasks of genetic analysis, as reviewed in [28]. Therefore,
we propose a genetic algorithm that is especially suitable to
solve the optimal control of the metastatic melanoma network.

The goal of the genetic algorithm is to find a proper
vector z = [z1, . . . , zN ] such that the objective function (7)
is maximized. Before we introduce the algorithm, we need the
following definition at first.

Definition 2. For an integer vector z = [z1, . . . , zN ], integer
vector z′ = [z′1, . . . , z

′
N ] is said to be a neighbor of z if | {i |

z′i 
= zi} |≤ 2.

An overview of the proposed genetic algorithm is depicted
in Fig. 2. It consists of the following steps.

a) Initialization: Set parameters for the algorithm, in-
cluding Npop, k, ε1 and ε2 that will be introduced later.
Randomly generate an initial set of Npop solutions, which is
defined as the set of concerned solutions currently and denoted
by Ψ = {z1, . . . , zNpop}.

b) Evaluation: Each solution in Ψ is evaluated accord-
ing to the objective function H(z) in Eq. (7).

c) Selection: For each solution in Ψ, select a solution
that will be used in Step “Crossover”, which is called its
parent solution. Solution zi, i = 1, . . . , Npop in Ψ is se-
lected as the parent solution with probability qi, where qi =

Fig. 3. Two solutions crossover.

(H(zi)−Hmin(Ψ))/
∑

z∈Ψ{H(z) −Hmin(Ψ)}, Hmin(Ψ) =
min{H(z) | z ∈ Ψ}. Obviously, the solution with higher value
of the objective function is more likely to be selected.

d) Crossover: For each solution zi ∈ Ψ, i ∈
{1, . . . , Npop}, assume its parent solution is denoted by z′i.
If H(zi) < H(z′i), then with probability ε1, a single offspring
is generated by substituting N/2 randomly selected elements
of z′i for the corresponding elements of zi, as shown in Fig. 3.

e) Mutation: The offspring solution mutates randomly
to one of its neighbors with probability ε2. Steps “Selection”,
“Crossover” and “Mutation” are also called “Genetic opera-
tion”.

f) Local search procedure: Each solution z in Ψ is
specified as an initial solution. (i) Randomly select a neighbor
of z and denote it by z′. Then examine the objective function
values of both the current solution z and the neighbor z′;
(ii) If z′ is a better solution than z (i.e. H(z′) > H(z)),
replace the current solution with z′ and return to Step (i);
(iii): If k neighbors of the current solution z have been already
examined, end this procedure. Otherwise, return to Step (i).
Apply this procedure to all solutions in Ψ.

Observe that only a small number of neighbors are exam-
ined to prevent the “Local search procedure” from spending
too much computation time. The high performance of this
idea is demonstrated by successfully applying it to flowshop
scheduling problems in [29].

g) Update the best solution: The local search procedure
provides us a set of candidate solutions ranked by the objective
function value. The best solution thus obtained among them is
denoted by z∗.

h) Termination test: If a prespecified stopping condition
is satisfied (e.g., the best solution was updated 50 times), end
the algorithm. Otherwise, return to Step “Selection”.

The basic idea of the genetic algorithm is shown in Fig. 4.

Remark 1. i) The search direction in the “Local search
procedure” indicates certain biomedical purposes, e.g. if some
states of genes are more important than the others, the corre-
sponding weight values are larger, and it is more likely that
the simulation results shown later always favor one specific
best solution, like z∗ in Fig. 4.

ii) The “Genetic operation” is defined according to the
optimization problem given specifically. The “Genetic opera-
tion” we proposed here will be proved to be well suited for
the problem defined in Definition 1 by numerical simulations.
Parameters in Steps “Crossover”, “Mutation”, and “Local
search procedure” are changeable according to the changing
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Fig. 4. The genetic algorithm is applied in a 2-dimensional objective space.
The purple arrow denotes the result of the “Genetic operation”. The blue
line denotes the boundary of the solution set. Since the search direction has
been defined as the red arrow ω, z∗ is the best solution of all. Repeating the
“Genetic operation” and the “Local search procedure”, two different initialized
solutions both lead to the best solution z∗ in the end.

conditions, e.g. if m takes larger value, it is better to examine
more neighbors in the “Local search procedure”, which means
the larger the number of neighbors k is, the better the algorithm
performs.

iii) From the “Local search procedure”, we obtain solu-
tions that are better than their randomly selected neighbors,
which can be viewed as locally optimal solutions, and thus
obtain the best solution z∗. On the other hand, the “Genetic
operation” at the next iteration makes z∗ move, very probably
eventually moving towards the global optimal solution. In this
manner, the simulation result of the genetic algorithm closely
approximates to the global optimal solution. It is not easy to
theoretically analyze how close the objective function value
of z∗ approaches that of the global optimal solution, but the
experiments in [23] show that the algorithm works remarkably
well.

Now we apply the methodology above to find control
inputs to solve the optimal control problem of the steady-state
distribution probability of the metastatic melanoma network
with 7 genes. (So far the STP technique can be used to analyze
BNs with no more than 20 genes.) The objective of the control
is to let x1(t) = δ22 , and since each constituent BN has several
attractors [27], the steady-state probability of the attractors
should be higher than other states. To this end, we may assume
without loss of generality the desired steady-state probability
distribution π∗ = [π∗1 , . . . , π

∗
64]

T , where π∗42 = 0.26, π∗i = 0
if i ∈ {1, . . . , 32}, π∗i = 0.05 if i ∈ {33, 36, 44}, π∗i = 0.1
if i ∈ {34, 50}, π∗i = 0.015 else. We assume the selection
probability of each realization pi = 0.25 and the weight values
of all states ω1 = · · · = ω64 = 1/64. It follows from the STP
technique that

x(t+ 1) = Ed � u(j) � x(t+ 1)

= Ed �W[2,2] � x1(t+ 1)� u(j) � · · ·� x7(t+ 1)

= Ed �W[2,2] �N (j)
� x1(t)� u(j) � · · ·� x7(t)

= Ed �W[2,2] �N (j)
�W[2,2] � u(j) � x(t).

So the the network transition matrix of the j-th realization is
L(j) = Ed �W[2,2] �N (j)

�W[2,2].

0 2 4 6 8 10 12 14 16
0.01

0.014

0.018

0.022

0.026

0.03

Possible control policies

||
π−

π*
 ||

Fig. 5. The distance between π and π∗.

Fig. 6. The steady-state probability distribution of the six genes, WNT5A,
S100P, RET1, MART1, HADHB, and STC2 after optimal control.

With the help of Theorem 1 and the genetic algorithm,
the best solution is obtained as z∗ = [2, 1, 1, 2]. Hence the
corresponding control inputs are u(1) = δ22 , u

(2) = δ12 , u
(3) =

δ12 , u
(4) = δ22 . Let δi16 = u(1)�u(2)�u(3)�u(4). Then i = 10.

Since u(1) � u(2) � u(3) � u(4) = δ1016 , the result is the same
as what we observed from Fig. 5, which depicts the distance
between π and π∗ of all the 16 control strategies.

The steady-state probability distribution of the six genes
after optimal control is shown in Fig. 6. For states from
x(t) = δ3364 to x(t) = δ6464 , the state of gene WNT5A
is x1(t) = δ22 , which means that the action of WNT5A
in affecting biological regulation is reduced. So states from
x(t) = δ3364 to x(t) = δ6464 are the desired states. We observe
that the steady-state probability of the desired states is much
larger than the undesired ones.

V. CONCLUSION

This paper considered the issue concerning optimal control
of the steady-state probability distributions of a widely studied
metastatic melanoma network. Based on the STP technique,
we have established an objective function which explicitly
depends on the unknown control inputs and thus transformed
the formulated problem into the one of maximizing the objec-
tive function. Then the genetic algorithm we proposed before
can find the optimal solution, for any given weight values
which indicate the importance of each element of the steady-
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state probability distribution vector. In addition, the proposed
genetic algorithm is always applicable no matter how large the
number of realization N is. This is mainly because the number
of neighbors k is adjustable in “Local search procedure”.
Since we obtain the optimal control solution of the steady-
state probability distributions of the PBNs in a real biological
problem, the validity of the proposed genetic algorithm is
verified.
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