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Abstract— This paper proposes a cultural algorithm for
the spatial forest harvest scheduling for maximizing the total
harvested timber volume, under the constraints of minimum
harvest age, minimum adjacency green-up age, and approx-
imately even volume flow for each period of the schedule.
In order to increase the solution-search ability, the cultural
algorithm extracts problem-specific information during the
evolutionary solution search to update the belief space of a
generation, which has cultural influences and guidance on the
next generation. The key design of our cultural algorithm is
to propose the cultural and evolutionary operators specifically
for the problem. Experimental analysis shows that our cultural
algorithm performs better than the previous approaches.

I. INTRODUCTION

FORESTS provide multiple functions–production, pro-
tection as well as recreation, so that forest harvest

scheduling has been attracting a lot of attention. Forest
harvest scheduling becomes more complicated as multiple
economic, environmental, and social criteria are taken into
account. Among those criteria, the spatial concern in for-
est harvest scheduling is of importance as it maintains a
number of environmental and ecological conditions, such
as maintenance of biodiversity, limited sediment loading in
streams, limited disruption of habitats in an area, limited
impact on a viewshed, supply of open forage areas for
certain animals, and so on [1]. Furthermore, various types of
damages or spatially uncontrolled management implementa-
tions can result in decreased wood quality, habitat disruption,
water pollution, increased sediment quantities, and so on.
Based on the above reasons, it is common that the spatial
constraints on minimum adjacency green-up age are imposed
upon harvesting activities on adjacent forest stands.

The focus of this paper is on a spatial forest harvest
scheduling problem which aims at maximizing the timber
volume harvested over a harvest planning schedule with the
consideration of the minimum harvest age constraint, the
minimum adjacency green-up age constraint, as well as the
constraint of approximately even volume flow for each period
of the schedule. In the previous literature, several solutions
have been used for solving different types of spatial forest
harvest scheduling problems, among which exact solutions
include metroplis algorithm [2], mixed integer programming
[3], [4], and dynamic programming [5]; while metaheuristic
approaches include penalty function with simulated anneal-
ing [6], tabu search [7], and evolutionary program [8], among
others.
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In this paper, a cultural algorithm is proposed to solve
the above spatial forest harvest scheduling problem. The
cultural algorithm [9] is an evolutionary program [10], [11]
which improves the performance of evolutionary search by
extracting the domain knowledge of the concerned problem
during the search process. Besides the conventional evolu-
tionary settings, it maintains a belief space consisting of a
half of individuals with better fitness values from the current
generation, as well as a leader to guide the whole population.
During the search process, the belief space is updated by
incorporation of the extracted problem-specific knowledge,
and it influences each individual in the population to obtain
better solutions. As a result, this paper investigates how to
design a cultural algorithm specifically for the concerned
spatial forest harvest scheduling problem with the above con-
cerns. For performance evaluation, the proposed algorithm
is experimentally compared with the previous best-known
simulated annealing approach to the same problem in [8].
Our experimental results show that our proposed algorithm
performs better than the existing approaches.

II. PROBLEM SETTING

This section gives the basic settings of our concerned
spatial forest harvest scheduling problem. Our concerned
spatial forest harvest scheduling problem is the same with
[8], which is described as follows. Consider a forest land that
consists of a number of smaller polygonal forest lands, called
polygons, in which any two neighboring polygons are said
to have an adjacency relation. For simplicity of the problem,
it is supposed that the forests in each polygon are at an
equal age, and harvests occur at the beginning of a planning
period. We serve as the role of the forest planner who aims at
planning a harvest schedule of the forest land that is divided
into a number of time periods.

With the above setting, our concerned problem is to select
a number of forest polygons to be harvested in the beginning
of each period, such that the total volume harvested over the
planning harvest schedule is maximized, subject to minimum
harvest age constraint; minimum adjacency green-up age
constraint; the constraint of approximately even volume flow
for each period of the harvest schedule.

The details of the three constraints are stated as follows.
The minimum harvest age constraint allows the harvest
of only the polygons at age greater than a minimum age
threshold. The minimum adjacency green-up age constraint
considers the adjacency rule because the harvest should be
dispersed for hydrological and wildlife reasons about concen-
trated harvests associated with progressive clearcutting. The
green-up age is the age that a regenerated stand must reach
before an adjacent unit can be harvested. Our concerned
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problem is subject to a minimum adjacency green-up age
constraint, in which a forest polygon can be harvested only
when the age of each of its adjacent forest polygons is no
less than the minimum green-up age. In order to balance
the harvest volume of each period, the even flow constraint
enforces the timber volume for each period to be harvested
as even as possible.

Since forest polygons are harvested only in the beginning
of each period, the minimum adjacency green-up age con-
straint is always satisfied if we let the length of each period
be greater than the minimum adjacency green-up age. In
this paper, we continue using the setting in [8], in which
the minimum harvest age is 90 years, and the length of
each period is 20 years, which are always greater than the
minimum adjacency green-up age–15 years. With this setting,
it suffices to consider the adjacency relationship of polygons
in solving the problem, i.e., we only need to consider that
any two adjacent polygons cannot be harvested in the same
period, with no need to check their age difference.

III. OUR APPROACH

Our approach to the forest harvest scheduling problem is
based on the cultural algorithm (CA) [9], which is a class of
evolutionary program based on some theories from sociology
and archaeology that try to formulate cultural evolution. The
CA is carried out with two spaces: population space is a
set of individuals, in which each individual has a set of
independent features used for calculating its fitness, while
belief space stores the knowledge acquired by individuals
through generations. In each iteration of the algorithm, the
individuals in the population space can be replaced by
some of their descendants, who are obtained by applying
some operators to the population and may be influenced or
guided by the belief space. Hence, the belief space for each
population should be updated by communication with the
population.

The basic concept behind our CA approach works on a
population space where the best individual is selected as the
leader of the belief space and a group of better individuals
are selected as the normative matrix of the belief space.
The belief space has situational and normative influences
on the population space. In addition, the population space
is adjusted by both the conventional evolutionary operations
(including selection, crossover, repairing, and balancing op-
erations) and the cultural exploration operations (interchange,
sequencing, and simple mutation).

Remind that a CA works on a population space and
a belief space. In our CA, the belief space needs more
delicate designs, while the population space is based upon
the EP for the same problem proposed in [8], whose solution
representation is explained as follows. Consider a forest land
consisting of n forest polygons throughout the rest of this
paper, which are labeled by 1, 2, ..., n. Any feasible solution
of the planning problem is represented by an individual’s
chromosome that is a permutation 〈x1x2...xn〉 of n genes
(each of which represents a polygon ID), where ∀i, xi ∈
{1, 2, ..., n}, and those genes are classified into m period

partitions plus a residual partition, as shown in Figure 1. For
1 ≤ i ≤ m, the polygons in the i-th period partition are
harvested in the beginning of the i-th period of the harvest
schedule, while the polygons in the residual partition are
never harvested.

 

partition 1   partition 2    partition 3    partition 4      residual 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19

Fig. 1. An example for solution representation.

The main steps of our CA are stated in Algorithm 1, which
takes into account situational influence, normative influence,
as well as three cultural exploration operators (interchange,
sequencing, and simple mutation). Since the population space
of our algorithm is based upon the EP in [8], there exist
some common ingredients between the two algorithms. The
rest of this section only states in detail the other steps of
our CA that are different from [8]: initialization and update
of the belief space (Lines 3 and 21, respectively), mutation
operators with situational and normative influences (Lines 7
and 9, respectively), and exploration operators (Line 10–17).

Algorithm 1 OUR CULTURAL ALGORITHM()
1: generate random individuals (schedules) in the initial

population
2: evaluate the fitness of each individual in the initial

population
3: initialize the belief space (i.e., copy the best individual

to the situational belief space, and create the normative
matrix from the individuals with fitness greater than the
average fitness)

4: repeat
5: apply selection operator
6: apply crossover and repairing operators
7: calculate the cumulative probability distribution for

roulette-wheel normative influence
8: for each individual in current population do
9: apply cultural mutation operator (by situational and

normative influence)
10: switch (exploration operator)
11: case interchange:
12: apply interchange operator
13: case sequencing:
14: apply sequencing operator
15: case simpleMutation:
16: apply simple mutation operator
17: end switch
18: end for
19: apply balancing operator
20: check if each individual is accepted according to

acceptance criteria
21: update the belief space (with the current individuals)
22: until the end condition or the maximum iteration is not

reached
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A. Initialization and Update of the Belief Space
Let η denote the number of individuals in a population.

The belief space contains η/2 individuals that are copied
from those individuals in the population with fitness greater
than the average fitness of the current population. In addition,
the leader of the belief space is defined as the individual with
the best fitness in the space. Hence, in both the initial setting
and each iteration of the algorithm, the belief space and the
leader should be updated (Line 21 of Algorithm 1), and they
will be used in the mutation operators with normative and
situational influences, respectively.

B. Mutation operators with cultural influence
The mutation operators with cultural influence randomly

selects a gene position for each individual and mutates it with
the situational influence and normative influence, which are
stated in detail in the following subsections.

1) Situational influence: The basic idea of the cultural
evolution with the situational influence is originated from
the phenomenon that each individual in a generation tries
to behave as a leader. Following such an idea, our mutation
operator with situational influence is designed as follows.
For each individual, the operator randomly selects a period
partition i of the leader in the belief space and randomly
selects a polygon xj in the partition. If polygon xj is not
located in partition i of this individual, remove polygon
xj in its original partition and then add it to partition
i. By doing so, the selected polygon in the individual is
located in the same partition as the leader. Note that the
generated individual may violate the minimum adjacency
green-up age constraint. Hence, before executing the move
due to situational influence, we have to check if the violation
happens. If the adjacency rule is violated, then the move is
canceled.

2) Normative influence: The basic idea of the cultural
evolution with normative influence is originated from the
phenomenon that a group of individuals selected from the
population have an influence on the normative behaviors of
the whole population. In our CA, the selected group include
the individuals with fitness greater than the average fitness,
and they are saved in the belief space, which is updated in
each iteration (Line 21 of Algorithm 1).

We use roulette-wheel rule for the mutation operator with
normative influence. Since the belief space is corresponding
to a roulette wheel, all the individuals in a generation
(iteration) use the same roulette wheel, i.e., the wheel is
updated once (Line 7 of Algorithm 1) and can be used for
all the individuals (Line 9 of Algorithm 1) in each iteration.

In Line 7 of Algorithm 1, the roulette wheel is established
as follows. We record the gene in each partition that has the
maximal frequency among all the individuals in the belief
space. For i ∈ {1, ...,m}, let gi denote the gene in partition
i with the maximal frequency f(gi) for all the individuals in
the belief space. Then, the ratio of gi in the roulette wheel
is f(gi)/

∑m
j=1 f(gj).

In Line 9 of Algorithm 1, a random real number between
0 and 1 is selected for each individual. Then we find the

region in the roulette wheel where the random real number is
located. Without loss of generality, assume that the individual
selects the region representing gene gx. Then, the individual
adds gene gx in partition x.

Note that, different from the situational influence, the op-
erator of normative influence may violate both the minimum
harvest age constraint and the adjacency rule. Hence, the two
constraints should be checked before each move. If there is
any violation, the move of the gene is canceled.

C. Exploration operators

We use the exploration operators for maintaining the
diversity of the population. By analogy with [12], we design
our three exploration operators as follows.

The first exploration operator is the sequencing operator,
which arbitrarily finds two neighboring period partitions, and
then swaps all the genes of the two partitions. It has an
advantage that the generated individual only needs to be
repaired by considering whether the moves of the genes from
the former partition to the latter partition satisfy the minimum
harvest age constraint, because the genes in the same parti-
tion satisfy the minimum adjacency green-up age constraint
no matter where the partition moves, and the moves of the
genes from the latter partition to the former partition still
satisfy the minimum harvest age constraint. Note that this
operator is the most destructive among the three exploration
operators. The second exploration operator is the interchange
operator, which interchanges two genes respectively from
two different period partitions. The third exploration operator
is the simple mutation operator, which moves a genes from
a period partition to another period partition. Note that both
the minimum harvest age and minimum adjacency green-up
age constraints should be checked for the two operators. If
any constraint is violated, the interchange is not executed. By
analogy from [12], a parameter control mechanism is applied
for selecting the above three exploration operators.

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS

This section addresses the used simulation environment
and the implementation of our approach, and then conducts
a detailed experimental analysis.

A. Implementation and Simulation Environment

In order to evaluate the performance of our proposed
CA approach, we implemented not only our proposed CA
approach but also the previous SA approach [8], which has
been known to be the best approach to the proposed problem
so far. The parameter settings used in our CA approaches and
our problem are given as follows: population size: 10, 20,
40 (default: 20); crossover rate: 0.25; number of maximal
iterations: 10000, 1500, 2000 (default: 1000); number of
runs: 20, 100 (default: 20); minimum harvest age threshold:
90 years; minimum adjacency green-up age: 15 years; length
of each period: 20 years.

We conducted all the experiments on an artificial problem
instance, which is generated in the following way. At first, we
create a 20× 20 grid graph, in which each vertex represents
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a forest polygon; each edge represents that the two forest
polygons corresponding to the two end vertices of the edge
are adjacent geographically. Note that the degree of each
vertex in the grid graph is four. Next, we randomly remove
20 vertices from the graph. Finally, we randomly shrink
80 edges, and obtain the final testing graph. By doing so,
the final graph is capable of demonstrating some degree
of randomness while maintaining some degree of regularity,
such that the characteristics of adjacent forest polygons can
be established. In addition, some vertices in the final graph
are not necessarily of degree four, e.g., the vertex degrees of
the testing graph include one to seven, which increase the
diversity of adjacency relationship.

In addition to the adjacency relationship of forest poly-
gons, our problem instance requires the information of area
sizes and forest ages. Hence, in our setting for the prob-
lem instance, each vertex (representing a forest polygon) is
associated with a random real number from U(16, 20) for
area size (ha.) and a random integer from {0, 1, · · · , 99} for
forest age (years), where U(a, b) is the uniform probability
distribution function over the range [a, b]. For example, if
there is a vertex associated with 16.77 ha. and 67 years,
it means that the area of the polygon corresponding to this
vertex is 16.77 ha., and all the forests planted on this polygon
are 67 years old.

The objective of our concerned problem is to maximize
the total harvested timber volume, and hence, we let the
fitness in our CA approach be the total harvested timber
volume. From [13], each hectare of Cunninghamia lanceolata
at age t in Taiwan can harvest the following timber volume
(m3): 578.6851 · (1− t−1.5402)54.3344 where t is the age of
Cunninghamia lanceolata.

B. Experimental Results and Discussion

A variety of experiments for comparing the performance
of SA and CA and their detailed statistics are given in
Table I, in which the SA is experimented with 1000, 1500,
2000 iterations, while our CA is experimented with all
the possible combinations of the three maximal iterations
and three population sizes (10, 20, 40) as listed in the
second and third columns. Note that each entry in Table I
is computed by averaging the results of executing 20 times
of the considered algorithm. We observe from the ‘Best
fitness’ column (solution) that the CA always performs better
than the SA, no matter how many iterations are applied.
We observe from the ‘Difference ratio’ column that more
iterations do not imply better performance, in which the cases
of the CA with 1500 iterations are the best.

V. CONCLUSIONS

A CA-based approach to the spatial forest harvest schedul-
ing problem has been proposed to maximize the total har-
vested forest timber volume over a planning harvest schedule
while some constraints are satisfied. The main design of
the algorithm is to add a belief space to the evolutionary
program, in which a leader and a normative matrix guide or

TABLE I
STATISTICS OF EXPERIMENTAL RESULTS FOR SA AND CA.

Max Pop. Best Average Worst StdDev. of Run. Diff.
iteration Size fitness fitness fitness best fitness time (s) ratio∗

SA 1000 – 2519015.00 2460310.14 2424227.00 23947.17 0.33 0.00%
10 2535645.25 2498968.30 2463530.25 13927.56 4.34 0.66%

CA 1000 20 2536393.25 2507089.96 2477722.00 15622.12 8.13 0.69%
40 2536046.75 2511164.91 2495069.50 11468.91 17.28 0.68%

SA 1500 – 2498293.75 2461271.63 2395781.00 26761.83 0.49 0.00%
10 2536715.25 2502601.44 2468234.75 18039.91 6.42 1.54%

CA 1500 20 2547641.25 2507295.95 2486404.25 13776.92 11.83 1.98%
40 2536502.25 2515781.78 2502841.25 9311.72 24.76 1.53%

SA 2000 – 2509398.25 2447236.36 2374973.50 31961.42 0.67 0.00%
10 2530186.75 2499073.99 2464081.50 15663.53 8.40 0.83%

CA 2000 20 2530089.00 2511227.08 2491883.50 9894.33 15.37 0.82%
40 2534226.00 2514793.36 2489267.75 11475.18 32.16 0.99%

∗ The difference ratio is the measure of the difference of the best fitness from the
SA’s best fitness over the SA’s best fitness.

have situational and normative influences on the whole pop-
ulation to find better solutions. By experimental simulation,
it is showed that our proposed cultural algorithm performs
better than the simulated annealing approach which was the
previous best-known approach to the concerned problem.
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