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Abstract—It is usually agreed that a system capable of 

learning deserves to be called intelligent; and conversely, a 

system being considered as intelligent is, among other things, 

usually expected to be able to learn. Learning always has to do 

with the self-improvement of future behavior based on past 

experience. In this paper we present a learning model for 

Multi-Agent System, which aims to the optimization of 

coordination schemes through a collective learning process 

based on Cultural Algorithms. 

I. INTRODUCTION 

multi-agent system (MAS), a branch of distributed 

artificial intelligence, consists of agents community 

which interacts between them by using high level 

communication protocols and languages, to solve problems 

beyond his capabilities or knowledge [1]. The individuals 

(agents) of the MAS can learn trough their interactions. In the 

field of artificial intelligence, learning is usually a process 

through which a solitary agent acquires information about 

regularities in its environment, and then it uses that 

information to guide its behaviour. In a MAS, it is certainly 

possible to equip many agents with mechanisms allowing 

each one to learn individually. However, it has recently been 

argued that employing learning in the context of MASs may 

actually change the nature of the learning task, and make 

possible novel forms of learning [2]. Learning is, informally, 

the acquisition and incorporation of knowledge and skills by 

an agent, leading to an improvement in the agent’s 

performance. Learning is necessary in MAS because many 

times the environment of the MAS is large, complex, open 

and time-varying [3]. Large and complex imply designing a 

good agent behavior that takes into consideration all the 

possible circumstances the agents might encounter, this is a 

very difficult, if not impossible, undertaking. The second two 

properties, openness and variation over time, imply that even 

if such a behavior were somehow designed, it would quickly 

become obsolete as the environment changes. There is a 

common agreement that there are two important reasons for 

studying learning in MASs: to be able to endow artificial 

MAS  (e.g.,   systems  of   interacting   autonomous   robots, 
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software agents) with the ability to automatically improve 

their behavior; and to get a better understanding of the 

learning processes in natural MAS (e.g., human groups or 

insect societies). In MASs two forms of learning can be 

distinguished [4]. First, centralized or isolated learning, i.e. 

learning that is done by a single agent on its own (e.g. motor 

activities). And second, distributed or collective learning, i.e. 

learning that is carried out by the agents as a group (e.g. by 

exchanging knowledge or by observing other agents).  

An important issue in the MASs field is the learning 

processes for coordination. There are some works in the 

problem of learning in MAS´s coordination; in [5] the ad hoc 

coordination problem is studied; that is to design an 

autonomous agent which is able to achieve optimal flexibility 

and efficiency in a multi-agent system with no mechanisms 

for prior coordination. They conceptualise this problem 

formally using a game-theoretic model, called the Stochastic 

Bayesian Game, in which the behaviour of a player is 

determined by its private information. Based on this model, 

they derive a solution, called Harsanyi-Bellman Ad hoc 

coordination (HBA), which utilises the concept of Bayesian 

Nash equilibrium in a planning procedure to find optimal 

actions in the sense of Bellman optimal control. Other works 

that address the learning approach to coordinate MASs are [4, 

6]. These works use one of the technics more used in 

multi-agent learning, i. e., the Reinforcement Learning (RL). 

In [6] they propose a Bayesian model for optimal exploration 

in multi-agent RL problems that allow the exploration costs to 

be weighed against their expected benefits using the notion of 

value of information. Unlike standard RL models, this model 

requires reasoning about how one’s actions will influence the 

behavior of other agents. The estimated value of an action 

given current model estimates requires predicting how the 

actions will influence the future action choices of other 

agents. The value of information associated with an action 

includes the information it provides about other agents’ 

strategies. For other side, [4] deals with learning in reactive 

MAS. The central problem addressed is how several agents 

can collectively learn to coordinate their actions such that 

they solve a given environmental task together. In 

approaching this problem, two important constraints have to 

be taken into consideration: the incompatibility constraint, 

that is, the fact that different actions may be mutually 

exclusive; and the local information constraint, that is a 

fraction of its environment. Here, two algorithms called ACE 

and AGE (standing for "ACtion Estimation" and "Action 

Group Estimation", respectively) for the reinforcement 

learning appropriate sequences of action sets in MAS are 

described.  

Now, the previous works has the same north: ‘the 
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coordination in MAS’ based on a planning 

procedures-oriented approach, to ensure the achievement of 

the objectives. This means addressing the internal behavior of 

the MAS to achieve learning. That is, they attack the problem 

of coordination based on internal actions and behaviors of 

MAS, in order to obtain models of agents, and achieve in this 

way collective learning.  

Our model aims to coordination in MAS, searching the 

optimization of coordination schemes, but from another point 

of view, namely, an external approach of the MAS, by 

searching the communication protocols to be used by a 

conversation, through a collective learning processes based 

on Cultural Algorithms (CA) [7]. That communication 

protocols are obtained from the common knowledge space 

provided by the CA. In particular, our model uses the 

following coordination mechanisms (CM) standardized by 

the Foundation for Intelligent Physical Agents (FIPA): 

English Auction (SI), Dutch Auction (SH), the contract net 

(tender, L), and planning (PL). So, the MAS collectively 

achieve to discern which CM is the most suited for a 

conversation, by using that space of knowledge exchange. 

The model optimizes the part of coordination of MAS related 

to the costs of processing and communication generated by 

the use of a particularly CM. In this paper the interactions 

between agents are viewed as conversations, which in turn 

may have sub-conversations. To characterize these 

conversations and sub- conversations we have defined four 

“types of conversations” (TCs), TC1: Consult, TC2: Assign, 

TC3: Inform and TC4: Request, they are based on the FIPA 

communicative acts and defines the interactions patterns [8]. 

These patterns allow generalizing interactions or 

conversations between agents of any community. Here, a 

learning model is proposed to optimize coordination schemes 

in MAS, based on CA as an important tool for the learning 

process. The CA can provide knowledge, since one of its 

main components is a common space of experiences, thus 

providing the capacity for collective learning based on 

knowledge sharing. The paper is organized as follows; 

section II discusses the theoretical framework in which the 

model are based. Section III presents the approach: the 

proposed formal model of learning coordination schemes for 

MAS. Section IV presents the experiments with CLEMAS (a 

simulation tool, which means Cultural LEarning for 

Multi-Agent Systems) and the application of the model to a 

case of study and the results; finally, section V presents the 

conclusions. The case study is in the field of industrial 

automation, which consists in a MAS-based Fault 

Management System (MAS-FMS). 

II. THEORETICAL FRAMEWORK 

A. Coordination on MAS 

The problem of coordination arises in MASs due to the 

distributed nature of the control exercised by the agents.  

Coordination is defined by [3] as the process by which the 

individual decisions of the agents result in good overall 

decisions for the group. The problem is more stringent in 

cooperative multi-agent systems, but also appears when the 

agents are self-interested. We can describe coordination in 

MASs as the set of complementary activities necessary to be 

performed in a community of agents to act collectively [1]. In 

MASs, coordination can be seen as a process in which agents 

involved engage in order to ensure their community acts in a 

coherent manner. Coherence refers to how well a system 

agent behaves as a unit. There are several reasons why agents 

need to be coordinated [9]: 

 --Preventing anarchy or chaos: coordination is necessary 

or desirable because, with the decentralization in agent-based 

systems, anarchy can set in easily. No longer does any agent 

possess a global view of the entire agency to which it belongs. 

This is simply not feasible in any community of reasonable 

complexity. 

 --Meeting global constraints: there usually exist global 

constraints which a group of agents must satisfy if they are to 

be deemed successful. Agents need to co-ordinate their 

behavior if they are to meet such global constraints. 

 --Distributed expertise, resources or information: agents 

may have different capabilities and specialized knowledge. 

Alternatively, they may have different sources of 

information, resources (e.g. processing power, memory), 

reliability levels, responsibilities, limitations, charges for 

services, etc. In such scenarios, agents have to be coordinated 

in just the same way. 

Let’s now present some of the most representative 

coordination mechanisms finding on the literature [10]. 

1) Market Protocols: The most well known market 

structures take the form of auction houses [10] in which the 

type of auction indicates a prescribed guide of how the bids 

are treated. For example, the bids could be open and known to 

all the participants or they could be sealed and none of the 

bidders know about the others’ proposals. Alternative types 

of auction are when the bidders must follow a defined pattern; 

i.e., bids should raise the current price until one bid is the 

winner (when dealing with ascending price auctions) or when 

bidders are only allowed to decrease because the process 

starts with a high price (descending price auction). These 

protocols specify the rules the agents have to follow in order 

to propose, to deliver and to take decisions about the 

proposals. However, although the protocol specifies the rules 

of how agents can bid, it is clear that agents still have to take 

their preferences into account to decide how to actually bid. 

Moreover, if an agent is aware of the offers of the other agents 

it might use a different strategy than if it does not know about 

their bids. 

2) The contract Net protocol (Tender): The Contract net, 

designed by Randall Davis and Reid Smith [11], are 

mechanisms used for collaborative problems solving. In this 

case, the goal is that several agents communicate and 

coordinate with each other, so they can carry out a task whose 

complexity makes it difficult to be performed by a single 

agent. Each agent in the network takes one or two roles 

related to the execution of an individual task: manager or 

contractor. When an agent has the manager role must carry 

out certain activities, which are: (i) break a complex task into 

less complex subtasks, and so it will be easier to solve, (ii) 

announce to other agents that there is a sub-task expecting to 

be executed. These ads are distributed through a broadcast 

message to all agents or are directed to a specific group of 
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agents, (iii) when it receives the response to their requests, the 

manager selects the most appropriate offer and assign this 

sub-task to this agent, for which a contract is created, (iv) 

monitor the progress of the contract, possibly asking for 

information, reports, etc. It is free to reassign the subtask if 

the contractor fails to complete, finally, (v) integrate the 

partial results produced by the contractors in a complete 

solution. Meanwhile, the contractors agents perform the 

following activities: (i) receive announcements of tasks and 

assess their skills and availability to perform them, (ii) if they 

are able to satisfactorily perform the task, make an offer, and 

(iii) if this offer is accepted they reserve the resources 

required for its execution. When the contractors have won 

bids, they must perform the tasks assigned to them, and 

generate reports about the progress of these tasks and their 

final results. The contractor agents can become managers if 

the subtask is too complex for their abilities, then they 

subdivide the sub-task and the process of assignation of task 

is repeated. In summary, the protocol uses a number of basic 

messages: 

 --Notification of the task, sent by the manager agent to 

announce the availability of a task and the need for 

contractors 

 --Offer, sent by the contractor agents when they are 

available to perform a task 

 --Winner, sent by the manager agent to the contractor, 

stating that he is now responsible for the task 

 --Report, submitted by the contractor agent to the 

administrator/manager agent stating whether or not 

successfully it executes the task and the results (also, it sends 

partial results).  

These messages provide the functionality needed to make 

the contracts between agents [11]. 

3) Multi-Agent Planning: The intuitive concept of 

multi-agent planning involves the agents agreeing about the 

order in which their actions are executed in order to obtain a 

coordinated global plan (joint plan) [10]. Such planning 

involves two phases: building the plan (design phase) and 

executing it (execution phase). The design phase’s objective 

consists of trying to obtain a joint plan where the actions of all 

the agents are scheduled and the conflicts that might cause 

harmful interactions have been removed. The challenge of 

this stage is to reconcile the various choices raised to find the 

best sequence of actions about which all the participants 

agree. This agreement not only covers the order and time at 

which the actions take place, but also the resources assigned 

to each action. The aim of the latter phase is to execute the 

actions of the joint plan.  

In the multi-agent planning literature there are two main 

approaches to constructing and/or executing a plan, the 

centralised and the distributed solution. The differences 

between them relate to whether the responsibility for 

constructing and managing the execution of the plan lies with 

a single agent or with multiple agents. This responsibility 

involves things like maintaining the coherency of the plan, 

solving problems as they arise, and giving priorities to the 

various actions. In the centralised case, one agent has the 

global vision or knowledge of the problem and is capable of 

solving any discrepancies that might appear when 

constructing or executing the plan. In the distributed case, 

however, several agents participate in coordinating and 

deciding upon their actions, about avoiding conflicts when 

executing the plan, and helping each other to achieve the plan.  

B. Learning to Select Mechanisms of Coordination 

To date there has been comparatively little work concerned 

with learning which CM to select in a given context. 

However, there are two systems in which such learning is 

exploited; namely, COLLAGE and LODES [10]. The 

objective in both systems is to improve coordination by 

learning to select a coordination strategy in appropriate 

situations. However the aspects each system addresses are 

different and their findings are complementary. LODES is 

more interested in having agents that are capable of learning 

the key information that is necessary to improve coordination 

in specific situations. In COLLAGE agents learn how to 

choose the most appropriate coordination strategy given a 

particular situation. Thus, LODES focuses on “what 

information to learn” and COLLAGE on “learning the 

situation where to use a coordination strategy”. It is important 

to notice that both systems are concerned with the detailed 

activities of coordination as part of the learning process. For 

agents to solve a particular coordination problem, they have 

to solve all the interrelations and dependencies between their 

actions. Thus agents first plan the actions to perform and then 

execute them. To solve this, both systems have to handle 

explicit knowledge about the domain in the case of LODES 

and about coordination strategies in the case of COLLAGE.  

III. LEARNING MODEL OF COORDINATION SCHEMES IN MAS 

The learning model consist in to define and specify each 

component of a CA on the basis of our proposed objective, 

which is learn coordination protocols for possible 

conversations of a MAS. These components are: a population 

space, a belief space, and a protocol (acceptance and 

influence functions) that describes how knowledge is 

exchanged between the two spaces. In addition to CA, a 

mathematical formalization of CM carried out in previous 

work is used [8, 12, 17]. The basic pseudocode of our learning 

model is shown (Fig. 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. The population 

The population, as in any method of Evolutionary 

Computation (EC) is formed by individuals. In our model, 

each individual is a MAS composed of n different 

Begin 

  t = 0; 

  Initialize population P(t); 
  Initialize Coordinating Mechanisms MC(t);   

  Initialize Belief Space BS(t); 

    Repeat 

        Evaluate population P(t) with the objective function; 

Adjust BS(t) with the objective function of acceptance P(t) 

        Variation of P(t) from P(t-1) using the influence function BS(t) and 
the genetics operators 

   Until number of generations reached; 

End 

 

Fig. 1. Basic Pseudocode for Learning Model Based on CA 

 

 

 

 

 

 

 

 

 
Fig. 1. Basic Pseudocode for Learning Model 
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conversations involved in the community of agents (that is an 

instantiation of the MAS using in each case different CM). 

Remember that every conversation, in turn, has 

sub-conversations eventually. All of them are characterized 

by the TCs previously defined [8]. 

The individuals in our populations has the structure of  Fig. 

2, where    denotes the conversation i existing in the MAS, 

FO is the value of the objective function of individual,      

denotes the sub-conversation k of the conversation i, being mi 

the number of associated sub-conversations to the 

conversation,     is the type of conversation,       is the 

CM used, and     
  are the   parameters of those CM. When a 

conversation have not sub-conversations, k = 1.  

 

 

 

 

 

 

 

 

 

 

The highlighted part of the individual represents its 

knowledge or experience. In order to describing a little more 

the Fig. 2, the following example assumes: a MAS with three 

conversations (C1, C2, C3), where C1 has two 

sub-conversations (C1.1, C1.2), C2 has two sub-conversations 

(C2.1, C2.2) and C3 has three sub-conversations (C3.1, C3.2, 

C3.3). Besides it is assumed that the type of conversation of 

the sub-conversation C2.1= is TC2: assign and; for that TC the 

individual uses the CM English Auction (SI). In previous 

works have already been parameterized this CM, [8, 12, 17]; 

so, for the case of SI its parameters are C0, is the initial price 

of the auction, I, which represents the maximum amount that 

each bidder agent i can bid, and CP(j) (it is the condition for 

stopping the auction, where j is the number of rounds). 

In the Fig. 3 is shown this explanatory example doing a 

specific zoom for C2.1. This figure also represents the gene of 

the individual. 

 

 

 

 

 

 

 

 

 

 

Well now, for the reproduction of the population are used 

two genetic operators, mutation and crossover. An example 

of crossover between these individuals is shown below. For 

example assume the individual of Fig. 3. We further assume 

that each conversation (C1, C2, C3) has only one 

sub-conversation (that is the conversation itself), namely, that 

individual shall be composed of three TCs. Now, assume that 

each of these TCs deserves to be treated by a CM. For 

mutation and crossover, the CMs represent individual genes, 

that is, each CM has implicitly a sub-conversation, a TC, and 

a set of parameters. The following figure illustrates this 

example. 

In Fig. 4, part (a) are the parents, and part (b) the offspring. 

In the individual parent to the left, the first CM used is ‘SI’ for 

the TC of C1, ‘L’ for the TC of C2, and ‘SH’ for the TC of C3, 

the analyze is similar in the case of the another individual 

parent. The one-point crossover is used (indicated by the 

arrows), which is applied at the level of the CM only. We see 

as two new children are generated. 

 

 

 

 

 

 

 

 

 

 

The mutation is simpler; it takes a CM or more from the 

conversations of a parent, and changes it randomly by other 

CM. 

B. Objective Function 

The objective function evaluates the performance of each 

individual. This function is based on the processing cost (CP) 

and communication cost (CC) of each CM used by the 

individual, see equation (1). There, ‘a’ and ‘b’ are constants 

defined by the user to weigh the importance of the 

communication part with respect to the processing part. n is 

the number of conversations, mi is the number of 

sub-conversations in a conversation i, CPi,k, is the cost of 

processing of the CM used in the sub-conversation k and 

conversation i. CCi,k is the cost of the communication. For our 

case, the best individual will be the one that minimizes 

objective function [12].  

                      
  
   

 
     (1) 

The cost of processing CPi,k is given by equation (2), and 
its units are based on the average execution time: 

                    

  

   
 
     (2) 

This cost depends of the actors involved, and processing 

algorithms. Up for auction (english or dutch), PIk is the initial 

price setting and start of auction of the sub-conversation k, 

PEK is the process of selecting the winning agent, j  the 

number of rounds, nj the number of bidders for round, and Al,q 

is the time to prepare proposal for auction of participating 

agents. For tender PIk is the specification of conditions 

(initial) in which a service is required, PEK is the process of 

selecting the servicing agent, j is equal to a one round (1), nj 

number of bidders, and Al,q is the time to prepare proposal for 

bidding agents. For both CM, PI, PE and A according to 

Table I, are parameters measured qualitatively (e. g., low, 

medium and high). 

                             

C1 C2 … Cn FO 

   

 

Ci.k TCs 
Coordination Mechanism 

MCi.k P
1
i.k P

2
i.k … P

u
i.k 

 
Fig. 2. Internal Structure of an Individual 

                             

C1 C2 C3 FO 

 

 

C2.1 TC2 
Coordination 

Mechanism 

SI C0 i CP(j) 

 

Fig. 3. Example of a Gene on Individual, Zoom in C2 

SI L SH FO  SH SI L FO 

  Crossover Point  (a) 

             

 

 

SI SI L FO  SH L SH FO 

           (b) 
Fig. 4. Crossover Operador 

 

 

 

 

 

 

 

 
Fig. 4.  
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To measure these parameters with numbers (so equations 

require) consider as a reference the Likert scale [13], which 

allows to assign numerical values to such parameters. Thus, 

we assign the value 0.2 to low 0.6 to medium and 1 to high. 

The other parameters are quantifiable. The cost of 

communication is based on the estimated time for messages 

exchange (communicative acts) used in the CM in each 

conversation, its equation is as follow: 

                       

  

   
   
         

   
   

 
     (3) 

Where j is the number of rounds, N-1 the number of agents 

least the sender of message and nj is the number of 

participants in each round. For auction and tender, CEP is the 

sending cost of the initial proposal, CEO is the sending cost of 

bids, and CS is the cost of informing the winner. Table II 

shows the qualitative values for the parameters CEP, CEO, 

CS. 

 

 

 

 

 

 

C. Belief Space 

 There are two categories of knowledge in belief space: 

situational and normative. 

1) Situational Knowledge: In situational knowledge is kept 

information over good or bad individuals. In our model, it is 

based on each TC, for which is included each CM used in this 

TC, their rate of occurrence (IO), and finally, the total 

occurrences (TO) of the TC (Fig. 5). 

 

 

 

 

2) Normative Knowledge: The normative knowledge 

defines the ranges suitable for each of the variables of the 

CMs. In Fig. 6, LI and LS are the lower and upper limits of 

each variable (parameter P
i
) forming each CM. 

 

 

 

 

D. Communication Protocol 

Functions of acceptance and influence are those that allow 

the interaction between the population space and the belief 

space. These functions in this proposal are: 

1) Acceptance Function for the Situational Knowledge: 

This function takes a percentage of the population (20% of 

individuals is sufficient according to Reynolds [7]), in order 

to nurture the belief space with their experiences. The 

acceptance function updates the situational knowledge as 

follows: for a specific type of conversation each of the 

mechanisms involved in this type of conversation is updated 

by (4). 

                                                       (4) 

                            

Where IO(TCs, MCi, t) is the rate of occurrence in the iteration 

(t) for TCs and MCi. IO(TCs, MCi, t-1) is the rate of occurrence in 

the iteration (t-1) which is currently in the belief space, 

TO(TCs) is the total occurrences of MCi for TCs, and NO(TCs, 

MCi, t)  is the number of occurrences in the current instantiation 

of the MAS for each MCi for this TC. It is also necessary to 

update the total occurrences TO, for that the following 

equation is used, where k is the number of CM used in this 

TCs: 

                                     
 
     (5) 

                            

2) Acceptance Function for the Normative Knowledge: 

The acceptance function updates the normative knowledge by 

the following equation: 

                          (6) 

Where, Lac(P
u
) is the current limit (either LI or LS), Lv is 

the previous limit,    is the complement of the moment, 

namely, (1 - m),    is the average value of the limit of all 

individuals accepted within 20% from the population. 

Finally, m is the moment that is given by the equation: 

m = t  (7) 

Where  is a time constant between 0 and 1, and t is the 

iteration number, (t = 1, 2, 3 ...). Thus, each time it reaches a 

new experience of the people, the limits of each parameter of 

the mechanism are updated.  

3) Influence Function: The influence function determines 

how the knowledge of the system influences over the 

individuals in the population. In the case of situational 

knowledge, is based on the use of the mutation operator, 

which switches the current CM of a given conversation, 

according to a probabilistic rule (stochastic universal 

sampling or roulette wheel [14]) based on the IO parameter of 

each TC (we call that a targeted mutation). 

In the case of normative knowledge is also based on the 

mutation operator, only that here the complete structure is not 

varied, but only specific values of the ranges are altered for 

each variable of a specific CM. 

 

 

TABLE I 

QUALITATIVELY VALUES OF THE PARAMETERS PI, PE AND A 

MC       A 

Tender (L) Medium Medium Medium 
English and Dutch 

Auction (SI, SH) 
Low Medium Low 

 

TABLE II 
PARAMETERS CEP, CEO, CS  

MC         CS 

Tender (L) Low Medium Low 

English and Dutch 
Auction (SI, SH) 

Low Medium Low 

 

                            

TCs MCi IO(TCs, MCi, t-1) TO(TCs) 

 
Fig. 5. Situational Knowledge 

 

               

MCi P
1
 P

2
 

… 
P

u
 

LI LS LI LS LI LS 

 

Fig. 6. Normative Knowledge 
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IV. EXPERIMENTS 

A. Study Platform 

This section present a tool (CLEMAS) to implement the 

learning model of coordination schemes for a given MAS. 

Besides it is presented a case of study oriented to the 

integration in automation agent-based. 

1) CLEMAS (Cultural Learning for Multi-Agent Systems): 

This tool has four main components: the execution engine, a 

system that emulates the CA, a graphical interface for 

configuring the system initially and visualizes the learning 

process with their results, and a database that stores the 

existing prior knowledge in the belief space. The execution 

engine component runs the learning process through a class 

called 'simulation', using for this the initial system 

configuration. The CA component represents individuals and 

the belief space, the knowledge base component stores the 

situational and normative knowledge in the belief space (it is 

saved with the extension .ccg, for others futures executions). 

2) Case of Study: Fault Management System MAS-based: 

The case study of this paper corresponds to a MAS for 

handling faults in industrial processes, whose specification is 

described in detail in [15] using the MASINA specification 

methodology proposed in [16]. The Fault Management 

Systems (FMS) is composed of two modules, the first 

performs the monitoring and failure analysis, and the second 

performs the tasks of the maintenance management system. 

The FMS interacts with the Maintenance Engineering and the 

Fault Tolerant process. The Monitoring and Failure Analysis 

module includes the fault detection and diagnosis; the 

Maintenance Tasks module includes the following tasks: 

Prediction of the occurrence of a functional failure, Planning 

of preventive maintenance, and execution of maintenance. 

The FMS is a subsystem of level of supervision of an 

automated system. Thus, the FMS can be seen as a system 

composed of intelligent agents that cooperate to solve 

problems related to the handling of system failures. 

Furthermore, some activities of the FMS follow a distributed 

computing model, such as those performed for the fault 

detection in equipment or processes, the performance index 

estimation, among others. To illustrate the application of the 

proposed CA-based learning for the coordination of the MAS, 

two specific conversations of MAS for handling faults 

described above are taken. Before that, the coordination 

model is presented in a general manner for such MAS. Then it 

specify in detail the coordination schemes chosen under the 

formalism proposed in this paper, and an execution of 

CLEMAS is shown. 

Coordination Model: The MAS has six conversations that 

are [15]: On-condition maintenance (C1), maintenance tasks 

(C2), urgent tasks (C3), replanning of tasks (C4), state of 

maintenance (C5), and identify functional failure (C6). Of 

these six conversations only two will detail, the rest can be 

found at [15]. 

 --Conversation 4 (C4): Replanning of Tasks, this 

conversation is made up of three sub-conversations: C4.1 of 

type TC1, C4.2 of type TC3 and C4.3 of type TC4. 

Description: Through this conversation, the coordinator 

agent seeks information from the database agent to 

reschedule outstanding maintenance tasks on the system, and 

make a new maintenance plan. If the task is urgent and cannot 

reschedule an alarm is given. 

 --Conversation 5 (C5): State of Maintenance, this 

conversation is made up of four sub-conversations: the 

C5.1of type TC1, C5.2 of type TC1, C5.3 of type TC3 and 

C5.4 of type TC4. 

Description: Through this conversation, the observer agent 

seeks information from the database and the actuator agent 

agent to store outstanding maintenance tasks on the system. 

To show the characterization of TCs in the 

sub-conversations in every conversation, we present as an 

example the interaction diagram of conversation state of 

maintenance (C5), identifying the TCs in boxes (Fig. 7). In 

that conversation, the observer agent (AO) consults (TC1) the 

database agent (ABD) twice (process information and 

maintenance information), reports (inform, TC3) to the 

actuator agent (AA) maintenance tasks, and those do not 

made, and requests (TC4) to ABD to incorporate information. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

B. Design of the Experiments  

For the case study we characterized the previous two 

conversations in two different scenarios. 

Scenario One: For this scenario, we assume that for C4 must 

be optimized only the sub-conversation (C4.1) which has 5 

agents (4 database agents and 1 coordinator agent), and for C5 

must be optimized the sub-conversation (C5.3) with 4 agents 

(1 observer agent and 3 actuators agents). The objective of the 

simulation is to show how it influences the number of 

generations (iterations) for the learning process. To achieve 

this, CLEMAS is configured initially with a low number of 

generations. The maximum number of auctions rounds is 5 

and for tender 1. The initial values of the parameters of the 

auctions mechanisms (English and dutch) for TC1 are: C0 = 

[5 ... 15] εi = [5 ... 20], CP(j) = [1 ... 5]. For TC3 the initial 

values of tender are M(f) = [1 ... 3] that is the expiration date 

 
 

Fig. 7. Conversation with its TCs 
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for offering [17], and f(T) = [5 ... 20] that is a function that 

allows potential contractors to assess their capacities to 

respond to the notice of request for the performance of the 

task [17]. For this simulation the population size is 20 

individuals, 35 generations (35 iterations), crossover 

probability of 0.7 and mutation of 0.5.    

Scenario Two: In this scenario the same sub-conversations 

are assumed to optimize, and the same CM are used. 

Additionally, the number of agents is the same. Here, we 

increase the number of generations to 50 to see if individuals 

actually improve their behavior. The values of the initial 

parameters remain the same in this scenario, population and 

genetic probabilities. 

(1) Results of Simulations: In the following, the results 

provided by CLEMAS are presented.  

For Scenario One:  
 

 

 

 

 

 

 

 

The next figure, shows the evolution of the objective 

function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For Scenario Two:  

 

 

 

 

 

 

 

 

 

2) Analysis of results: In both tables (III and IV) the sum of 

the values of each mechanism are the 100%. Now, in the table 

III, we see that for scenario one, the TCs being optimized 

were consult (TC1) and inform (TC3), which are precisely the 

TCs using C4.1 and C5.3 respectively. The table also shows 

for this scenario that tender has prevailed with 49.64% with 

respect to other mechanisms (total occurrences). This is 

because the TC1 uses 96.42% this mechanism, whereas TC3 

use 62.14% Dutch auction. The English auction only is used 

35.0% for the TC3. Fig. 8 shows the evolution of the 

objective function through the generations. In Fig. 8 the red 

curve (squares) represents the average of the objective 

function of the entire population. The blue curve (circles) 

represents the objective function of 20% of the population 

(selected for the individual acceptance function, it represents 

the desired behavior).  

 

 

desired behavior). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally the green curve (triangles) represents the average of 

the remaining 80% of the population. This graphic could be 

seen as the learning of individuals because its reflects how the 

individual reduce their costs (FO) through the use of 

appropriate CM. Thus we see how the curves tend to follow 

that of the best individuals (circles) even though the number 

of generations is quite small.  

For scenario two, Table IV shows that the dominant 

mechanism was the tender with 55.20% for TC1, because it is 

less expensive for this TC. Table shows that for this scenario 

all mechanisms were used. The English auction is most used 

by TC3 in a 60.93% and a 2.60% by TC1. Finally Dutch 

auction is used for TC1 in a 42.18% and in a 38.02% for TC3. 

As is observed, the tender mechanism for TC1, and the 

auction mechanism for TC3,  are the bests. Fig. 9 shows how 

when is increased the number of generations, the curves tend 

to drop, reducing its objective function (FO) to the range of 

5.0 and 8.0. Additionally, the curves tend to converge to 

similar values. That is due to that when is increased the 

number of generations individuals acquire more knowledge. 

As a final result analysis, for both scenarios, despite TC1 

start with auction and TC3 with tender (section IV, part B), it 

appears that individuals choose tender for TC1 and auction 

for TC3, possibly due to the number of agents in each 

sub-conversation. The value of the objective function is 

TABLE III  

RESULTS (PERCENTAGE OF USE OF EACH CM IN EACH TC, BASED ON 20% 

OF THE POPULATION) 

TC Tender English Auction Dutch Auction 

Consult (TC1) 96.42% 1.42% 2.14% 
Assign (TC2) 0.0% 0.0% 0.0% 

Inform (TC3) 2.85% 35.0% 62.14% 

Request (TC4) 0.0% 0.0% 0.0% 
Total of Occurrences 49.64% 18.21% 32.14% 

 

 

 

 
 

Fig. 8. Evolution of the objective function for the Scenario One. 

 

TABLE IV  

RESULTS (PERCENTAGE OF USE OF EACH CM IN EACH TC BASED ON 20% 

OF THE POPULATION) 

TC Tender English Auction Dutch Auction 

Consult (TC1) 55.20% 2.60% 42.18% 

Assign (TC2) 0.0% 0.0% 0.0% 

Inform (TC3) 1.04% 60.93% 38.02% 

Request (TC4) 0.0% 0.0% 0.0% 
Total of Occurrences 28.12% 31.77% 40.10% 

 
 

 

 
 
Fig. 9. Evolution of the objective function for the Scenario two. 
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significantly improved in scenario two by increasing the 

number of generations, that means, they have more 

experiences to learn. 

3) Qualitative comparison on coordination learning 

strategies: In this section we will make a qualitative 

comparison of related-learning works in MAS, in order to 

highlight the contribution that our job offers. Previous works 

related to learning in multi-agent systems are limited, much 

of these works relies on techniques derived from RL [4, 6], 

and more few in learning which CM to select in a given 

context [10]. While these approaches address the 

coordination problem based-learning, this is accomplished 

without any interaction between agents. Theirs algorithms 

and approach are based on actions, states and rewards (own of 

the RL). These approaches require that each agent has a 

model of the strategies of others (states, actions and rewards). 

On the other hand, the approach of [10] is very close to ours, 

but their difference is that the MAS of this work consists of 

complex cooperative agents (each agent is a sophisticated 

problem solver), and each local agent interacts with the other 

agents’ in intricate ways. Our approach is simpler, since we 

do not explore the inside of the agents (like in RL). Our 

approach does not require sophisticated agents and do not 

depend on the kind of application, or what specifically makes 

the MAS. The determining factor in our approach is its 

Structural Characterization (how agents interact with each 

other, what types of conversations uses, which is the cost of 

processing and communication in achieve interaction 

protocols, etc.), i. e., it is transparent to the goal of the MAS. 

This makes it is more universal, because can be applied to any 

MAS. 

V. CONCLUSION 

CA are presented as a powerful learning tool for 

individuals in different societies. In this work, it has been 

used to learning how to coordinate a MAS. A learning model 

of coordination schemes for communities of agents using CA 

is proposed. The cultural model is systematized in the 

CLEMAS platform, which allows interactively present 

different scenarios in the case study, and graphically displays 

the results of these scenarios. 

One of the main advantages of the system is its simplicity 

and flexibility to adapt to any scenario, allowing the test of 

issues like scalability in the agent community. In addition, all 

the accumulated knowledge in the belief space can be reused 

by the system to optimize the CM of other MAS, that is, that 

knowledge can be reused continuously for design CM of 

MAS. In summary, we have presented a Cultural Learning 

System for coordination schemes for MAS, and the same has 

been applied to a case study, a fault handler system based on 

MAS. CLEMAS is presented as a useful tool for collective 

learning in communities of agents and can handle different 

types of knowledge (in our case, situational and normative). 

Upcoming work will carry out a more thorough study of 

the different parameters that can be considered in a learning 

process of coordination mechanisms of MAS (number of 

agents, number of communications, etc.), as well as the 

suitable values of CLEMAS (number of generations, 

probabilities, etc.) 

REFERENCES 

[1] J. Aguilar, A. Rios Bolivar, F. Hidroboro, and M. Cerrada, “Sistemas 

multiagentes y sus aplicaciones en automatización industrial,” First 
edition 2012, ISBN: 978-980-12-5942-8, Universidad de Los Andes, 

Facultad de Ingeniería, Mérida-Venezuela. 

[2] J. Noble and D. W. Franks, “Social Learning in a Multi-Agent 
Systems,” Computing and Informatics, Vol. 22, pp. 1001–1015, Apr. 

2004. 

[3] L. Busoniu, B. De Schutter, and R. Babuˇska “Learning and 
Coordination in Dynamic Multiagent Systems,” Delft University of 

Technology, Mekelweg 2, 2628 CD Delft, The Netherlands, Tech. Rep. 

05-019, October 2005. 
[4] G. Weiß. Lernen und Aktionskoordinierung in Mehragentensystemen. 

In J. Müller (Ed.), Verteilte Künstliche Intelligenz – Methoden und 

Anwendungen (pp. 122–132). BI Verlag. 1993. 
[5] S.V. Albrecht, S. Ramamoorthy. A Game-theoretic Model and 

Best-response Learning Method for Ad Hoc Coordination in 

Multiagent Systems. Technical Report, School of Informatics, The 
University of Edinburgh, United Kingdom, February 2013. 

[6] G. Chalkiadakis, C. Boutilier, “Coordination in Multiagent 

Reinforcement Learning: A Bayesian Approach,” AAMAS´03, 
Melbourne, Australia, July 14-18, 2003. 

[7] R. Reynolds, “Cultural Algorithms: Theory and Applications”, New 

Ideas in Optimization. David Corne, Marco Dorigo and Fred Glover, 
Editors. Chapter Twenty-Four; pp.367–377, 1999. 

[8] J. C. Terán, J. L. Aguilar, and M. Cerrada, “Modelo cultural para la 

coordinación de sistemas multi-agente” Tech. Rep. Universidad de Los 
Andes, Venezuela. 2013. 

[9] H. Nwana, L. Lee and N. Jennings, “Co-ordination in software agent 

systems”. BT Technol J, Vol. 14, no. 4, October 1996. 
[10] C. B. Excelente Toledo, “The Dynamic Selection of Coordination 

Mechanisms in Multi-Agent Systems (Thesis or Dissertation style),” 

Ph.D. dissertation, Dept. Elect. and Comp. Sci., Univ. of Southampton, 

February 2003. 

[11] R. Smith, “The Contract Net Protocol: High-Level Communication and 

Control in a Distributed Problem Solver,” IEEE Transactionson on 
Computers, Vol. C-29, no. 12, December 1980. 

[12] J. Terán, J. L. Aguilar and M. Cerrada, “Cultural Algorithms-Based 

Learning Model for Multi-Agent Systems (Presented Conference Paper 
style),” presented at the XXXIX Latin American 

Computing Conference (CLEI 2013), Vargas, Venezuela, October 

7–13, 2013. 
[13] D. Bertram, “Likert Scales”, CPSC 681 – Topic Report. 

http://poincare.matf.bg.ac.rs/~kristina/topic-dane-likert.pdf 

[14] M. Mitchell, “An introduction to genetic algorithms”, Eighth printing, 
2002, first MIT press paperback edition, Massachusetts Institute of 

Technology, 1998. 

[15] M. Cerrada, J. Aguilar, J. Cardillo, R. Faneite, Agents-based design for 
fault management systems in industrial processes, Journal Computers 

in Industry, Vol. 58, no. 4, pp. 313-328, 2007. 

[16] J. L. Aguilar, M. Cerrada, G. Mousalli, F. Rivas, F. Hidrobo, “A 
Multiagent Model for Intelligent Distributed Control Systems”, Lecture 

Notes in Artificial Intelligence, Springer-Verlag, Vol. 3681, pp. 
191-197, 2005. 

[17] J. Terán, J. L. Aguilar, and M. Cerrada, “Mathematical Models of 

Coordination Mechanisms in Multi-Agent Systems,” CLEI Elec. 
Journal, Vol. 16, Nro. 2, August 2013. 

                                                           

 

2195




