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Abstract— This paper performs a thorough empirical investi-
gation of the conditions placed on particle swarm optimization
control parameters to ensure convergent behavior. At present
there exists a large number of theoretically derived parameter
regions that will ensure particle convergence, however, selecting
which region to utilize in practice is not obvious. The empirical
study is carried out over a region slightly larger than that
needed to contain all the relevant theoretically derived regions.
It was found that there is a very strong correlation between
one of the theoretically derived regions and the empirical
evidence. It was also found that parameters near the edge of
the theoretically derived region converge at a very slow rate,
after an initial population explosion. Particle convergence is so
slow, that in practice, the edge parameter settings should not
really be considered useful as convergent parameter settings.

I. INTRODUCTION

PARTICLE SWARM OPTIMIZATION (PSO) is a
stochastic population-based search algorithm that has

been effectively utilized to solve numerous optimization
problems [1]. Despite PSO’s widespread use, there are many
aspects of the PSO algorithm that are not fully understood.
The focus of this paper is on the conditions necessary for
particles within the swarm to converge to an arbitrary point.

While there have been many theoretical studies on the
convergence of PSO particles [2], [3], [4], [5], [6], [7], [8],
[9], [10], [11], [12], their conclusions are often unfortunately
obscured by rigorous mathematics. Almost all recent theo-
retical studies provide a region of parameter space that will
ensure particle convergence, however, these derived regions
do not match. This discrepancy in the theoretical results is
largely due to the differing use of initial assumptions and the
proof techniques used. At present there exists no assumption
free theoretical PSO analysis that produces the guaranteed
regions for particle convergence and divergence. While from
a theoretical stand point each derived region is of importance,
in practice a PSO user is left with a multitude of “reasonable”
regions to select from. The question then becomes, which
region should be used?

This paper aims to supplement the theory with an empir-
ical study in order to provide a more transparent picture of
the PSO’s behavior, given certain parameter choices. This
is achieved by measuring the average change in velocity of
particles within a swarm for a multitude of initial parameters
at each iteration. This empirical study is carried out over
a region slightly larger than that needed to contain all the
relevant theoretically derived regions.

A brief description of PSO is given in section II. A
discussion of the derived parameter regions sufficient for
particle convergence is given in section III. The experimental
set up and results are given in section IV and V respectively.

Section VI presents a summary of the findings of this paper,
as well as a discussion of topics for future research.

II. PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO) was originally devel-
oped by Kennedy and Eberhart [13] to simulate the complex
movement of birds in a flock. The PSO algorithm this paper
focuses on includes the inertia coefficient proposed by Shi
and Eberhart [14].

The PSO algorithm is defined as follows: Let f : Rk → R
be the objective function that the PSO aims to find an
optimum for. For the sake of simplicity, a minimization
problem is assumed from this point onwards. Let Ω (t) be a
set of N particles in Rk at a discrete time step t. Then Ω (t)
is said to be the particle swarm at time t. The position xi of
particle i, is updated using

xi (t+ 1) = xi (t) + vi (t+ 1) , (1)

where the velocity update, vi (t+ 1), is defined as

vi (t+ 1) = wvi (t) + c1r1(t)(yi(t)− xi (t))

+c2r2(t)(ŷi(t)− xi (t)), (2)

where r1(t), r2(t) ∼ U (0, 1)
k for all t. The position

yi(t) represents the “best” position that particle i has vis-
ited, where “best” means the location where the particle
has obtained the lowest objective function evaluation. The
position ŷi(t) represents the “best” position that the particles
in the neighborhood of the i-th particle have visited. For a
full explanation of various neighborhood (NBHD) choices
and their impact on performance, the reader is referred to
[15], [16], [17], [18]. The coefficients c1, c2, and w are the
cognitive, social, and inertia weights respectively. The PSO
algorithm is summarized in algorithm 1.

III. THEORETICAL BACKGROUND

This section presents each theoretically derived region
that is sufficient for particle convergence, along with the
corresponding assumptions utilized in the region’s derivation.
While there is a large body of theoretically work on PSO
particle behavior, only the studies that actually contain a
parameter region for particle convergence will be discussed
in this section. Interested readers are referred to [2], [3], [4],
[5].

The assumptions that occur commonly in the theoretical
PSO research are as follows:

Deterministic assumption: It is assumed that θ1 =
θ1(t) = c1r1(t), and θ2 = θ2(t) = c2r2(t), for all t.

Stagnation assumption: It is assumed that yi(t) = yi,
and ŷi(t) = ŷi, for all t.
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Algorithm 1 PSO algorithm
Create and initialize a k-dimensional swarm, Ω (0), of N
particles uniformly within a predefined hypercube.
Let f be the objective function.
Let yi represent the personal best position of particle i,
initialized to xi(0).
Let ŷi represent the neighborhood best position of particle
i, initialized to xi(0).
Initialize vi(0) to 0.
repeat

for all particles i = 1, · · · , N do
if f(xi) < f(yi) then
yi = xi

end if
for all particles î with particle i in their NBHD do

if f(yi) < f(ŷî) then
ŷî = yi

end if
end for

end for
for all particles i = 1, · · · , N do

update the velocity of particle i using equation (2)
update the position of particle i using equation (1)

end for
until stopping condition is met

Weak chaotic assumption: It is assumed that both yi (t)
and ŷi (t) will occupy an arbitrarily large finite number of
unique positions, ψi and ψ̂i, respectively.

Under both the deterministic and stagnation assumption
Van den Bergh and Engelbrecht [6], [19] derived the follow-
ing region for particle convergence:

c1+c2 < 2 (1 + w) , c1 > 0, c2 > 0, 0 < w < 1. (3)

Under both the deterministic and stagnation assumption Tre-
lea [7] derived the following region for particle convergence:

c1+c2 < 4 (1 + w) , c1 > 0, c2 > 0, 0 < w < 1. (4)

More recently, under the deterministic and weak chaotic
assumption Cleghorn and Engelbrecht [8] derived the same
region as equation (3) or (4) (depending on the treatment of
the stochastic variables r1 and r2) just with |w| < 1. The
extended versions of equations (3) and (4) with |w| < 1
are illustrated in figure 1, as the triangle AFB and ACB
respectively.

Kadirkamanathan et al [9], only under the stagnation
assumption, derived the following region for particle con-
vergence: {

c1 + c2 < 2 (1 + w) w ∈ (−1, 0]

c1 + c2 <
2(1−w)2

1+w w ∈ (0, 1) .
(5)

Gazi [10] expanded the derived region of equation (5),
also under the stagnation assumption only, resulting in the

Fig. 1. Theoretically derived regions sufficient for particle convergence

following region:{
c1 + c2 <

24(1+w)
7 w ∈ (−1, 0]

c1 + c2 <
24(1−w)2

7(1+w) w ∈ (0, 1) .
(6)

Unfortunately, both equations (5) and (6) were derived utiliz-
ing the Lyapunov condition, resulting in conservative regions
[20]. The regions corresponding to equation (5) and (6) are
illustrated in figure (1) as triangle like regions ADB and AEB
respectively.

Lastly, Poli [11], [12] under the stagnation assumption
only, but without the use of the Lyapunov condition, derived
the following region:

c1 + c2 <
24
(
1− w2

)
7− 5w

. (7)

The region defined by equation (7) is illustrated in figure 1
as the curved line segment AB.

IV. EXPERIMENTAL SETUP

The experiment conducted in this paper is designed to
illustrate under what parameter settings the PSO algorithm
will actually exhibit convergent behavior. There is an inherent
difficulty in empirically analyzing the convergence behavior
of PSO particles, specifically with regards to understanding
the influence of the underlying objective functions landscape
on the PSO algorithm. In an attempt to try and mitigate
this issue, the following objective function that will make
it “hard” for PSO to become stagnant, is used:

f(x) ∈ U (−1000, 1000) . (8)

The objective function in equation (8) is constructed on
initialization, and remains static from that point onwards.
What the objective function in equation (8) provides is an
environment that is rife with discontinuities (actually, it is
discontinuous almost everywhere), resulting in a search space
where finding the global optimum is very difficult. The
objective function provides a scenario where convergence
would be difficult. If particles are seen to be convergent
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(not necessarily to the same point) with such a degenerate
objective function as equation (8), it is reasonable to assume
that convergent behavior will hold with less degenerate
objective functions too.

The experiment utilizes the following static parameters:
Population size of 64, 2000 iterations, a 50-dimensional
search space, the star NBHD structure (gbest). Particle’s po-
sitions are instantiated within (−1000, 1000)k and velocities
are instantiated to 0. Equation (8) is utilized as the objective
function. A population size of 64 is utilized to allow for
easier future comparison of differing PSO NBHD structures,
namely a population size of 64 will allow for a complete 2-D
and 3-D von Neumann NBHD structures.

The measure of convergence is as follows:

∆ (t+ 1) =
1

N

N∑
i=1

‖xi (t+ 1)− xi (t) ‖2. (9)

The test is conducted over the following parameter region:

w ∈ [−1.1, 1.1] and c1 + c2 ∈ (0, 4.4] , (10)

where c1 = c2, with a sample point every 0.1 along w and
c1 + c2. A total of 1012 sample points are used. The region
defined by equation (10) is slightly larger than that needed
to include all the regions defined in section III, except the
region defined by equation (4) which is partially omitted.
The sub-region

c1 + c2 < 4 (1 + w) , c1 + c2 > 4.4, (11)

of the region defined by equation (4) is omitted from the
analysis due to the lack of any convergent behavior within
the omitted region (this fact will become obvious in section
V). The results reported in Section V are the averages over
35 independent runs for each sample point.

V. EXPERIMENTAL RESULTS AND DISCUSSION

This section presents the results of the experiment de-
scribed in section IV. A snapshot of all parameter configura-
tions’ resulting convergence measure values are presented
at the PSO’s 10th, 500th and 2000th iteration. For each
iteration, a snapshot figure with the convergence measure
value capped at 100, 500, and 2000 is presented, so as
to prevent very large convergence measure values from
obscuring the important observations.

At iteration 10 a relatively clear picture of particle behav-
ior is already developing. Even with the low convergence
measure limit of 100, figure 2 illustrates parameter settings
that are more conducive to convergence behavior, even at
this low iteration count of 100. More specifically, the curved
region with the apex at w = 0.2 and c1 + c2 = 2.3. In figure
3, the region with the most convergent behavior is already
starting to show similarity to the region of equation (7), as
illustrated in figure 5. In figure 4 there is a large number
of parameter settings exhibiting convergent like behavior,
this is not surprising given the early iteration count and
the substantial convergence measure cap. What is quite
surprising, however, is the large number of parameter settings

that have resulted in convergence measure values in excess of
2000 after only 10 iterations. As an illustrative example, the
exact convergence measure value at w = −0.8, c1+c2 = 3.5
in figure 4 is 153101. Such large convergence measure values
could be a serious hindrance on PSO’s search capability, and
in the extreme case, the PSO’s search is surely useless [21].

Fig. 2. Recorded convergence measure values after 10 iterations with a ∆
cap of 100

Fig. 3. Recorded convergence measure values after 10 iterations with a ∆
cap of 500

At iteration 500 the particle behavior is already substan-
tially more stable than at iteration 10. This is illustrated by
the close similarity between figures 7 and 8. In figure 6 the
region of convergent behavior is slightly narrower than that
of figure 2 but the apex is further out. However, the number
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Fig. 4. Recorded convergence measure values after 10 iterations with a ∆
cap of 2000

Fig. 5. Recorded convergence measure values after 10 iterations with a ∆
cap of 500 with equation (7) overlaid

of particles with a convergence measure value below 100 has
increased over the course of 490 iterations. In figures 7 and 8
the correspondence between equation (7) and the convergent
behavior is becoming very clear, as illustrated in figure 9.
The only discrepancy is that the apex of the convergent
region of figures 7 and 8 is slightly less than that of equation
(7). However, with this correlation in mind, there are still
convergence measure values of over 2000 corresponding to
parameters that are technically in the region of equation (7).

At iteration 1000 the region of convergent behavior is
nearly identical to the corresponding figures for iteration 500,
as can bee seen in figures 10, 11 and 12. There is, however,

Fig. 6. Recorded convergence measure values after 500 iterations with a
∆ cap of 100

Fig. 7. Recorded convergence measure values after 500 iterations with a
∆ cap of 500

a small decrease in convergence measure values across the
region of convergent behavior. For example, when w = 0.5
and c1 + c2 = 3, the convergence measure changed from
79.689 at 500 iterations to 70.8303 at 1000 iterations. This
decrease in convergence measure values is not negligible.
However, the rate of decrease is particularly slow.

At iteration 2000 the same phenomenon as from 500 to
1000 iterations occurred, namely, figures 13, 14, and 15
are nearly identical to the corresponding figures for 1000
iterations. Again, a small decrease in convergence measure
values across the region of convergent behavior occurred. For
example, when w = 0.5 and c1 + c2 = 3, the convergence
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Fig. 8. Recorded convergence measure values after 500 iterations with a
∆ cap of 2000

Fig. 9. Recorded convergence measure values after 500 iterations with a
∆ cap of 2000 with equation (7) overlaid

measure changed from 70.8303 at 1000 iterations to 53.8461
at 2000 iterations. As illustrated in figure 16, equation (7)
matches almost perfectly with the convergent region of figure
15.

In general, the convergence results correspond well with
the derived region of equation (7). The regions defined by
equations (5) and (6) both result in convergent behaviour, as
they are subsets of the region defined equation (7). However,
the regions defined by equations (5) and (6) excludes a large
number convergent parameter settings. The extended region
define by equation (4) (with |w| < 1) is far larger than
the actual observed convergent region of parameter setting.

Fig. 10. Recorded convergence measure values after 1000 iterations with
a ∆ cap of 100

Fig. 11. Recorded convergence measure values after 1000 iterations with
a ∆ cap of 500

The extended region define by equation (3) (with |w| < 1),
contains a large number of convergent parameter settings.
However, there are a number of excluded parameters, namely
those within the region BEG of figure 1. The extended
region define by equation (3), also includes a small number
of parameters that do not fall within the actual convergent
region, namely, those within the region AGF of figure 1.

There are, however, two additional observations: Firstly,
parameters that reside very near to the apex of the region
defined in equation (7) do not exhibit a fast convergent trend.
For example, the parameter setting w = 0.5 and c1+c2 = 3.9
which is within the derived region of equation (7), has a
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Fig. 12. Recorded convergence measure values after 1000 iterations with
a ∆ cap of 2000

Fig. 13. Recorded convergence measure values after 2000 iterations with
a ∆ cap of 100

convergence measure value of 2576.85 after 2000 iterations.
While this parameter configuration may actually result in
convergence, the rate of convergence is prohibitively slow in
practise. The second observation is that the closer c1+c2 is to
zero and w to roughly 0.4, the quicker particle convergence
occurs.

Given these observations, when utilizing PSO in practice,
selecting parameters from a region of the same form as that
of equation (7), but excluding configurations within 0.1 of
equation (7)’s boundary, will yield a reasonable convergence
rate.

Fig. 14. Recorded convergence measure values after 2000 iterations with
a ∆ cap of 500

Fig. 15. Recorded convergence measure values after 2000 iterations with
a ∆ cap of 2000

VI. CONCLUSIONS

The aim of this study was to perform an experiment that
clearly shows which theoretically derived convergent region
is most applicable to practical PSO use. It was found that
there is a very strong correlation between the convergence
behavior of the PSO and the parameter region defined by Poli
[11], [12]. Despite this very strong correlation, the empirical
results of section V also shows that, when PSO parameter
settings are near the edge of the region defined by equation
(7), convergence is incredibly slow, with some parameter
settings still having an average particle movement of over
2500 after 2000 iterations. From these observations it is
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Fig. 16. Recorded convergence measure values after 2000 iterations with
a ∆ cap of 2000 with equation (7) overlaid

concluded that, in practice, PSO parameter setting should be
selected from a slightly smaller region than that of equation
(7), so as to avoid the unreasonably slow rate of particle
convergence.

Future work, expanding from this paper, could cater for the
impact of the social network used by the PSO. In addition,
a theoretical adaptation to the work of Poli [12] could be
made to provide not only a convergent parameter region,
but rather a way of calculating the expected rate of particle
convergence or divergence given a certain PSO parameter
setting. Empirical investigations such as the one performed
in this paper could be performed on complex PSO variants,
where theoretical analysis has proved prohibitively complex.
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