
 
 

 

 

Abstract—Parallel Cell Coordinate System (PCCS) was 
proposed to evaluate the individual fitness in an archive and 
access the population progress in the evolutionary environment. 
In a Many-objective Optimization Problem (MaOP), it is much 
harder to tradeoff the convergence and diversity than in a 
Multiobjective Optimization Problem. To more effectively 
tackle the MaOPs, the PCCS and the aggregation-based 
approach are integrated into a Many-objective Optimization 
Particle Swarm Optimization (MaOPSO). In this paper, the 
sensitivity of PCCS is examined with respect to the number of 
objectives and the maximum size of an archive. The 
experimental results indicate that the MaOPSO performs better 
than MOEA/D in terms of IGD and HV metrics on the WFG test 
suit, and PCCS is not sensitive to the number of objectives and 
the maximum size of an archive. 

Keywords—particle swarm optimization; many-objective 
optimization problem (MaOP); many-objective optimization 
particle swarm optimization (MaOPSO); parallel cell 
coordinate system (PCCS) 

I. INTRODUCTION 

ARALLEL Cell Coordinate System (PCCS) was 
originally introduced in [1] to estimate the density of a 
nondominated solution for maintaining the archive and 

selecting the gBest in Multiobjective Particle Swarm 
Optimization (MOPSO). PCCS was further extended to 
assess the evolutionary environment in [2] and an adaptive 
MOPSO based on PCCS (pccsAMOPSO) was accordingly 
proposed. In PCCS, the number of columns is the same as the 
number of objectives in a given Multiobjective Optimization 
Problem (MOP), and the number of rows, K, is the current 
size of the archive. K is not a user-defined parameter. During 
the evolutionary process, K is changed dynamically while the 
size of an archive varies. However, an archive in a 
Multiobjective Optimization Evolutionary Algorithm 
(MOEA) is commonly bounded to the maximum size, which 
is a user-chosen parameter. Therefore, it is necessary to 
thoroughly analyze the sensitivity of PCCS to know its 
fundamental characteristics. 

Recently, Many-Objective Optimization Problem (MaOP), 
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which refers to the simultaneous optimization of four or more 
objectives, has been gaining an increasing attention in the 
evolutionary multiobjective optimization (EMO) community. 
An important reason is due to distinctly different behaviors of 
MOEAs in a MaOP against in a MOP. A MOP is commonly 
referred as to those problems with two or three objectives. 

In order to examine the sensitivity of PCCS with respect to 
the number of objectives and the maximum size of the archive, 
a Many-Objective Particle Swarm Optimization (MaOPSO) 
algorithm based on PCCS was developed as the test algorithm 
in this paper. The sensitive experiments were empirically 
studied on the test instances with the various numbers of 
objectives and the varying maximum size of the archive.   

The remainder of this paper is organized as follows. The 
background knowledge is briefly described in Section II. The 
test algorithm MaOPSO is presented to examine the 
sensitivity of PCCS in Section III. The experimental results 
are discussed in Section IV. The conclusions are summarized 
in Section V. 

II. BACKGROUND 

A. MaOEA 

The main reason why these MOEAs lose the search 
capability in a MaOP is largely due to the ineffective 
definition of Pareto optimality, which cannot effectively 
discriminate the solutions in a high-dimensional objective 
space. The proportion of nondominated solutions based on 
Pareto optimality among all the solutions found by an 
Evolutionary Algorithm (EA) dramatically grows with the 
increasing number of objectives, which inadvertently 
deteriorates the search ability of Pareto dominance-based 
algorithms. In addition, it is difficult to represent and 
visualize the complete Pareto front of a MaOP, because a 
high-dimensional front requires an exponentially large 
number of nondominated solutions with respect to the 
number of objectives. 

Over the past few years, appreciable efforts have been 
dedicated to tackle these challenges in MaOPs. Many 
improvements from the existing MOEAs, such as 
dimensionality reduction techniques [3]-[6], modifications of 
Pareto dominance principle [7]-[12], ranking 
dominance-based [13]-[17], indicator-based [18]-[21], and 
aggregation-based methods [22]-[23], are proposed for the 
MaOPs. Nevertheless, the performance in terms of 
convergence and diversity of a Many-Objective Optimization 
Evolutionary Algorithm (MaOEA) is still far from meeting 
the requirements in real-world applications of the MaOPs 
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[24]. The complication for balancing the convergence and 
diversity is much more severe in a MaOEA than in a MOEA. 

Dimensionality reduction is an intuitive approach to 
address the curse of dimensionality in a MaOP. The linear 
principal component analysis and the nonlinear 
dimensionality reduction were proposed for reducing the 
relevant and irrelevant objectives, respectively [3]-[5]. The 
Pareto Corner Search Evolutionary Algorithm (PCSEA) was 
introduced to search for the corners of a Pareto front to 
identify and reduce the relevant objectives [6]. However, 
dimensionality reduction is at the cost of information loss of 
the original problem. Meanwhile, not all MaOPs can be 
reduced to their respective MOPs due to the inherent 
complexity. Therefore, the designs of non-reduction 
approaches are still the inevitable challenges for the MaOPs. 
 Some modifications of Pareto dominance, such as 
Dominance Area Control [7], ɛ-Dominance [8], k-Optimality 
[9], Grid Dominance [10], Fuzzy-based Pareto Dominance 
[11] were proposed  to remedy the ineffectiveness of Pareto 
optimality in a MaOP. The number of nondominated 
solutions is decreased while the selection pressure is 
increased in these variants. The convergence performances of 
the new dominance relations were significantly better than 
that of the original Pareto dominance relation [12]. 
 Ranking-dominance or fitness assignment approaches, 
such as Weighted Sum, Average Ranking [13], Maximum 
Ranking [14], Preference Order [15], Favor Relation [15], 
Global Detriment [16], are the alternatives for Pareto 
dominance in a MaOP. These approaches increase the 

selection pressure toward the Pareto front, but decrease the 
diversity of solutions [16]. In some cases, the population 
converges to a few solutions or a single solution [17].  
 Indicator-based Evolutionary Algorithm (IBEA) was 
proposed in [18] to select the individuals according to their 
maximal hypervolume contribution. IBEA and S metric 
selection evolutionary multiobjective optimization algorithm 
(SMS-EMOA) [19], using the time-consuming exact 
computation of hypervolume, have been found to perform 
well in balancing convergence and diversity in MaOPs. 
Hypervolume Estimation (HypE) [21] algorithm was recently 
developed to reduce the computational cost by Monte Carlo 
sampling. These indicator-based MaOEAs are beneficial to 
improve the diversity. However, they excessively prefer the 
extreme solutions in an approximate Pareto front, which may 
hinder the evolutionary process [20]. 

Aggregation-based approaches, such as Multiple Single 
Objective Pareto Sampling (MSOPS) [22] and Multiobjective 
Optimization Evolutionary Algorithm based on 
Decomposition (MOEA/D) [23], map a MaOP into a series of 
Single-objective Optimization Problems (SOPs) by the 
user-predefined weighted vectors. These approaches improve 
the convergence. However, they are subjected to the 
pre-defined weight vectors for the diversity. In addition, it is 
difficult to choose an appropriate weight vector to meet the 
requirements of the decision makers in a real-world 
application. 

         
Fig. 1.  An example for mapping an archive into the PCCS [2]. Left side: 15 nondominated solutions in the archive obtained by the proposed MaOPSO from DTLZ1 
with three objectives. Right side: each objective of a solution in left side is mapped into a unique cell within a 2-D grid with 15 rows and 3 columns corresponding 
to 15 solutions in the archive of a 3-objective MaOP, respectively. For example, the parallel cell coordinate of P14 is (5,3,8). 
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B. PCCS 

PCCS proposed in [1]-[2] is a diversity evaluation 
mechanism for maintaining a well-distributed archive and 
selecting the gBest for a particle. PCCS is based on Parallel 
coordinates which is a popular way for visualizing 
high-dimensional geometry and analyzing multivariate data 
intuitively. 

In PCCS, the m-th objective of the k-th nondominated 
solution in the archive, fk,m, is mapped to an integral label 
number within a 2-D grid with KM cells according to Eq. 
(1), where K is the current size of the archive and M is the 
number of objectives of a MaOP at hand,   
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objective value in the archive, respectively. Lk,m∈{1,2,…,K} 
is an integer number transformed from the real number, fk,m , 

after normalization. Lk,m is set to one if min
, mmk ff   to avoid 

zero as a denominator in special cases. It is noted that K, 
changing dynamically with the size of archive, is not a 
user-defined parameter. In a nondominated archive, each 
solution is expected to occupy a cell in each dimension alone 
if all the nondominated solutions are well-distributed 
perfectly in the approximate Pareto front. Therefore, in PCCS, 
the length of cell is automatically adjusted once any one of 

max
mf , min

mf , and the size of archive is changed. 

Any set of points in Cartesian Coordinate System can be 
represented by Parallel Cell Coordinate (PCC) in a 2-D grid 
which can be visualized intuitively by the style of parallel 
axes. 

An example for mapping an archive with 15 nondominated 
solutions into the PCCS is illustrated in Fig. 1. On the left 
subfigure, there are 15 nondominated solutions in the archive 
obtained by the proposed MaOPSO from DTLZ1 with three 
objectives. After the archive is mapped into the PCCS, there 
are 15 rows and three columns in the grid corresponding to 15 
solutions in the archive of a three-objective MaOP, 
respectively. Each objective of a solution in the left subfigure 
is mapped into a unique cell coordinate in the right subfigure. 
All components of a nondominated solution, represented by 
the label number of the corresponding “parallel cell 
coordinates”, are linked by a dash dotted line to display 
clearly in the right subfigure. For example, the parallel cell 
coordinate of P14 is (5,3,8). 

The distance between two nondominated solutions in the 
unit of cell, named Parallel Cell Distance (PCD), is measured 
by the sum of the differences of cell coordinates over all 
objectives. The Parallel Cell Distance of two nondominated 
solutions Pi and Pj, PCD(Pi,Pj), can be calculated according 
to Eq. (2) after they are respectively mapped to Li,m and Lj,m: 
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If Pi and Pj are mapped into the same cells for all M 
dimensions in PCCS, the PCD value is set to 0.5 to avoid 
division by zero in Eq. (3). 

The density of Pi, in the hyper-space formed by the archive 
in objective space can be measured by the PCD between Pi 
and all other members, Pj (j=1,2,…,K, j≠i), in the archive 
according to Eq. (3). 
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From Eq. (3), the density of Pi is affected by all its 
neighbors. The nearer the neighbor is close to Pi, the larger 
density is contributed to Pi by the neighbor. 

The density based on PCD will be used in both updating the 
archive and selecting the diversity-gBest. 

The Potential of a nondominated solution Pi in the archive 
is defined by Eq. (4): 
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The Potential quantifies a nondominated solution among its 
competitors in the archive by combining the order relation 
along the optimization direction and the degree in the unit of 
cell in PCCS. Here, “Potential” is referring to “potential 
energy” in physics. It is expected that the potential energy of 
every individual in the archive gradually decreases to a steady 
state for improving the convergence through evolution 
process. 

III. THE TEST ALGORITHM – MAOPSO 

In order to examine the sensitivity of PCCS in terms of the 
number of objectives and the maximum size of an archive, a 
test algorithm based on PCCS is needed to optimize the 
MaOPs in this paper. As a case study, PSO is selected to serve 
as the nature-inspired meta-heuristic algorithm in the test 
MaOEA due to its fast convergence and relative simplicity. 

It is interesting that some single-objective optimization 
methods are recalled to solve the MaOPs or MOPs to 
emphasis the convergence. Aggregation-based approaches, 
such as MSOPS and MOEA/D, map a MaOP into a series of 
Single-objective Optimization Problems (SOPs) by the 
user-predefined weighted vectors. These approaches improve 
the convergence. However, they are subjected to the 
pre-defined weight vectors for the diversity. In addition, it is 
difficult to choose an appropriate weight vector to meet the 
requirements of the decision makers in a real-world 
application. 

In this test algorithm, named Many-objective Optimization 
Particle Swarm Optimization (MaOPSO), several extreme 
nondominated solutions are sought for at first by a 
Single-Objective Optimization Particle Swarm Optimization 
(SOPSO) through aggregating the objective functions with 
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the pre-defined weight vectors. Then, the approximate Pareto 
front is extended from these extreme solutions by a 
PSO-based many-objective optimizer. The tested MaOPSO is 
described as follows. 
Step 1 (Seeking M extreme nondominated solutions) 

Step 1.1 Aggregate the M objective function of a MaOP 
into M SOPs through a pre-defined weight matrix. 
For a given MaOP, M is the number of objective 
functions; x=[x1,x2,…,xD]T, D is the number of 
decision variables. The aggregated SOPs can be 
expressed as:  
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    , ɛ is a very small 

positive number. The sum of the weight 
components wij in each row i is equal to one, 

namely,  
M

j ijw
1

1 . i=1,2,…,M; wij is the weight 

component at the i-th row and the j-th column; fj(x) 
is the j-th objective function value of an individual 
x. 

Step 1.2 Optimize the M aggregated SOPs to generate M 
extreme nondominated solutions at the 
approximate Pareto front by a SOPSO through M 
separate runs. Here, a perturbation operator (e.g., 
Elitism Learning Strategy [17]) is beneficial to 
deal with the multi-modal problems.  

Step 2 (Initialize the population of MaOPSO) 
Step 2.1 Initialize randomly the population around the M 

extreme nondominated solutions within a region 
formed by the upper and lower boundaries of 
decision variables. For example, the particle i 
can be initialized as xi = xES + (U - L)  rand(), 
here, xES is the randomly selected extreme 
nondominated solution; U and L are the upper 
and lower boundaries. The M extreme 
nondominated solutions obtained at Step 1 are 
beneficial to improve the convergence of the 
MaOPSO. 

Step 2.2 The objective function values are evaluated for 
particle i in the initial population as F(xi)= 
[fi1(xi),…fim(xi),…fiM(xi)]

T. 
Step 2.3 Set the personal best solution, pBest, to its initial 

solution. For particle i, the position xi and 
objective values F(xi) are set to pBesti as its 
initial personal best solution. 

Step 2.4 Initialize an external archive to store the 
nondominated solutions. Firstly, set the archive 
A=Ø. Secondly, for each particle Pi, set the 
position xi and objective values F(xi) to a new 
solution s, if F(xi) is not dominated by any 

member of A, then A=A-{aj} {s}, here, {aj} is 
the members in A who is dominated by s, if any. 

Step 3 (Iterate the population of MaOPSO) 
Step 3.1 Select candidates for the leaders of the 

population. Firstly, for each member ak, k=1, 
2,…K, K is the size of the archive, in A, calculate 
its density according to Eq. (3). Secondly, Sort A 
in ascending order by the densities of its 
members. Thirdly, the set of candidate leader CL 
consists of the M extreme solutions and the top M 
(the number of objectives) solutions with largest 
densities. 

Step 3.2 Select randomly a member from CL as the global 
best solution gBest of the particle i. 

Step 3.3 Update the velocity vi and position xi of the 
particle i according to the PSO motion equation: 
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Step 3.4 Randomly select a nondominated solution from 
the archive as elitist to perturb the particle with a 
Gaussian mutation of variable range at a random 
dimension by Elitism Learning Strategy [17] if a 
random value is less than the linear decreasing 
learning rate from 1.0 to 0. 

Step 3.5 Evaluate the objective function values of the 
particle i as F(xi)= [fi1(xi),…,fim(xi),…,fiM(xi)]

T. 
Step 3.6 Update the pBest of a particle. Replace F(pBesti) 

and pBesti with F(xi) and xi , respectively, if F(xi) 
dominates F(pBesti), or F(xi) and F(pBesti) are 
nondominated with each other. 

Step 3.6 Update the external archive. Set xi and F(xi) to a 
new solution s, if F(xi) is not dominated by any 
member of A, then A=A-{aj} {s}, here, {aj} is 
those members in A who is dominated by s. Then 
discard the member in A with the maximal 
density calculated by Eq. (3) if the size of current 
A is larger than the pre-defined maximal size of 
A. 

Step 4 Check the terminal condition. Report the contents in A 
if t is larger than the pre-defined maximal generation T, 
otherwise, go to Step 3. 

IV. EXPERIMENTS 

In this research, two experiments are performed on the 
MaOPs. One experiment is designed to compare the proposed 
algorithm MaOPSO with the state-of-the-art algorithm 
MOEA/D [23] on the WFG test suit. The other one is devoted 
to examine the sensitivity of PCCS in terms of the maximal 
archive size. 

A. Benchmark Problems 

To validate the test algorithm MaOPSO whether can work 
on MaOPs or not, the WFG [25] test suit is chosen as the 
benchmark MaOPs due to its rich characteristics. It includes 
non-separable problems, deceptive problems, a truly 
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degenerate problem, a mixed shape Pareto front problem, 
problems scalable in the number of position-related 
parameters, and problems with dependencies between 
position- and distance-related parameters. The WFG test suite 
provides a means of assessing the performance of 
optimization algorithms on a wide range of different 
problems. Each test instance in this suit is written as 
WFGk(M), k=1,2,…,9, k is the sequence number of the 
member in this test suit; M=3,4,5,7,10, M is the number of 
objectives in the resulted scalable MaOP. The properties of 
WFG1-9 are listed in Table I, [25]. 

The WFG2(3,4,5,7) is selected to analyze the sensitivity of 
PCCS with respect to the maximal archive size. 

B. The Test Algorithm and Simulation Settings 

The MaOPSO described in Section III is used to analyze the 
sensitivity of PCCS. Namely, the four test instances 
WFG2(3,4,5,7) are simulated by MaOPSO over the maximal 
archive size from 60 to 200 with an interval of 10. At the 
same time, the MOEA/D is chosen as the peer algorithm to 
compare the performance of MaOPSO, because MOEA/D is 
a popular and excellent algorithm in solving MOPs and 
MaOPs. 

In MaOPSO, the size of population at Step 1 (SOPSO) is set 
to 20 and the maximal generation is set to 400, so that the total 
number of function evaluations is 10,000 for all test instances. 
At Step 3, the population size is 50 and the maximal 
generation is 100, so that the total number of function 
evaluations is 5,000. So the total number of function 
evaluations is 8,000 M + 5,000 for a test instance with M 
objectives. For simplicity, the inertia weight   is adjusted 
from 0.9 down to 0.4 according to the linear decreasing 
strategy [26] in proportion to the generation loop variable. 
The personal acceleration factor c1 and the social acceleration 
factor c2 are set to the constant 1.429 [27]. Furthermore, the 
Elite Learn Strategy (ELS) with the learning rate (lr) [28], 
linearly decreased from 1.0 down to 0.1 with respect to the 
generation variable. 

In MOEA/D, in order to set the population size approximate 
to that of MaOPSO, the parameter T (the number of 
neighboring sub-problems) is set to 20, and the parameter H 
(the number of total sub-problems) is set to be 13, 6, 5, 3, and 
2 for three-, four-, five-, seven-, and ten-objective problems, 
respectively, so as to make the population size among the 
possible values equal to the closest integer to 100. The 
maximal generation is set to 400. So the total number of 
function evaluations is 40,000. The crossover rate is 1.00, 
while the mutation rate is 1/n, where n is the number of 

decision variables. The weight vectors in MOEA/D are 
uniformly chosen according to their original paper, [23], so as 
to make the obtained approximate Pareto front 
well-distributed. 

The performance metrics on each test instance are obtained 
from 30 independent runs to arrive at statistical significance. 
In order to provide the statistical quantifications on 
performance metrics, the non-parametric statistical 
hypothesis test, Mann-Whitney-Wilcoxon rank-sum test [29] 
(also called U-test) is applied to quantify whether one of two 
approximation fronts from independent observations tends to 
have a better performance in a statistical meaningful sense, 
especially when the performance metric values of the two 
approximation fronts obtained by two competing algorithms 
are very close to each other or even indiscriminative. All 
simulations in this experiment are performed on a 64-bit 
notebook PC with 1.2 GHz dual core CPU and 4GB memory. 

C. Performance Metrics 

Two performance metrics, Inverted Generational Distance 
(IGD) [23] and Hyper-Volume (HV) [30]-[31], are chosen to 
quantify the performance in terms of convergence and 
diversity. For the IGD metric, the true Pareto fronts of the test 
instances are required as the referenced fronts to measure the 
performance metric. The more the samples of a true Pareto 
front are available, the better the IGD metric will be for a 
MaOP, yet the higher the incurred computational cost will be. 
For balancing the accuracy and complexity, the size of the 
samples in a true Pareto front is set to around (M-2) 5,000, 
M is the number of objectives. Namely, about 5,000, 10,000, 
15,000, 25,000, and 40,000 for three-, four-, five-, seven-, 
and ten-objective problems, respectively. For the HV metric, 
the relative HV with an acceptable tolerance is approximately 
calculated through the Monte Carlo simulation with 100,000 
sampling points [31]. Each objective value of the reference 
points for evaluating HV is chosen as 2*(1:M) + 5, M is the 
number of objectives. 

D. Results of Comparative Performance 

The comparative experiment results in terms of IGD and 
HV are listed in Table II. The three items, mean, standard 
deviation (Std.), and significance symbol of U-test over all 
test instances by all peer algorithms, are filled in the form of 
“mean (Std.) #” in each data cell of Table II. Here, “#” stands 
for one of the significance symbol (“+,” “-,” or “=”) of U-test, 
which respectively implies that the IGD of MaOPSO is better, 
worse, or same, than/as that of MOEA/D on WFGi(M) by the 
U-test at the significance level of α=5% for a two-tailed test. 

TABLE I THE PROPERTIES OF WFG TEST SUITE 
Problem Objective Separability Modality Bias Geometry 
WFG1 f1:M separable unimodal polynomial, flat convex, mixed 
WFG2 f1:M-1 non-separable unimodal ---- convex, disconnected 

 fM non-separable multimodal ----  
WFG3 f1:M non-separable unimodal ---- linear, degenerate 
WFG4 f1:M separable multimodal ---- concave 
WFG5 f1:M separable deceptive  concave 
WFG6 f1:M non-separable unimodal ---- concave 
WFG7 f1:M separable unimodal parameter dependent concave 
WFG8 f1:M non-separable unimodal parameter dependent concave 
WFG9 f1:M non-separable multimodal, deceptive parameter dependent concave 
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The numbers of the same significance symbols (“+,” “-,” 
and “=”) are respectively summed up from each column and 
filled in the last three rows with the titles, “Better(+),” 
“Worse(-),” and “Same(=),” respectively. Meanwhile, the 
best value of IGD among all algorithms on each test instance 
is highlighted by boldface at each data row in Table II. 

From Table II, as a whole, the MaOPSO outperforms 
MOEA/D, because MaOPSO obtains 30 and 25 statistically 

better values of IGD and HV, respectively, out of the 45 
WFG test instances, while MOEA/D acquires 12 and 13 
better values of IGD and HV, respectively, out of the same 
test instances. 

In this table, the MaOPSO underperforms MOEA/D on 
WFG3 (with the degenerated Pareto front). The reason for 
this poor performance of MaOPSO is that the candidate 
leaders, which are selected from the archive according to the 

TABLE II COMPARISONS IN TERMS OF IGD AND HV BETWEEN THE PROPOSED MAOPSO AND MOEA/D ON WFG TEST SUITE 
IGD HV 

Function M MaOPSO MOEA/D MaOPSO MOEA/D 

WFG1 

3 2.14E-1 (6.5E-2) 2.70E-1 (8.6E-3) + 8.20E-1 (3.9E-2)   7.72E-1 (6.3E-3) + 
4 3.29E-1 (2.7E-2)  2.27E-1 (5.3E-2) - 7.49E-1 (1.6E-2)  8.11E-1 (5.1E-2) - 
5 3.90E-1 (1.2E-2)  3.94E-1 (3.0E-2) = 7.10E-1 (8.9E-3)  7.18E-1 (2.9E-2) = 
7 3.76E-1 (2.2E-2)   4.12E-1 (3.9E-2) + 6.49E-1 (7.3E-3)   6.37E-1 (1.9E-2) + 

10 4.37E-1 (1.2E-2)   5.25E-1 (6.3E-2) + 5.84E-1 (4.8E-3)   5.65E-1 (2.1E-2) + 

WFG2 

3 4.93E-2 (9.2E-3)   1.20E-1 (7.3E-3) + 9.68E-1 (1.2E-2)  9.90E-1 (6.5E-4) - 
4 1.06E-1 (1.6E-2)   1.97E-1 (6.3E-3) + 9.44E-1 (1.6E-2)  9.97E-1 (2.9E-4) - 
5 1.46E-1 (2.2E-2)   4.79E-1 (1.5E-1) + 9.30E-1 (2.0E-2)   9.19E-1 (8.9E-2) = 
7 2.20E-1 (1.9E-2)  2.06E-1 (4.4E-2) - 8.95E-1 (2.5E-2)  9.94E-1 (5.3E-3) - 

10 2.56E-1 (1.3E-2)  2.29E-1 (3.5E-2) - 8.61E-1 (2.0E-2)  9.33E-1 (5.8E-2) - 

WFG3 

3 7.46E-2 (2.3E-2)  2.59E-2 (4.6E-4) - 8.85E-1 (1.0E-2)  9.07E-1 (4.3E-4) - 
4 2.48E-1 (4.4E-2)  1.43E-1 (1.7E-2) - 8.46E-1 (9.8E-3)  8.69E-1 (1.9E-3) - 
5 6.02E-1 (1.2E-1)  5.10E-1 (2.6E-2) - 8.04E-1 (1.3E-2)  8.16E-1 (4.1E-3) - 
7 3.03E+0 (8.5E-1)  9.75E-1 (3.7E-1) - 7.29E-1 (1.7E-2)  7.41E-1 (1.7E-2) - 

10 3.07E+1 (6.0E+0)  1.07E+1 (4.8E+0) - 6.79E-1 (1.5E-2)   6.19E-1 (1.8E-2) + 

WFG4 

3 5.92E-2 (2.9E-3)   1.25E-1 (8.0E-3) + 9.58E-1 (4.5E-4)   9.54E-1 (7.7E-4) + 
4 1.35E-1 (7.9E-3)   3.16E-1 (4.2E-2) + 9.79E-1 (3.9E-4)   9.69E-1 (1.2E-3) + 
5 2.03E-1 (1.3E-2)   7.45E-1 (1.7E-1) + 9.88E-1 (3.8E-4)   9.67E-1 (4.9E-3) + 
7 2.69E-1 (1.8E-2)   2.74E-1 (6.6E-2) = 9.94E-1 (2.6E-4)   9.14E-1 (4.4E-2) + 

10 2.80E-1 (1.9E-2)  2.01E-1 (3.1E-2) - 9.97E-1 (1.2E-4)   7.14E-1 (2.2E-2) + 

WFG5 

3 6.82E-2 (5.6E-3)   9.40E-2 (1.4E-3) + 9.30E-1 (2.2E-3)   9.29E-1 (6.0E-4) + 
4 1.50E-1 (6.5E-3)   3.16E-1 (7.9E-3) + 9.45E-1 (2.3E-3)   9.42E-1 (8.3E-4) + 
5 2.21E-1 (1.5E-2)   3.89E-1 (3.7E-2) + 9.51E-1 (2.6E-3)   9.50E-1 (1.6E-3) = 
7 3.09E-1 (2.8E-2)  2.91E-1 (1.4E-2) - 9.53E-1 (3.1E-3)   8.26E-1 (2.1E-2) + 

10 3.10E-1 (3.0E-2)  1.44E-1 (1.2E-2) - 9.51E-1 (2.8E-3)   6.80E-1 (1.7E-2) + 

WFG6 

3 1.04E-1 (2.3E-2)  1.00E-1 (2.3E-3) = 9.11E-1 (1.8E-2)  9.54E-1 (1.8E-3) - 
4 1.97E-1 (2.1E-2)   3.08E-1 (2.2E-2) + 9.17E-1 (1.7E-2)   9.03E-1 (4.5E-2) = 
5 2.79E-1 (2.2E-2)   5.97E-1 (6.6E-2) + 9.22E-1 (1.8E-2)  9.51E-1 (1.3E-2) - 
7 3.86E-1 (2.3E-2)   5.32E-1 (8.2E-2) + 9.22E-1 (2.1E-2)   9.00E-1 (3.7E-2) + 

10 4.91E-1 (2.0E-2)   6.62E-1 (1.6E-1) + 9.31E-1 (1.7E-2)   7.38E-1 (9.8E-2) + 

WFG7 

3 5.63E-2 (1.3E-3)   8.99E-2 (8.5E-4) + 9.59E-1 (2.2E-4)   9.56E-1 (2.8E-4) + 
4 1.32E-1 (3.1E-3)   3.13E-1 (4.7E-3) + 9.79E-1 (3.6E-3)   9.72E-1 (2.7E-4) + 
5 2.04E-1 (5.5E-3)   4.84E-1 (5.0E-3) + 9.85E-1 (5.2E-3)   9.75E-1 (3.3E-4) + 
7 3.25E-1 (1.0E-2)   6.48E-1 (6.3E-2) + 9.67E-1 (2.0E-2)   9.59E-1 (1.2E-2) + 

10 4.66E-1 (2.2E-2)   8.95E-1 (1.5E-1) + 9.33E-1 (3.3E-2)   8.84E-1 (5.4E-2) + 

WFG8 

3 1.28E-1 (1.4E-2)   1.42E-1 (1.6E-2) + 9.33E-1 (1.9E-2)   9.28E-1 (1.5E-2) = 
4 2.05E-1 (1.4E-2)   3.65E-1 (1.6E-2) + 9.43E-1 (2.2E-2)   9.23E-1 (2.0E-2) + 
5 2.71E-1 (2.1E-2)   5.44E-1 (6.5E-2) + 9.24E-1 (3.2E-2)   9.14E-1 (1.2E-2) = 
7 3.69E-1 (3.0E-2)   5.74E-1 (3.8E-2) + 8.19E-1 (5.1E-2)   7.66E-1 (2.2E-2) + 

10 5.07E-1 (4.1E-2)   6.32E-1 (3.5E-2) + 6.89E-1 (3.8E-2)   5.74E-1 (3.7E-2) + 

WFG9 

3 6.61E-2 (5.3E-3)   9.78E-2 (1.7E-3) + 9.03E-1 (1.1E-2)  9.27E-1 (2.5E-3) - 
4 1.64E-1 (2.7E-2)   3.22E-1 (1.8E-2) + 8.60E-1 (3.6E-2)  8.73E-1 (4.4E-2) = 
5 2.68E-1 (2.1E-2)   3.38E-1 (3.6E-2) + 8.25E-1 (2.7E-2)  8.80E-1 (4.6E-2) - 
7 7.76E-1 (1.3E-1)  5.57E-1 (9.7E-2) - 8.27E-1 (2.0E-2)   7.49E-1 (3.1E-2) + 

10 2.61E+1 (4.3E+0)   2.70E+1 (1.1E-2) + 8.22E-1 (1.2E-2)   5.94E-1 (2.8E-2) + 
Better(+) 30 25 

Same(=) 3 7 

Worse(-) 12 13 
The three items, mean, standard deviation (Std.), and significance symbol of U-test, are filled in the form of “mean (Std.) #” in each data cell. Here, “#” stands 
for one of the significance symbol (“+,”“-,” or “=”) of U-test. 

2646



 
 

 

large density, may incidentally attract some individuals to fly 
away from a degenerated Pareto front to increase the 
diversity. 

From the comparative experiment, MaOPSO with the 
PCCS can effectively works on the MaOPs. Even more, the 
comprehensive performance in terms of convergence and 
diversity, which are measured by IGD and HV, is better than 
MOEA/D. 

E. Results of PCCS Sensitivity  

In Eq. (3), the number of columns in PCCS is the same as 
the number of objectives in a given MaOP. And the number 
of rows in PCCS, K, is the current size of the archive. It is 
noted that K, changing dynamically with the size of archive, 
is not a user-defined parameter. However, its maximum value 
which is the archive size is a user-chosen parameter. To 
examine the sensitivity to the granularity of the PCCS, 
namely, the maximum size of archive, a special experiment is 
performed to analyze the sensitivity in terms of the maximum 
archive size in the MaOPs. 

In this experiment, the MaOPSO is used to optimize the 
WFG2 with three-, four-, five-, and seven-objectives, labelled 
as WFG2(3), WFG2(4), WFG2(5), and WFG2(7), 
respectively. The performance metrics, IGD and HV, are 
evaluated over the maximum archive size varying from 60 to 
200 with an interval of ten. The average IGD and the average 
HV over ten independent runs are plotted in the Figs. (2)-(5). 

From Figs. (2)-(5), the average IGD in the left subfigures is 
decreased with the increase of the maximum archive size. 
According to the definition of IGD, the IGD value, calculated 
from the same true Pareto front, will decrease when the 
sample size in an approximate Pareto front increases. The 
experimental result, as expected, is not sufficient to draw a 
conclusion regarding the sensitivity on the maximum archive 
size in terms of IGD. On the other hand, the average HV in 
the right subfigures almost stays at the same value when the 
maximum archive size increases from 60 to 200. This result 
illustrates that the performance of PCCS-based MaOPSO in 
solving MaOPs is not sensitive to the maximum archive size. 

Fig. 2.  The average IGD and HV of WFG2(3) Fig. 3.  The average IGD and HV of WFG2(4) 

 

Fig. 4.  The average IGD and HV of WFG2(5) Fig. 5.  The average IGD and HV of WFG2(7) 
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From another viewpoint, the IGD and HV values become 
worse as the number of objectives increases. For example, the 
IGD average values of WFG2(3,4,5,7) are respectively about 
0.05, 0.1, 0.145, and 0.205 when the maximal archive size is 
100 in Figs. (2)-(5). And the HV average values of 
WFG2(3,4,5,7) are respectively about 0.96, 0.95, 0.93, and 
0.88 in the same case. It indicates that the difficulty of a 
MaOEA increases when the number of objectives grows. 

V. CONCLUSION 

PCCS was proposed to evaluate the individual fitness in 
the archive and access the population progress in the 
evolutionary environment. A MaOPSO is proposed to tackle 
the MaOPs in this paper. The PCCS and aggregation-based 
approach are seamlessly integrated in the designed MaOPSO 
to dynamically balance the convergence and diversity in the 
evolutionary process. In order to characterize the application 
prospect of PCCS, the sensitivity of PCCS is examined on the 
number of objectives and the maximum size of an archive in 
MaOPs. Our experimental result shows that the MaOPSO 
outperforms MOEA/D in terms of IGD and HV over the 
WFG test suit with a large scale of objectives from three to 
ten. Another experimental result indicates that PCCS is not 
sensitive to the maximum archive size in the MaOPs. 
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