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Abstract—In this participation, we are continuing to show
mutual intersection of two completely different areas of research:
complex networks and evolutionary computation. Large-scale
networks, exhibiting complex patterns of interaction amongst
vertices exist in both nature and man-made systems (i.e., com-
munication networks, genetic pathways, ecological or economical
networks, social networks, networks of various scientific collabo-
ration etc.) and are a part of our daily life. We demonstrate that
dynamics of evolutionary algorithms, that are based on Darwin
theory of evolution and Mendel theory of genetic heritage, can be
also visualized as complex networks. Such network can be then
analyzed by means of classical tools of complex networks science.
Results presented here are currently numerical demonstration
rather than theoretical mathematical proofs. We open question
whether evolutionary algorithms really create complex network
structures and whether this knowledge can be successfully used
like feedback for control of evolutionary dynamics and its
improvement in order to increase the performance of evolutionary
algorithms.

I. INTRODUCTION

In this article, we try to merge two at first glance com-
pletely different areas of research: complex networks and
evolutionary computation.

Large-scale networks, exhibiting complex patterns of inter-
action amongst vertices exist in both nature and in man-made
systems (i.e., communication networks, genetic pathways, eco-
logical or economical networks, social networks, networks of
various scientific collaboration, Internet, World Wide Web,
power grid etc.). The structure of complex networks thus can
be observed in many of those systems. The word complex
networks [1], [2] comes from the fact that they exhibit sub-
stantial and non-trivial topological features, with patterns of
connection between vertices that are neither purely regular
nor purely random. Such features include a heavy tail in the
degree distribution, a high clustering coefficient, hierarchical
structure, amongst other features. Amongst many studies, two
well-known and much studied classes of complex networks are
the scale-free networks and small-world networks, whose dis-
covery and definition are vitally important in the scope of this
research. Specific structural features can be observed in both
classes i.e. so called power-law degree distributions for the
scale-free networks and short path lengths with high clustering
for the small-world networks. Research in the field of complex

networks has joined together researchers from many areas,
which were outside of this interdisciplinary research in the
past like mathematics, physics, biology, chemistry computer
science, epidemiology etc..

Evolutionary computation is a sub-discipline of computer
science belonging to the bio-inspired computing area. The
main ideas of evolutionary computation has been published
[3] and widely introduced to the scientific community [4].
The most well known evolutionary techniques are Genetic
Algorithms (GA) introduced by J. Holland [4], Evolutionary
Strategies (ES), by Schwefel [5] and Rechenberg [6] and
Evolutionary Programming (EP) by Fogel [7] for example.

Here we can observe mutual intersection of evolutionary
algorithms and complex networks that is a promising inter-
disciplinary research. Evolutionary algorithms, based on their
canonical central dogma (following darwinian ideas) clearly
demonstrate intensive interaction amongst individual in the
population see [3]- [7], [18], [9], which is, in general, one
of the important attributes of complex networks (intensive
interaction amongst the vertices).

The main motivation (as well as question) is whether it
is possible to visualize and simulate underlying dynamics of
evolutionary process like complex network. Reason for this
is that today various techniques for analysis and control of
complex networks exist and if complex network structure is
hidden behind EA dynamics, then we believe, that existing
control techniques could be used to improve dynamics of EAs.

The main idea of our research is to show in this article
that the dynamics of evolutionary algorithms in general, can
be converted to the complex networks and can be analyzed and
visualized like complex networks. This article is focused on
observation and description of complex networks phenomenon
in evolutionary dynamics. Possibilities of its use are discussed
at the end.

II. EXPERIMENT DESIGN

The main idea of experiments here is that evolutionary
experiments will run on selected test functions, interactions
amongst the individuals (which individual successfully created
an offspring) will be recorded and then this interaction is
visualized like network of interactions.
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Population size 50
Mutation 0.4
Generations 300
Individual Length 20

TABLE I. GA SETTING.

Algorithms selected for our previous experiments [17],
[19], [22] were differential evolution (DERand1Bin), [9] and
SOMA (AllToOne), [8]. Application of alternative algorithms
like Genetic Algorithms GA and Simulated Annealing (SA),
ES and/or Swarm Intelligence are now in process and we
would like to present here some preliminary results for GA
introduced by J. Holland [4]. Setting of algorithm is in Tab. I.

The test functions applied in this experimentation were
selected from

the test bed of 17 test functions. In total 5 test function (in
20 dimensions) were

selected as a representative subset of functions which
shows

geometrical simplicity and low complexity as well as
functions from

the opposite side of spectra.

Selected functions were: Ackley’s function (1),
Griewangk’s function (2), Rana’s function (3), Rastrigin’s
function (4) and Schwefel’s function (5) and each experiment
was repeated 100 times, i.e. 500 experiments was done (2
algorithms, 5 test functions, 100 repeated simulations).

All experiments were done in Mathematica 9, on MacBook
Pro, 2.8 GHz Intel Core 2 Duo.
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III. VISUALIZATION

The most critical point of this research and related simu-
lations was which data and relations should be selected and
consequently visualized. Each class of algorithm is based on
different principle. The main idea was that each individual is
represented by vertex and edges between vertices should reflect
dynamics in population, i.e. interactions between individuals
(which individual has been used for offspring creation,). In
the GA the individual is selected according to its fitness.
Thus in GA, we have recorded only those individuals-parents,
that has been replaced by better offspring (like vertex with
added connections). In the GA class of algorithms we have
omitted the philosophy that a bad parent is replaced by a
better offspring, but accepted philosophical interpretation, that
individual (worse parent) is moving to the better position (in
classical philosophy it is better offspring). Thus no vertex
(individual) has to be either destroyed or replaced in our
proposed methodology. If, for example, GA has a parent been
replaced by offspring, then it was considered as an activation-
improvement (new additional links, edges) of vertex-worse
parents from another one.

Experimental data can be visualized in few different ways
and as an example, few typical visualizations are depicted here.
For example in Fig. 2 - 4 interactions between individuals
in the population during entire evolution are described. As
mentioned in the previous section, vertices in complex graph
are individuals that are improved by other individuals, incre-
mentally from generation to generation. Fig. 2 - 4 shows, that
interactions between individuals create (at the first glance)
structures, which look like complex networks. However, it
has to be said that we have met results whose visualizations
looks like net and resemble complex networks but after closer
complex network characteristics calculations, those networks
did not belong to the class of complex networks with small
world phenomenon.

Another kind of visualization is depicted in Fig. 1, in
which one can see which individual (out of 50) has been
activated for offspring creation (in this case were visualized
the best individuals from population). It is visible that after
200 generations almost in all experiments global extreme has
been found, because since approx. 200 generations the best
individual stay the same in each of all 100 experiments.

IV. RESULTS

A. Structure and dynamics

As already mentioned, the main idea of this participation
is to expand our previous experiments from SOMA and DE to
GA and another algorithms and make some basic visualization
and calculations. For GA 100 experiments on 5 test function in
20 dimensional space have been done and dynamics of GA was
recorded from generation to generation and then processed and
visualized. Some visualizations are on Fig. 1 that shows all 100
experiments in one figure. Each dot is the best solution from
GA generation of given experiment. Visualization of complex
network structure are Fig. 2 - 4 that demonstrate our idea of
complex network structure in EA based on obtained results.
Visualization has been done by means of Mathematica 9.
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Fig. 1. 100 repeated experiments of GA in one picture

B. Interpretation of the Example Network

As reported above GA algorithms were set according to
Table I and have been tested on 5 test functions with constant
level of test function dimensionality (i.e. individual length =
20). All data has been processed graphically. Emergence of
complex network structure behind evolutionary dynamics de-
pends on many factors. To observe complex network structure
it is important to wait certain number of generations, that
depend on parameters of evolutionary algorithm and problem
dimensionality. The main tools of Mathematica software were
used on basic analysis and are proposed here. Analyzed
graphs have multiple edges (not visualized here) that can be
understand like weight of single edge. Attributes of proposed
analysis are represented by subgraph colors and vertices sizes
in graphs. Our proposed interpretation, based on terms and
command from Wolfram Mathematica used for all of our
experiments is following:

Degree centrality, see Fig. 2, gives a list of vertex degrees
for the vertices in the underlying simple graph of g. Degree
centrality will give high centralities to vertices that have high
vertex degrees. The vertex degree for a vertex v is the number
of edges incident to v. For a directed graph, the in-degree
is the number of incoming edges and the out-degree is the
number of outgoing edges. For an undirected graph, in-degree
and out-degree coincide. In the case of evolutionary dynamics,
degree centrality shows how many in-coming (support from
individuals) or out-coming (support to another individuals)
edges, vertex - individual, under study has during the evolution.
This quantity can be related to progress of the evolutionary
search and used to made conclusion of what set of individuals
has maximally contribute to that. On Figure 2 are individuals
sized according to that degree.

Graph partition, see Fig. 3, finds a partition of vertices
such that the number of edges having endpoints in different
parts is minimized. For a weighted graph, graph partition
finds a partition such that the sum of edge weights for edges
having endpoints in different parts is minimized. In the case of
evolutionary dynamics, individuals in population are separated
into ”groups” according to their interactions with another
individuals, based on their success in active individual fitness
improvements. ”Endpoints” can be understood like successful

Fig. 2. Degree centrality of GACN in 50th generation.

participation of selected individuals in active individual fitness.
On Fig. 3 is partition visualized by colors. This analysis gives
view on population structure and shows the set of individuals
that got or donate oriented edges (support from / to) the
same group of individuals. Based on number of connections or
weights (if multiple edges are understood like integer weights)
of edge, it can be analyzed what part of population was the
most important in the evolutionary dynamics for given case.

Fig. 3. Graph partition of GACN in 50th generation.

Community, see Fig. 4. Community graph plot attempts
to draw the vertices grouped into communities. In the case
of evolutionary dynamics, community graph plot showing
the individuals grouped into communities. Communities (with
border are individuals that communicate amongst themselves
(higher density of edges in community, multi edges are not
visualized here, rather than between communities) and com-
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munity are then joined by connections that are ”one-way” and
shows flow of information between communities). This kind
of visualization can be interesting also in the case of parallel
EAs, where islands of subpopulations are formed.

Fig. 4. Community graph of GACN in 50th generation.

V. CONCLUSION

The main motivation of this research is whether it is
possible to visualize and simulate underlying dynamics of an
evolutionary process as a complex network. Based on previous
results and results here, it can be stated, in fact the same as in
[18] or [19], that:

1) No. of generations: occurrence of the complex net-
work structure (CNS) sensitively depends on the
number of generations. If the number of generations
was small, then no CNS was established. This effect
can be easily understood so that low number of
generations means that EAs has no time, long enough,
to establish CNS. This is quite a logical observation
in complex network dynamic when CNS is not ob-
servable at the beginning of linking process. During
our experiments it has been observed that the moment
of CNS establishing depends on cost function and
its dimension, population size and used algorithm.
Very generally, EAs searching for global extreme is
quite random-like in the beginning and when domain
of global extreme is discovered, then CNS is quite
quickly established and is global extreme is found
then individual that stay at this position start to ”pick
up” more and more connections and become to be
”rich and richer”, see [1].

2) Dimensionality: In this paper we have used only
dimension 20 for selected test functions but based
on [17] in can be concluded that dimensionality
impact on CNS forming has been observed when the
dimension of the cost function was big and number
of generations was too low, the selected EA was not

able to finish successfully the global extreme search
not all connections had been properly established.
Thus if high dimensional cost functions are used,
then number of generations has to be selected so that
at least domain of the global extreme is found. On
the other side, if number of generations is very big,
then it is possible observe effect of complex network
forming.

3) Test functions: dependence of CNS forming on the
test function was not strictly observed, the general
consensus being that for more complex test functions,
like Schwefel (5), etc, the algorithm needs more gen-
erations to establish CNS, i.e. more complex function
requires more generations and/or bigger population
size. In the case of simpler functions and low dimen-
sions global extreme is quickly found and phase of
CNS creation is very short and then effect of ”rich
become to be richer” is visible soon, that has impact
on CNS structure formation. It is important to say
that this last phase depend on algorithm structure (i.e.
how individuals are handled for parents selection etc.)
and we have observed it in the case of SOMA [8]
algorithm and DE [9] too. Term algorithm structure
means that for example in the case of the SOMA (or
generally swarm algorithms) is like Leader (winning
vertex, the best solution for generation-migration-
iteration) selected the first individual of population
with the best fitness, no matter how many other
individuals in the population has the same fitness. It
is demonstrated in [17].

4) Population size: CNS forming was observed usually
from population size of 100 and more individuals
for dimensions 50. Again, it is parameter, which
does not influence CNS forming alone, but in the
combination with another parameters, as mentioned
in the previous items. For that fact and based on
our experiments we have selected dimension 20 that
show itself (in combination of other GAs parameters)
enough. Unfortunately there is no ”cook book” for
such setting, it depends on heuristic experiences.

5) Used algorithm: CNS forming has also been clearly
observed with algorithms, that are more or less based
on swarm philosophy or partly associated with it. For
example DERand1Bin did not show CNS formatting
so often like another versions (in principle each
individual is selected to be parent), see [17], while in
the case of the DELocalToBest in which the so called
best solution in the population plays an important
role, CNS has been observed, as well as in the SOMA
strategies. In contrary we have recorded effect of
CNS formatting also for GA, that promote idea, that
algorithm setting play an important role for that. The
easier CNS formatting observable with swarm like
algorithms is close to the idea of preferred linking
in the complex networks modeling social behavior
(citation networks, etc).

6) Evaluation and visualization: Evaluation and visual-
ization has been done here by a few basic figures,
exhibiting CNS and its selected attributes. More visu-
alizations and evaluations were done for GA results,
like for example Fig. 5 that was not reported here
due to the limited space.
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Fig. 5. K Core Components of GACN in 50th generation.

We would like to propose more significant expansion
of ideas presented here at the end. This idea was already
presented in [19] and we would like to propose it here again
as possible use and joining of EAs, CNS and CML (Coupled
Map Lattices) systems, see [10], [11] and Fig. 7, that allow, in
principle, to analyze and control EAs (or CNS itself) dynamics.

CML structure is given by Eq. (6). Typical example is CML
based on so called logistic equation, [23], [24], [25] which
is used to simulate behavior of system which consists of n
mutually joined cells via nonlinear coupling, usually noted like
ε. Mathematical description of CML system is given by eq.
(6). Function, which is represented by f(xn(i)) is ”arbitrary”
discrete system - in this case study logistic equations have been
selected to substitute f(xn(i)). CML description based on eq.
(6) is on Fig. 6 .

xn+1(i) = (1− ε)f(xn(i))+
ε

2
(f(xn(i− 1))+ f(xn(i+1)))

(6)

Fig. 6. CML system based on Eq. 6.

Some methods on CML systems control, especially by
means of evolutionary algorithms, exist today. The spirit of
this idea is to create a closed loop in the following schematic:
evolutionary dynamics → complex network → CML system
→ control CML→ control evolutionary dynamics. Reason for
this is that this proposed techniques can be used for analysis
and control of complex networks exists and if complex network
structure would be hidden behind EA dynamics, then we
believe, that for example above mentioned control techniques
could be used to improve dynamics of EAs.

Fig. 7. CML system reflecting complex network structure.

Fig. 8. The mechanical principle of CML from CNS.

Fig. 9. The schematic principle of proposed feedback control EAs and CNS:
evolutionary dynamics complex network CML system control CML control
evolutionary dynamics.

Complex network is depicted as a set of vertices, mutually
joined by single and multiple edges. Each edge can be added
or cancelled during the evolution of the network, or importance
of an edge can be modified by weights associated to the
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each edge. Adding or canceling of the edges (or its weights)
represents, in fact, dynamics of the algorithm, i.e. network.

Our method of visualization is based on fact that simplest
version of CML (i.e. 1D version, [11], [15], [16], [10]) is
usually depicted like a row of mutually joined sites, where
each site is nonlinearly joined with its nearest sites, see Fig.
8 for mechanical analogy. The idea of equivalence between
CML and complex network is quite simple. Each vertex is
equivalent to the site in the CML (via mechanical principle at
Fig. 8 ). Comparing to the standard CML its sites (inputs,
rows) are in complex network CML (CNCML) not joined
to the nearest site, but to the sites equal to the complex
network vertices connections. Thus sites in CNCML are not
joined symmetrically (i.e. from site x1 to x2 to x3 and vice
versa to xn) and between different sites is random pattern of
connections, which can change in the time. As it is visible,
based on our interpretation (CN→ CNCML), CNCML is more
complex version of the classical simplified version of the CML,
however still CML in general, so all techniques of control and
analysis [11] shall be working on such a version of CML.
As depicted on Fig. 9 it is possible to convert EAs dynamics
to the CNS, then via mechanical analogy to CML. CML is
controllable today by means of classical methods [11], [15],
[16] as well as evolutionary techniques [10], so if both are
joined together, then we have possibility to control dynamics
of EA used for this transformation and if EA is omitted from
this scheme, then also CNS itself (does not matter of what
nature, i.e. citation net, social net, ...) can be also in principle
controlled by this approach.

Also, for CML systems there are techniques for analysis
of chaos and routes to chaos behavior, so it is obvious that
this is also open field of another research that join EAs, CNS
and CML systems. We have already published both main part
of feedback at Fig. 9, i.e. evolutionary dynamics complex
network (in [19]) CML system (in [22], and also at [20], [20])
control CML by means of EAs (in [10], [12], [13], [14]). The
main and remaining part to control evolutionary dynamics or
CNS is now under investigation.

In this paper we have suggested possible interpretation
of selected well known tools and terminology from complex
networks analysis to the evolutionary algorithms dynamics
converted to the complex network structures. The volume
of this article is too small to mention and explain all the
possible interpretations and tools. This is only a mid-step in
our research presented in above mentioned papers, where we
proposed all necessary steps joining evolutionary dynamics,
complex networks and CML systems.

ACKNOWLEDGMENT

The following grants are acknowledged for the financial
support provided for this research: Grant Agency of the Czech
Republic - GACR P103/13/08195S, by the Development of
human resources in research and development of latest soft
computing methods and their application in practice project,
reg. no. CZ.1.07/2.3.00/20.0072 funded by Operational Pro-
gramme Education for Competitiveness, co-financed by ESF
and state budget of the Czech Republic, further was supported
by European Regional Development Fund under the project
CEBIA-Tech No. CZ.1.05/2.1.00/03.0089

REFERENCES

[1] S. N. Dorogovtsev and J.F.F. Mendes, Evolution of Networks, Adv. Phys.
51, 1079 (2002)

[2] S. Boccaletti et al., Complex Networks: Structure and Dynamics, Phys.
Rep., 424 (2006), 175-308.

[3] Turing, A.: Intelligent machinery, unpublished report for National Phys-
ical Laboratory. In: Michie, D. (ed.) Machine Intelligence, vol. 7 (1969);
Turing, A.M. (ed.): The Collected Works, vol. 3, Ince D. North-Holland,
Amsterdam (1992)

[4] Holland, J.: Adaptation in natural and artificial systems. Univ. of Michi-
gan Press, Ann Arbor (1975)

[5] Schwefel, H.: Numerische Optimierung von Computer-Modellen, PhD
thesis (1974); Reprinted by Birkhauser (1977)

[6] Rechenberg, I.: (1971) Evolutionsstrategie - Optimierung technischer
Systeme nach Prinzipien der biologischen Evolution (PhD thesis), Printed
in Fromman-Holzboog (1973)

[7] Fogel,D.B.:Unearthinga Fossil from the History of Evolutionary Com-
putation. Fundamenta Informaticae 35(1-4), 116 (1998)

[8] Zelinka I. SOMA – Self Organizing Migrating Algorithm, in New
Optimization Techniques in Engineering, Eds.: Babu B. V., Onwubolu
G. (Springer-Verlag, New York), pp 167-218, 2004

[9] Price K. An Introduction to Differential Evolution, New Ideas in Opti-
mization, Ed.: Corne D., Dorigo M. Glover F. (McGraw-Hill, London,
UK), pp 79-108, 1999

[10] Zelinka I, Celikovsky S, Richter H and Chen G., (2010) Evolutionary
Algorithms and Chaotic Systems, (Eds), Springer, Germany, 550s, 2010.

[11] Schuster H. G. [1999] Handbook of Chaos Control (Wiley-VCH, New
York)

[12] Zelinka I., Investigation on Evolutionary Deterministic Chaos Control,
IFAC, Prague 2005

[13] Zelinka, I., Real-time deterministic chaos control by means of selected
evolutionary algorithms Engineering Applications of Artificial Intelli-
gence (2008), doi:10.1016/j.engappai.2008.07.008

[14] Zelinka I., Investigation on realtime deterministic chaos control by
means of evolutionary algorithms, Proc. First IFAC Conference on
Analysis and Control of Chaotic Systems, Reims, France, 211-217, 2006

[15] Deilami M.Z., Rahmani Ch.Z.,Motlagh M.R.J., Control of spatio-
temporal on–off intermittency in random driving diffusively coupled map
lattices, Chaos, Solitons, Fractals, Available online 21 December 2007

[16] Zahra R.Ch., Z. R., Motlagh M.R.J., Control of spatiotemporal chaos in
coupled map lattice by discrete-time variable structure control, Physics
Letters A, 370, 3-4, 302-305

[17] Zelinka I., Davendra D., Chadli M., Senkerik R., Dao T.T. and Skan-
derova L., Evolutionary Dynamics and Complex Networks, In: Zelinka I,
Snasel V., Ajith A.,(Eds), Handbook of Optimization, Springer, Germany,
1100s, 2012

[18] Zelinka I, Snasel V., Ajith A.,(Eds), Handbook of Optimization,
Springer, Germany, 1100s, 2012

[19] Zelinka I., Davendra D., Senkerik R., Jasek R., Do Evolutionary
Algorithm Dynamics Create Complex Network Structures? Complex
Systems, 2, 0891-2513, 20, 127-140, 2011

[20] Zelinka I., Mutual Relations of Evolutionary Dynamics, Deterministic
Chaos and Complexity, tutorial at IEEE Congress on Evolutionary
Computation 2013, Mexico, 2013

[21] Zelinka I., On Close Relations of Evolutionary Dynamics, Chaos
and Complexity, keynote at International Workshop on Chaos-Fractals
Theories and Applications, Dalian, China, 2012

[22] Zelinka I., Controlling Complexity, In Sanayei A., Zelinka I., Rossler O.
E. (Eds.), ISCS 2013: Interdisciplinary Symposium on Complex Systems,
Emergence, Complexity and Computation, Vol. 8, Springer 2014

[23] May R. [1976] Simple mathematical model with very complicated
dynamics, Nature, 261, 45-67

[24] Hilborn R.C. [1994]. Chaos and Nonlinear Dynamics, Oxford Univer-
sity Press, ISBN 0-19-508816-8, 1994

[25] Chen G. [2000] Controlling Chaos and Bifurcations in Engineering
Systems (CRC Press, Boca Raton)

3251




