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Abstract—Evolutionary algorithms are well suited for solv-
ing the knapsack problem. Some empirical studies claim that
evolutionary algorithms can produce good solutions to the 0-
1 knapsack problem. Nonetheless, few rigorous investigations
address the quality of solutions that evolutionary algorithms
may produce for the knapsack problem. This paper focuses on
a theoretical investigation of three types of (N+1) evolutionary
algorithms that exploit bitwise mutation, truncation selection,
plus different repair methods for the 0-1 knapsack problem.
It assesses the solution quality in terms of the approximation
ratio. Our work indicates that the solution produced by both
pure strategy and mixed strategy evolutionary algorithms is
arbitrarily bad. Nevertheless, an evolutionary algorithm using
helper objectives may produce 1/2-approximation solutions to
the 0-1 knapsack problem.

Index Terms—Evolutionary algorithm, approximation algo-
rithm, knapsack problem, solution quality

I. INTRODUCTION

The knapsack problem is an NP-hard combinatorial opti-
mization problem [1], which includes a variety of knapsack-
type problems such as the 0-1 knapsack problem and multi-
dimensional knapsack problem. In last two decades, evolu-
tionary algorithms (EAs), especially genetic algorithms (GAs),
have been well-adopted for tackling the knapsack problem [2]–
[5]. The problem has received a particular interest from the
evolutionary computation community for the following two
reasons. The first reason is that the binary vector representation
of the candidate solutions is a natural encoding of the 0-
1 knapsack problem’s search space. Thereby, it provides an
ideal setting for the applications of genetic algorithms [6].
On the other hand, the multi-dimensional knapsack problem
is a natural multi-objective optimization problem, so that it
is often taken as a test problem for studying multi-objective
optimization evolutionary algorithms (MOEAs) [7]–[11].

A number of empirical results in the literature (see, for in-
stance, [7]–[12]) assert that EAs can produce “good” solutions
to the knapsack problem. A naturally arising question is then
how to measure the “goodness” of solutions that EAs may
produce? To address the question, the most popular approach
is to compare the quality of the solutions generated by EAs
via computer experiments. For example, the solution quality
of an EA is measured by the best solution found within 500
generations [6]. Such a comparison may help to compare
performance of different EAs, yet it seldom provides any

information regarding the proximity of the solutions produced
by the EAs to the optimum.

From the viewpoint of algorithm analysis, it is important to
assess how “good” a solution is in terms of the approximation
ratio (see [13]). There are several effective approximation
algorithms for solving the knapsack problem [1]. For example,
a fully polynomial time approximation scheme for the 0-1
knapsack problem has been presented in [14]. Nonetheless,
very few rigorous investigations addressing the approxima-
tion ratio of EAs on the 0-1 knapsack problem exist. [15]
recast the 0-1 knapsack problem into a bi-objective knapsack
problem with two conflicting objectives (maximizing profits
and minimizing weights). A (1+ε)-approximate set of the
knapsack problem has been introduced for the bi-objective
optimization problem. An MOEA, called Restricted Evolution-
ary Multiobjective Optimizer, has been designed to obtain the
(1+ε)-approximate set. A pioneering contribution of [15] is a
rigorous runtime analysis of the proposed MOEA.

The current paper focuses on investigating the approxima-
tion ratio of three types of (N + 1) EAs combining bitwise
mutation, truncation section and diverse repair mechanisms for
the 0-1 knapsack problem. The first type is pure strategy EAs,
where a single repair method is exploited in the EAs. The
second type is mixed strategy EAs, which choose a method
from a repair method pool randomly. The third type is multi-
objective EAs using helper objectives [16].

The remainder of the paper is organized as follows. The 0-
1 knapsack problem is introduced in section II. In section III
we analyse pure strategy EAs, while in section IV we analyse
mixed strategy EAs. Section V is devoted to analysing an
MOEA using helper objectives. Section VI concludes the
article.

II. KNAPSACK PROBLEM AND APPROXIMATION SOLUTION

The 0-1 knapsack problem is the most important knapsack
problem and one of the most intensively studied combinatorial
optimization problems [1]. Given an instance of the 0-1
knapsack problem with a set of weights wi, profits pi, and
capacity C of a knapsack, the task is to find a binary vector
~x = (x1 · · ·xn) so as to

max~x
∑n
i=1 pixi,

subject to
∑n
i=1 wixi ≤ C,

(1)

141

2014 IEEE Congress on Evolutionary Computation (CEC) 
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE



where xi = 1 if the item i is selected in the knapsack and
xi = 0 if the item i is not selected in the knapsack. A
feasible solution is a knapsack represented by a binary vector
~x = (x1x2 · · ·xn) which satisfies the constraint. An infeasible
one is an ~x that violates the constraint. The vector (0 · · · 0)
represents a null knapsack.

In last two decades, EAs have been well adopted for tackling
the knapsack problem [2], [3]. In order to assess the quality
of solutions in EAs, we follow the classical α-approximation
algorithm (see [13] for a detailed exposition) and define an
evolutionary approximation algorithm as follows.

Definition 1: We say that an EA is an α-approximation
algorithm for an optimization problem if for all instances of the
problem, the EA can produce a solution within a polynomial
runtime, the value of which is within a factor of α of the value
of an optimal solution, regardless of the initialization. Here
the runtime is measured by the expected number of function
evaluations.

For instance, in case of the 0-1 knapsack problem, an
evolutionary 1/2-approximation algorithm always can find a
solution the value of which is at least a half of the optimal
value within a polynomial runtime.

III. PURE STRATEGY (N+1) EVOLUTIONARY
ALGORITHMS

In this section we analyze pure strategy (N + 1) EAs for
the 0-1 knapsack problem. Here a pure strategy refers to a
single repair method. The genetic operators used in (N + 1)
EAs are bitwise mutation and truncation selection.

• Bitwise Mutation: Flip each bit with a probability 1/n.
• Truncation Selection: Select the best N individuals from

the parent population and the child.
A number of diverse methods are available to handle con-

straints in EAs [6], [17]. Empirical results indicate that repair
methods are more efficient than penalty function methods for
the knapsack problem [18]. Thus, only the repair methods are
investigated in the current paper. The repair procedure [6] is
explained as follows.

1: input ~x;
2: if

∑n
i=1 xiwi > C then

3: ~x is infeasible;
4: while (~x is infeasible) do
5: i =: select an item from the knapsack;
6: set xi = 0;
7: if

∑n
i=1 xiwi ≤ C then

8: ~x is feasible;
9: end if

10: end while
11: end if
12: output ~x.

There are several select methods available for the repair
procedure, such as the profit-greedy repair, ratio-greedy repair
and random repair methods.

1) Profit-greedy repair: sort the items according to the
decreasing order of their corresponding profits. Then

select the item with the smallest profit and remove it
from the knapsack.

2) Ratio-greedy repair: sort the items according to the
decreasing order of the corresponding profit-to-weight
ratios. Then select the item with the smallest ratio and
remove it from the knapsack.

3) Random repair: select an item from the knapsack at
random and remove it from the knapsack.

Thanks to the repair method, all of the infeasible solutions
have been repaired into the feasible ones. The fitness function
of a feasible solution ~x equals to f(~x).

First, let’s consider a pure strategy (N + 1) EA using
the ratio-greedy repair for solving the 0-1 knapsack problem,
which is described as follows.

1: input an instance of the 0-1 knapsack problem;
2: initialize a population considering of N individuals;
3: for t = 0, 1, 2, · · · do
4: mutate one individual and generate a child;
5: if the child is an infeasible solution then
6: repair it into a feasible solution using the ratio-greedy

repair;
7: end if
8: select N individuals from the parent population and the

child by the truncation selection;
9: end for

10: output the maximum of the fitness function.
The following proposition reveals that the (N+1) EA using

the ratio-greedy repair cannot produce a good solution to the
0-1 knapsack problem within a polynomial runtime.

Proposition 1: For any constant α ∈ (0, 1), the pure
strategy (N + 1) EA using he ratio-greedy repair is not an
α-approximation algorithm for the 0-1 knapsack problem.

Proof: According to definition 1, it suffices to consider
the following instance of the 0-1 knapsack problem:

Item i 1 2, · · · , αn αn+ 1, · · · , n
Profit pi n 1 1

n
Weight wi n 1

αn n
Capacity n

where without loss of generality, suppose αn is a large positive
integer for a sufficiently large n.

The global optimum for the instance described above is
(10 · · · 0), f(10 · · · 0) = n. A local optimum is

(0

αn−1︷ ︸︸ ︷
1 · · · 10 · · · 0), f(0

αn−1︷ ︸︸ ︷
1 · · · 10 · · · 0) = αn− 1.

The ratio of fitness between the local optimum and the global
optimum is

αn− 1

n
< α.

Notice that except the global optimum, no other solution is
better than the above local optimum.

Suppose that the (N + 1) EA starts at the above local
optimum having the 2nd highest fitness. The truncation selec-
tion combined with the ratio-greedy repair prevents a mutant
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solution from entering into the next generation unless the
mutant individual is the global optimum itself. Thus, it arrives
at the global optimum only if αn − 1 one-valued bits are
flipped into zero-valued ones and the bit x1 is flipped from
xi = 0 to xi = 1; other zero-valued bits remain unchanged.
The probability of this event happening is(

1

n

)αn(
1− 1

n

)n−αn
= O(n−αn).

Thus, we now deduce that the expected runtime to reach the
global optimum is Ω(nαn). This completes the argument.

Let the constant α towards 0, proposition 1 tells us that the
solution produced by the (N + 1) EA using the ratio-greedy
repair after a polynomial runtime may be arbitrarily bad.

Next, we consider another pure strategy (N + 1) EA that
uses the random-greedy repair to tackle the 0-1 knapsack
problem, which is described as follows.

1: input an instance of the 0-1 knapsack problem;
2: initialize a population considering of N individuals;
3: for t = 0, 1, 2, · · · do
4: mutate one individual and generate a child;
5: if the child is an infeasible solution then
6: repair it into a feasible solution using the random-

greedy repair;
7: end if
8: select N individuals from the parent population and the

child by the truncation selection;
9: end for

10: output the maximum of the fitness function.
Similarly, we may prove that this EA cannot produce a good

solution to the 0-1 knapsack problem within a polynomial
runtime.

Proposition 2: For any constant α ∈ (0, 1), the pure strategy
(N+1) EA using the random repair is not an α-approximation
algorithm for the 0-1 knapsack problem.

Proposition 2 tells us that the solution produced by the (N+
1) EA using the random repair is arbitrary bad.

Finally we investigate a pure strategy (N + 1) EA using
the profit-greedy repair for solving the 0-1 knapsack problem,
which is described as follows.

1: input an instance of the 0-1 knapsack problem;
2: initialize a population considering of N individuals;
3: for t = 0, 1, 2, · · · do
4: mutate one individual and generate a child;
5: if the child is an infeasible solution then
6: repair it into a feasible solution using the profit-

greedy repair;
7: end if
8: select N individuals from the parent population and the

child by the truncation selection;
9: end for

10: output the maximum of the fitness function.
Proposition 3 below tells us that a solution produced by the

(N + 1) EA using profit-greedy repair may be arbitrarily bad
as well.

Proposition 3: For any constant α ∈ (0, 1), the (N + 1)
EA using the profit-greedy repair is not an α-approximation
algorithm for the 0-1 knapsack problem.

Proof: Let’s consider the following instance:

Item i 1 2, · · · , n
Profit pi α(n− 1) 1

Weight wi n− 1 1
Capacity n

Without loss of generality, suppose α(n−1) is a large positive
integer for a sufficiently large n.

The local optimum is (10 · · · 0), f(10 · · · 0) = α(n − 1).
The global optimum is (01 · · · 1), f(01 · · · 1) = n− 1.

The fitness ratio between the local optimum and the global
optimum is

α(n− 1)− 1

n− 1
< α.

Suppose that the (N + 1) EA starts at the local optimum
(10 · · · 0). Let ~x be the individual chosen for mutation. We
investigate the following mutually exclusive and exhaustive
events:

1) An infeasible solution has been generated. In this case
the infeasible solution will be repaired back to (10 · · · 0)
by profit-greedy repair.

2) A feasible solution having the fitness smaller than
α(n − 1) has been generated. In this case, truncation
selection will prevent the new feasible solution from
being accepted.

3) A feasible solution is generated having fitness not
smaller than α(n − 1). This is the only way in which
truncation selection will preserve the new mutant solu-
tion. Nonetheless, this event happens only if the first bit
of ~x is flipped from x1 = 1 into x1 = 0 while at least
α(n−1) bits of this individual, are flipped from xi = 0
into xi = 1. The probability of this event is

n∑
k=α(n−1)

1

n

(
n

k

)(
1

n

)k (
1− 1

n

)n−1−k

≤ O
(

e

α(n− 1)

)α(n−1)

.

It follows immediately that if the EA starts at the local
optimum (10 · · · 0), the expected runtime to produce a better
solution is

Ω

(
α(n− 1)

e

)α(n−1)

.

The desired conclusion now follows immediately from defini-
tion 1.

IV. MIXED STRATEGY (N+1) EVOLUTIONARY
ALGORITHM

In this section we analyse mixed strategy EAs for the knap-
sack problem, where a mixed strategy refers to a probability
distribution of choosing a method from a repair method pool.
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It may be worth noting that other types of mixed strategy
EAs have been considered in the literature. For example,the
mixed strategy EA in [19] employs four mutation operators.
Naturally, we want to know whether or not a mixed strategy
(N + 1) EA, combining two or more repair methods together,
may produce an approximation solution with a guarantee to
the 0-1 knapsack problem.

A mixed strategy (N + 1) EA for solving the 0-1 knapsack
problem is described as follows. The EA combines the ratio-
greedy and profit-greedy repair methods together.

1: input an instance of the 0-1 knapsack problem;
2: initialize a population considering of N individuals;
3: for t = 0, 1, 2, · · · do
4: mutate one individual and generate a child;
5: if the child is an infeasible solution then
6: choose either ratio-greedy repair or profit-greedy

repair method uniformly at random;
7: repair it into a feasible solution;
8: end if
9: select N individuals from the parent population and the

child by truncation selection;
10: end for
11: output the maximum of the fitness function.

Unfortunately the quality of solutions in the mixed strategy
EA still has no guarantee. Proposition 4 below tells us that
solutions produced by the mixed strategy (N + 1) EA ex-
ploiting the ratio-greedy repair and profit-greedy repair may
be arbitrarily bad.

Proposition 4: Given any constant α ∈ (0, 1), the mixed
strategy (N + 1) EA using the ratio-greedy repair and profit-
greedy repair is not an α-approximation algorithm for the 0-1
knapsack problem.

Proof: Consider the same instance as that in the proof of
Proposition 3:

Item i 1 2, · · · , n
Profit pi α(n− 1) 1

Weight wi n− 1 1
Capacity n

where the local optimum is (10 · · · 0) and f(10 · · · 0) = α(n−
1). The global optimum is (01 · · · 1) and f(01 · · · 1) = n− 1.

The fitness ratio between the local optimum and the global
optimum is

α(n− 1)− 1

n− 1
< α.

Suppose the (N + 1) EA starts at the local optimum
(10 · · · 0). Let’s analyse the following mutually exclusive and
exhaustive events that occur upon completion of mutation:

1) A feasible solution is generated the fitness of which
is smaller than α(n − 1). In this case, the truncation
selection will prevent the new feasible solution from
entering the next generation.

2) A feasible solution is generated the fitness of which
is not smaller than α(n − 1). The truncation selection
may allow the new feasible solution to enter the next

generation. This event happens only if the first bit is
flipped from x1 = 1 to x1 = 0 and at least α(n−1) zero-
valued bits are flipped into one-valued. The probability
of the event happening is

O

(
e

α(n− 1)

)α(n−1)

.

3) An infeasible solution is generated, but fewer than α(n−
1) zero-valued bits are flipped into the one-valued bits.
In this case, either the infeasible solution will be repaired
into (10 · · · 0) through the profit-greedy repair; or, it is
repaired into a feasible solution where x0 = 0 and fewer
than α(n − 1) one-valued bits among the rest of the
bits through the ratio-greedy repair. In the later case the
fitness of the new feasible solution is smaller than α(n−
1) and, therefore, cannot be accepted by the truncation
selection.

4) An infeasible solution is generated but no fewer than
α(n−1) zero-valued bits are flipped into the one-valued
bits. This event happens only if at least α(n− 1) zero-
valued bits are flipped into the one-valued bits. The
probability of the event is

O

(
e

α(n− 1)

)α(n−1)

.

Afterwards, with a positive probability, it is repaired into
a feasible solution where x0 = 0 and fewer than α(n−1)
one-valued bits among the rest of the bits by the ratio-
greedy repair. In the later case the fitness of the new
feasible solution is smaller than α(n−1) and, therefore,
it is prevented from entering the next generation by the
truncation selection.

Summarizing the four cases described above, we see that
when the EA starts at the local optimum (10 · · · 0), the
probability to generate a better solution is

O

(
e

α(n− 1)

)α(n−1)

.

We then know that the expected runtime to produce a better
solution is exponential in n. The conclusion of proposition 4
now follows at once.

Furthermore, we can prove that even the mixed strat-
egy (N + 1) EA, combining the ratio-greedy repair, profit-
greedy repair and random-repair together, is still not an α-
approximation algorithm for the 0-1 knapsack problem. Its
proof is practically identical to that of Proposition 4.

In summary, we have demonstrated that mixed strategy
(N + 1) EAs are not α-approximation algorithms for the 0-1
knapsack problem given any constant α ∈ (0, 1).

V. MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM

So far, we have established several negative results about
(N + 1) EAs for the 0-1 knapsack problem. A naturally
arising important question is then how we can construct an
evolutionary approximation algorithm. The most straightfor-
ward approach is to apply an approximation algorithm first to
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produce a good solution, and, afterwards, to run an EA to seek
the global optimum solution. Nonetheless, such a hybridization
of “an approximation algorithm + an EA” imply that the
algorithm starts from a local optimum, so the algorithm is
less efficient in seeking the global optimum.

In this section we analyse a multi-objective EA using helper
objectives (denoted by MOEA in short), which is a simplified
version of the EA presented in [16]. We make a small change
of helper objectives for the sake of analysis. Experiment results
in [16] have shown that the MOEA using helper objectives
performs better than “an approximation algorithm + an EA”.

The MOEA is designed using the multi-objectivization
technique. In multi-objectivization, single-objective optimiza-
tion problems are transferred into multi-objective optimization
problems by decomposing the original objective into sev-
eral components [20] or by adding helper objectives [21].
Multi-objectivization may bring both positive and negative
effects [22]–[24]. This approach has been used for solving
several combinatorial optimization problems, for example,
the knapsack problem [15], minimum spanning trees prob-
lem [25], vertex cover problem [26] and minimum label
spanning tree problem [27].

Now we describe the helper objectives used in [16]. First
let’s look at the following instance.

Item 1 2 3 4 5
Profit 10 10 10 12 12

Weight 10 10 10 10 10
Capacity 20

The global optimum is 00011 in this instance. In the optimal
solution, the average profit of packed items is the largest. Thus
the first helper objective is to maximize the average profit of
items in a knapsack. We don’t use the original value of profits,
instead its rank. Assume that the item i has the kth smallest
profit, then its rank p̂i = k. For example in the above instance,
p̂1 = p̂2 = p̂3 = 1 and p̂4 = p̂5 = 2. The first helper objective
function is defined by

h1(~x) =
1

‖ ~x ‖1

n∑
i=1

xip̂i, (2)

where ‖ ~x ‖1=
∑n
i=1 xi.

Next we consider another instance.

Item 1 2 3 4 5
Profit 15 15 20 20 20

Weight 10 10 20 20 20
Capacity 20

The global optimum is 11000 in this instance. In the optimal
solution, the average profit-to-weight ratio of packed items is
the largest. However, the average profit of these items is not
the largest. Then the second helper objective is to maximize
the average profit-to-weight ratio of items in a knapsack. We
don’t use the original value of profit-to-weight, instead its rank.
Assume that the item i has the kth smallest profit-to-weight
ratio, then let the rank r̂i = k. For example in the above

instance, r̂1 = r̂2 = 2 and r̂3 = r̂4 = r̂5 = 1. The second
helper objective function is defined by

h2(~x) =
1

‖ ~x ‖1

n∑
i=1

xir̂i. (3)

Finally let’s see the following instance.

Item 1 2 3 4 5
Profit 40 40 40 40 150

Weight 30 30 30 30 100
Capacity 120

The global optimum is 11110 in this instance. In the optimal
solution, neither the average profit of packed items nor average
profit-to-weight ratio is the largest. Instead the number of
packed items is the largest, or the average weight is the
smallest. Thus the third helper objective is to maximize the
number of items in a knapsack. The third objective function
is given by

h3(~x) =‖ ~x ‖1 . (4)

Then the original single objective optimization problem (1)
is recast into a multi-objective optimization problem.

max~x{f(~x), h1(~x), h2(~x), h3(~x)},
subject to

∑n
i=1 wixi ≤ C.

(5)

The above multi-objective optimization problem (5) is
solved by an MOEA using bitwise mutation, multi-criteria
truncation selection, plus a mixed strategy of repair meth-
ods.

1: input an instance of the 0-1 knapsack problem;
2: initialize a population considering of N individuals;
3: for t = 0, 1, 2, · · · do
4: mutate one individual and generate a child;
5: if the child is an infeasible solution then
6: select either ratio-greedy repair or profit-greedy re-

pair method uniformly at random;
7: repair it into a feasible solution;
8: end if
9: select N individuals from the parent population and the

child using the multi-criterion truncation selection;
10: end for
11: output the maximum of the fitness function.

Since the target is to maximise several objectives simultane-
ously, we select a few individuals which have higher function
values with respect to each objective function. An efficient
multi-criteria truncation selection operator is adopted in the
above EA [16]. Its pseudo-code is described as follows.

1: input the parent population and the child;
2: merge them into a temporary population which consists

of N + 1 individuals;
3: sort all individuals in the temporary population in the de-

scending order of f(~x), denote them by ~x(1)1 , · · · , ~x(1)N+1;
4: select all individuals from left to right (denote them by
~x
(1)
k1
, · · · , ~x(1)km ) which satisfy h1(~x

(1)
ki

) < h1(~x
(1)
ki+1

) or

h2(~x
(1)
ki

) < h2(~x
(1)
ki+1

) for any ki.
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5: if the number of selected individuals is greater than N
3

then
6: truncate them to N

3 individuals;
7: end if
8: add the selected individuals into the next generation

population;
9: resort all individuals in the temporary population in

the descending order of h1(~x), still denote them by
~x1, · · · , ~xN+1;

10: select all individuals from left to right (still denote them
by ~xk1 , · · · , ~xkm ) which satisfy h3(~xki) < h3(~xki+1

) for
any ki.

11: if the number of selected individuals is greater than N
3

then
12: truncate them to N

3 individuals;
13: end if
14: add the selected individuals into the next generation

population;
15: resort all individuals in the temporary population in

the descending order of h2(~x), still denote them by
~x1, · · · , ~xN+1;

16: select all individuals from left to right (still denote them
by ~xk1 , · · · , ~xkm ) which satisfy h3(~xki) < h3(~xki+1

) for
any ki.

17: if the number of selected individuals is greater than N
3

then
18: truncate them to N

3 individuals;
19: end if
20: add these selected individuals into the next generation

population;
21: while the next generation population size is less than N

do
22: randomly choose an individual from the temporary pop-

ulation, and add it into the next generation population;
23: end while
24: output the next generation population.

In the above algorithm, Steps 3-4 are for selecting the
individuals with higher values of f(~x). In order to preserve
diversity, we choose these individuals which have different
values of h1(~x) or h2(~x). Similarly Steps 9-10 are for selecting
the individuals with higher values of h1(~x). We choose the in-
dividuals which have different values of h3(~x) for maintaining
diversity. Steps 15-16 are for selecting individuals with higher
values of h2(~x). Again we choose these individuals which
have different values of h3(~x) for preserving diversity. We
don’t explicitly select individuals based on h3(~x). Instead we
implicitly do it during Steps 9-10, and Steps 15-16.

Steps 5-7, Steps 11-13, Steps 17-19, plus Steps 21-23 are
used to maintain an invariant population size N .

Using helper objectives and multi-criterion truncation selec-
tion brings a great benefit: to search along several directions
f(~x), h1(~x), h2(~x) and implicitly h3(~x). Hence the MOEA
may arrive at a local optimum quickly, but at the same time,
it maintains good population diversity and will not get trapped
into the absorbing area of a local optimum of f(~x).

Experiment results in [16] have shown that the MOEA using
helper objectives outperform its rivals. In this paper we aim
to prove that the MOEA does produce good solutions with a
guarantee. The analysis is based on a well-known fact which
is derived from the analysis of the greedy algorithm for the
0-1 knapsack problem (see [1, Section 2.4]). Consider the
following greedy algorithm:

1: let ~a∗ be the feasible solutions with the largest profit item;
2: resort all the items via the ratio of their profits to their cor-

responding weights so that p1
w1
≥ · · · ≥ pn

wn
; then greedily

add the items in the above order to the knapsack as long
as adding an item to the knapsack does not exceeding the
capacity of the knapsack. Denote the solution by ~b∗.

Then the fitness of ~a∗ or ~b∗ is not smaller than 1/2 of the
fitness of the optimal solution. Based on the above fact, we
can prove the following result.

Theorem 1: If N ≥ 3n, then the (N+1) MOEA can produce
a feasible solution, which is not worse than ~b∗ and ~a∗, within
O(Nn3) runtime.

Proof: (1) Without loss of generality, let the first item
be the most profitable one. First, it suffices to prove that the
EA can generate a feasible solution fitting the Holland schema
(1 ∗ · · · ∗) (as usual, ∗ stands for the ‘don’t care’ symbol that
could be replaced either by a 1 or a 0) within O(n) runtime.

Suppose that the value of h1 of all the individuals in the
population are smaller than that of ~a∗, that is, they fit the
Holland schema (0 ∗ · · · ∗). Let ~x be the individual that is
chosen for mutation. Through mutation, x1 can be flipped from
x1 = 0 to x1 = 1 with probability 1/n. If the child is feasible,
then we arrive at the desired individual (denote it by ~y). If the
child is infeasible, then, with probability 1/2, the first item
will be kept thanks to the profit-greedy repair and a feasible
solution is generated (denote it by ~y). We have now shown
that the EA can generate a feasible solution that includes the
most profitable item with probability at least 1/(2n).

Thus, the EA can generate a feasible solution fitting the
Holland schema (1 ∗ · · · ∗) within the expected runtime is at
most 2n.

(2) Without loss of generality, let
p1
w1

> · · · > pm
wm

> · · · > pn
wn

.

and let ~b∗ = (

m︷ ︸︸ ︷
1 · · · 10 · · · 0). We demonstrate that the EA can

reach ~b∗ within O(Nn3) runtime.
First we prove that the EA can reach (10 · · · 0) within

O(Nn3) runtime. We exploit drift analysis [28] as a tool to
establish the result. For a binary vector ~x = (x1 · · ·xn), define
the distance function

d(~x) = h2(10 · · · 0)− h2(~x). (6)

For a population {~x1, · · · , ~xN}, its distance function is

min{d(~x1), · · · , d(~xN ).}

According to the definition of h2(~x), the above distance
function is upper-bounded by n.
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Suppose that none of individuals in the current population is
(10 · · · 0). Let ~x be the individual, the value of whose distance
is the smallest in the current population. The individual
belongs to one of the two cases below:

Case 1: ~x fits the Holland schema (1 ∗ · · · ∗) where at least
one * bit takes the value of 1.

Case 2: ~x fits the Holland schema (0 ∗ · · · ∗).
The individual will be chosen for mutation with probability

1
N . We analyse the mutation event related to the above two
cases.

a) Analysis of Case 1: one of one-valued “∗” bits is
flipped into zero-valued; other bits are not changed. The
probability of this event happening is

1

n

(
1− 1

n

)n−1

= Ω(n−1). (7)

Let’s establish how the value of h2 increases during the
mutation. Denote the one-valued bits in ~x by i1, · · · , ik. Then
the value of h2 is

p̂i1 + · · ·+ p̂ik
k

.

Without loss of generality, the ikth bit is flipped into zero-
valued. Then after mutation, the one-valued bits in ~x becomes
i1, · · · , ik−1 and the value of h2 value is

p̂i1 + · · ·+ p̂ik−1

k − 1
.

Thus, the value of h2 increases (or equivalently, the value of
d decreases) by

p̂i1 + · · ·+ p̂ik−1

k − 1
− p̂i1 + · · ·+ p̂ik

k
= Ω(n−2). (8)

Thanks to the multi-criteria truncation selection, the value
of h2 always increases. So there is no negative drift. Therefore
the drift in Case 1 is

Ω(N−1n−3). (9)

b) Analysis of Case 2: The first bit is flipped into zero-
valued; other bits are not changed. Following an analysis same
as that in Case 1, we know the drift in Case 2 is Ω(N−1n−3)
too.

Recall that the distance function d(~x) ≤ n. Applying the
drift theorem [28, Theorem 1], we deduce that the expected
runtime to reach (10 · · · 0) is O(Nn3).

Once (10 · · · 0) is included in the population, it will be kept
for ever according to the multi-criteria truncation selection.

Next we prove that the EA can reach ~b∗ within O(Nn2)
runtime when starting from (10 · · · 0). Suppose that the cur-
rent population includes an individual (10 · · · 0) but no indi-
vidual (110 · · · 0). The individual (10 · · · 0) may be chosen
for mutation with a probability 1

N , then it can be mutated
into (110 · · · 0) with a probability Ω(n−1). The individual
(110 · · · 0) has the 2nd largest value of h2, thus, according
to the multi-criteria truncation selection, it will be kept in the
next generation population. Hence the expected runtime for the

EA to reach the individual (110 · · · 0) is O(Nn). Similarly we
can prove that the EA will reach (1110 · · · 0) within O(Nn)
runtime, then (11110 · · · 0) within O(Nn) runtime, and so on.
The expected runtime for the EA to reach ~b∗ is O(Nn2).

Summarizing the above discussions, we see that the MOEA
may produce a solution not worse than ~a∗ and ~b∗ within
O(Nn3) +O(Nn2) runtime.

It is worth mentioning that the helper objectives h1(~x) and
h2(~x) are different from those used in [16], which are

h1(~x) =
1

‖ ~x ‖1

n∑
i=1

xipi, (10)

h2(~x) =
1

‖ ~x ‖1

n∑
i=1

xi
pi
wi
, (11)

The current proof doesn’t work for the above helper objectives
and we need a new proof for obtaining the same conclusion.
Furthermore, none of the three objectives can be removed;
otherwise the MOEA will not produce a solution with a guar-
anteed approximation ratio. On the other side, the performance
might be better if adding more objectives, for example,

minh4(~x) =
1

‖ ~x ‖1

n∑
i=1

xiwi. (12)

VI. CONCLUSIONS

In this work, we have assessed the solution quality in three
types of (N + 1) EAs, which exploit bitwise mutation and
truncation selection, for solving the knapsack problem. We
have proven that both the pure strategy EAs using a single
repair method and the mixed strategy EA combing two or
three repair methods are not an α-approximation algorithm
for any constant α ∈ (0, 1). In other words, solution quality
in these EAs may be arbitrarily bad.

Nevertheless, we have shown that a multi-objective (N+1)
EA using helper objectives is a 1/2-approximation algorithm.
Its runtime is O(Nn3). Our work demonstrates that using
helper objectives is a good approach to design evolutionary
approximation algorithms. The advantages of the EA using
helper objectives is to search along several directions simul-
taneously and also to preserve population diversity.

Population-based EAs using other strategies of preserving
diversity, such as niching methods, are not investigated in this
paper. The extension of this work to such EAs will be the
future research. Another work in the future is to study the
solution quality of MOEAs for the multi-dimension knapsack
problem.
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