
 

  

Abstract—Protein structure prediction, i.e., computationally 
predicting the three-dimensional structure of a protein from its 
primary sequence, is one of the most important and challenging 
problems in bioinformatics. Model refinement is a key step in 
the prediction process, where improved structures are 
constructed based on a pool of initially generated models. Since 
the refinement category was added to the biennial Critical 
Assessment of Structure Prediction (CASP) in 2008, CASP 
results show that it is a challenge for existing model refinement 
methods to improve model quality consistently.  

This paper presents three evolutionary algorithms for protein 
model refinement, in which multidimensional scaling(MDS), the 
MODELLER software, and a hybrid of both are used as 
crossover operators, respectively. The MDS-based method takes 
a purely geometrical approach and generates a child model by 
combining the contact maps of multiple parents. The 
MODELLER-based method takes a statistical and energy 
minimization approach, and uses the remodeling module in 
MODELLER program to generate new models from multiple 
parents. The hybrid method first generates models using the 
MDS-based method and then run them through the 
MODELLER-based method, aiming at combining the strength 
of both. Promising results have been obtained in experiments 
using CASP datasets. The MDS-based method improved the 
best of a pool of predicted models in terms of the global distance 
test score (GDT-TS) in 9 out of 16test targets.  
 
Keywords: Multidimensional scaling, MODELLER, evolutionary 
algorithm, protein model refinement 

I. INTRODUCTION 
roteins are essential biochemical compounds that 
contribute to many processes in life. Functional properties 
of cells depend on correctly folded protein structures[1]. 

Misfolded proteins may lead to diseases, such as Alzheimer’s, 
Parkinson’s, Type II Diabetes, and even cancers[2] [3]. The 
knowledge of protein tertiary structure can help in basic 
research on protein functions, as well as in drug development. 
Both experimental methods and computational methods can 
be used in protein structure acquirement. Among 
experimental methods, X-ray crystallography and nuclear 
magnetic resonance (NMR) are the most wildly used. 
However, it is slow, costly, and difficult to find protein 
tertiary structures through experimental technologies [4]. 
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Computational techniques are aimed at predicting protein 
structures from primary sequences information and have the 
potential of being fast, cheap, and widely available. 
Therefore, obtaining an accurate prediction of the 
three-dimensional structure of a protein by automatic 
prediction is one of the most important problems in 
bioinformatics and has been actively studied for many years.  

The Critical Assessment of Structure Prediction (CASP) is 
a biennial world-wide event in the structure prediction 
community to assess the current protein modeling techniques 
and identify their quality. Different prediction software 
programs from various research groups predict the structure 
of an unknown protein or refine an existing model of a 
protein. Generating high-quality protein models and refining 
existing models are two major steps in the computational 
process of protein structure prediction. 

In model refinement, improved structures are constructed 
based on a pool of initially generated models. A model 
refinement category was first added to the CASP8 
competition in 2008 to evaluate the state-of-the-art of this 
area. Participants were given a pool of protein models 
submitted by the prediction servers, with the best model 
identified. CASP results show that it is a challenge for 
existing model refinement methods to improve model quality 
consistently [5-10].In CASP10 in 2012,i3Drefine is the only 
fully automated server that can improve both local and global 
structures of prediction models, even though its improvement 
is small. This method iteratively minimizes an energy 
function consisting of physics and knowledge-based force 
fields, and uses a hydrogen bonding (HB) network 
optimization technique [5].GalaxyRefine has the best 
performance in CASP10 in terms of improving local structure 
quality. It rebuilt side chains, repacked them, and relaxed the 
models by molecular dynamics simulation [6]. KoBaMIN is 
another method based on minimization of a knowledge-based 
potential of mean force [7]. I-TASSER is an automated 
pipeline for predicting protein 3D structure by multiple 
threading alignments and iterative structure assembly 
simulations, and it has an internal refinement module as 
well[8]. 

Although existing methods sometimes perform well on 
model refinement, especially in template-based modeling, 
further improvement is needed for practical use. During 
CASP8 and CASP9 [11] [12], only a few groups were able to 
improve the protein model quality consistently. In CASP10, 
only two groups improve the protein model quality 
consistently. The maximum improvement in high accuracy of 
GDT-TS (GDT-HA) is only about 0.1 [13].  
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In this paper, three new evolutionary algorithms for protein 
model refinement, in which multidimensional scaling (MDS), 
the MODELLER software, and a hybrid of both are used as 
crossover operators, respectively. The MDS-based method 
takes a purely geometrical approach and generates a child 
model by combining the contact maps of multiple parents. 
The MODELLER-based method takes a statistical and energy 
minimization approach and uses the remodeling module in 
MODELLER program to generate new models from multiple 
parents. The hybrid method first generates models using the 
MDS-based method and then run them through the 
MODELLER-based method, aiming at combining the 
strengths of both. Promising results have been obtained in 
experiments using CASP datasets. 

This paper is organized as follows. Section II introduces 
the basics of major techniques used in the proposed methods 
and some related work. Section III presents the three new 
evolutionary algorithms to refine protein models in details. 
Section IV presents experimental results on CASP datasets. 
Finally, Section V concludes the paper.   

II. BASICS OF KEY TECHNIQUES AND RELATED WORK 

A. Protein Model Quality Evaluation 
Assessing the quality of a computationally generated 

protein model is essential in protein structure prediction and 
refinement. A basic hypothesis of protein models is that the 
native structure has the minimum free energy in general [1]. 
Most model quality evaluation methods use energy or scoring 
functions, either physics-based or knowledge/statistics-based 
[14]. Physics-based functions are designed based on physics 
laws, such as the rmodynamic equilibrium, to evaluate the 
models’ quality, while knowledge-based functions are 
designed based on information and properties of protein 
structures derived from known structures. Another major 
approach is consensus based: given a pool of predicted 
models, the quality of a model is the average similarity 
between it and other models in the pool. In CASP 
competitions, consensus methods perform much better than 
scoring functions [15]. However, a major problem of 
consensus methods is that they require a pool of diverse 
models of generally high quality to perform well, which is not 
practical in many real applications, whereas scoring functions 
can evaluate a single model.  

1) Consensus methods based on structure similarity 

A key element of consensus methods is the similarity 
measurement between two 3-D structures or models. 
Commonly used pairwise similarity metrics include the 
Root-Mean-Squared Deviation (RMSD), the Template 
Modeling Score (TM-score), and the Total Score of Global 
Distance Test (GDT-TS) [2,15,16]. 

GDT-TS [16] is a global quality measure of the 
corresponding positioning of amino acid sequences between 
two protein models. It is one of the major quality assessment 
metrics in CASP competitions. The GDT-TS score is 
calculated by averaging the percentage of corresponding 
residues (represented by the C-α atoms)between two models 
within a certain cutoff distance after the two models are 

optimally superimposed over each other. The GDT-TS value 
is calculated as follows: 

ሺܵܶ_ܶܦܩ  ܵ , ܵሻ ൌ ሺ ଵܲ  ଶܲ  ଷܲ  ସܲሻ/4            (1) 
Where Si and Sj are two protein 3D structures and Pd is the 
percentage that the C-α atoms in Si is within a defined cut off 
distance d, ݀ א  ሼ1, 2, 4, 8 Åሽ, from the corresponding C-α 
atoms in Sjሾ15ሿ.GDT-TS values range from 0 to 1 with higher 
value indicating two structures are more similar. 
In consensus methods, GDT-TS is commonly used to 
measure the similarity of a pair of models. Given a set of 
prediction models S and a reference set R, and the consensus 
score, the CGDT-TS score of each model Si is defined as: 
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The reference set R is a subset of Sand can be the same as 
S.CGDT-TS values also range from 0 to 1.  

2) Energy or scoring functions 

    Many software programs have been developed using 
energy or scoring functions to evaluate the quality of 
predicted models. OPUS_Cα [17]has a knowledge-based 
potential function just using the information of C-α positions 
in a model. This software is based on seven major 
representative molecular interactions in proteins: 
distance-dependent pairwise energy with orientation 
preference, hydrogen bonding energy, short-range energy, 
packing energy, tri-peptide packing energy, three-body 
energy, and salvation energy. dDFIRE[18]treats each polar 
atom as a dipole and is based on the orientation angles in 
dipoles interactions and distance between two atoms dipoles. 
It considers the hydrogen bonding interactions, the physical 
dipole-dipole interactions, orientation-dependent interactions 
between polar and nonpolar atoms, and interactions between 
non-hydrogen-bonded polar atoms. It has an all-atom 
parameter-free statistical energy function. calRW[19]has two 
major functions: a) a pairwise distance-dependent atomic 
statistical potential function using an ideal random walk chain 
as reference state and b) a side chain orientation-dependent 
energy function. GOAP [20] is a generalized orientation and 
distance-dependent all-atom statistical potential that is 
determined by the relative orientations of the planes, which 
rely on each heavy atom in interacting pairs. It only considers 
the distance and angle information between representative 
atoms or blocks of side-chain or polar atoms.ProQ2uses 
support vector machines to validate each residue quality and 
the global quality of protein models. It combines previously 
used features with updated structural and predicted features to 
evaluate the predicted models [21]. Because ProQ2 is the best 
single-model quality assessment (QA) method in CSAP10,it 
is used as one of the QA methods in our proposed algorithms 
to represent single-model QA methods. Its performance is 
compared with a consensus method within our new 
evolutionary algorithm framework.  

B. Multi-dimensional scaling (MDS) 
The contact map of a protein model is a two dimensional 

matrix, in which each value represents the distance between 
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conditions the contact map can reconstruct th
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orthologous sequence sets [31], predict th
binding [32], and obtain improved, clash-f
loops obtained from a database of protein m

C. MODELLER 
MODELLER is a popular software pro

modeling. It tries to satisfy spatial restrain
homology to template structures and e
functions [34-36]. The spatial res
homology-derived restraints, stereo che
statistical preferences for dihedral angles 
inter-atomic distances, and optional m
restraints. Those restraints presented as pr
functions are optimized by a combinati
gradients and molecular dynamics with simu
Its basic inputs include an alignment of 
atomic coordinates of the templates an
MODELLER calculates many distances an
from the alignment with the template terti
generates an atomic model.  

III. THREE NEW EVOLUTIONARY A
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dividuals to form a 
 until a certain 

new evolutionary 
or protein model 

refinement. Figure 1 shows the fram
algorithms differ in their crossover o
consists of three stages: protein m
selection, and crossover. 

 

Fig. 1.The framework of the three new e
protein model refinement. The three algo
crossover operators. 

A. Initial pool of models 
In our experiments on CASP dat

models contains all predicted mode
teams [37].  

B. Evaluation 
In the evaluation stage, redund

models are removed and the best 20
form the initial population. In the sub
best 200 models selected from a 
generated models and previous 
population. One of two QA metho
GDT-TS, can be used to calculate
model. ProQ2 is a single-model sco
assess the quality of a single model,
good performance in CASP10. Figu
true GDT-TS values (i.e., the true qu
of a model to its native structure.) of
population of CASP target T0654. T
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collection of models to assess the 
performed very well in the 
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It is based on pairwise GDT-TS va
TM-score software [38]. The true q
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Figure 3shows CGDT-TS against tru
quality) values of 200 models in 

mework, where the three 
operators.  One generation 
model quality evaluation, 
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The correlation is weak.  
od, CGDT-TS, needs a 
quality of one model. It 
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ethods by a large margin. 
alues calculated using the 
quality of a model is the 
ve structure of the protein. 
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CASP target T0654. The correlation is very 
 

Fig. 2.The corresponding ProQ2 and true GDT-T
models in the initial population for CASP target p

 

Fig. 3.The corresponding CGDT-TS and true GD
200 models in the initial population for CASP tar

C. Selection 
Fitness proportional selection is a simple

selection method in evolution algorithms
selected for reproduction in proportional
values [39]. In our experiments, each new m
a group of current models selected accordin
scheme. The group of models is passed thr
operator, which is to be presented in the ne
generate a new model. Thus, to generate n
groups of models will be selected an
operations will be executed n times.  

D. Three New Crossover Operators 

1) MDS-based method 

The MDS-based crossover algorithm is sh
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Fig. 4.The MDS-based cros
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2) MODELLER-based method 

The MODELLER-based crossove
Figure 5.Given a set of models, the
script configuration file, MODELLE
models. In our experiments, th
modeling protocol in MODELLER i

 

Fig. 5.The MODELLER-based c
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 3) Hybrid method 

The hybrid crossover operator is shown in
set of models, their ProQ2 scores, the protei
script file containing a MODELLER co
function first runs the MDS-based cro
multiple times, e.g. 3 times, to generate mult
Then, the MODELLER-based crossover op
on these new models to generate one final m

 

Fig. 6.The hybrid crossover operator using both 
MODELLER-based crossover operations. 

IV. EXPERIMENTAL RESU
In our experiments, CASP10 predicte

targets were used. The computational tim
quality of the proposed evolutionary algo
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use two or three models to create one new
shows the name for different EA methods. T
be stable after several iterations. In addition
the computation time should not be too long
algorithms in this experiment ran for 10 gen

 
TABLE I 

NAMING FOR DIFFERENT MET
 Evaluation Num of Parents C
P_2P_W ProQ2 2 
P_3P_M ProQ2 3 M
P_2P_H ProQ2 2 
C_2P_W CGDT-TS 2 
C_3P_M CGDT-TS 3 M
C_2P_H CGDT-TS 2 

 
Figures7and 8 compare the computati
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because the MDS-based crossover operator 
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In terms of evaluation methods, ProQ2 is 
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CGDT-TS used more than 8 minutes, whe
less than 2 minutes, 4 times faster.  
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shown.P_2P_W improves over the initial m

n Figure 6.Given a 
n sequence, and a 
onfiguration, the 
ossover operator 
tiple new models.  
erator is run once 

model as output.  

 
MDS-based and 

ULTS 
d models of 16 
me and solution 

orithms using the 
hybrid crossover 
rossover operators 
w model. Table I 
he results trend to 

n, considering that 
g, all evolutionary 
nerations. 

THODS 
CrossoverOperator 

WMDS_based 
MODELLER_based 

Hybrid 
WMDS_based 

MODELLER_based 
Hybrid 

onal times of 6 
t the MDS-based 
ER-based method 
is much faster. In 

ok very little time. 
much faster than 

_W and C_2P_W, 
ereas ProQ2 used 

on quality of three 
W, P_3P_M, and 
step. In Fig. 9, the 
final population is 

models in 9 out of 

16 cases and is the same in 5 cases
happens on target T0680, where
refinement has a true GDT-TS valu
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Fig.7.Comparison of computational tim
algorithms. 

 

Fig.8. The breakdown of computation
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Fig.9.Comparison of solution quality, the true GDT-TS value of the 
best model in the final population, of three evolutionary algorithms 
against the best model in the initial population, all using ProQ2 in 
the evaluation step. 

 
Figures 10 and 11compare the solution quality in terms of 

the average true GDT-TS value of the best 10 and all models 
in the final population, respectively. For the best 10 cases, 
P_2P_Wslightly improves the initial models on 13 targets. 
For example on target T0698, P_2P_W, P_3P_M, and 
P_2P_H raised the average true GDT-TS value by 0.0427, 
0.0501 and 0.0358, respectively. On the other hand, they 
perform poorly on three targets. The average quality of total 
generated models was improved. Figure 11 shows that in 
terms of the average of all models, in most cases, these 
algorithms improve over the initial population significantly. 
 

 
Fig.10.Comparison of solution quality, the average true GDT-TS 
value of the 10 best models in the final population, of three 
evolutionary algorithms against the initial population, all using 
ProQ2 in the evaluation step. 

 
 

 
Fig.11. Comparison of solution quality, the average true GDT-TS 
value of all models in the final population, of three evolutionary 
algorithms against the initial population, all using ProQ2 in the 
evaluation step. 

 

 2) Using CGDT-TS in evaluation 

Figures12, 13, and 14 compare the solution quality of three 
evolutionary algorithm settings, C_2P_W, C_3P_M, and 
C_2P_H, all using CGDT-TS in the evaluation step. In 
Fig.12, the true GDT-TS value of the best model in the final 
population is shown. The final solutions of these algorithms 
are generally worse than the initial best models. The result is 
similar for the best-10-models case, as shown in Fig.13. In 
contrast, these algorithms improve the average true GDT-TS 
value of all models in the final population over the initial 
population, as shown in Fig. 14.  

 

 
Fig.12.Comparison of solution quality, the true GDT-TS value of the 
best model in the final population, of three evolutionary algorithms 
against the best model in the initial population, all using CGDT-TS 
in the evaluation step. 
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These refinement algorithms using CGDT-TS evaluation 
perform worse than using ProQ2. The reason is that 
CGDT-TS gives models most similar to other models get 
higher scores, leading to premature convergence. 

 

 
Fig.13.Comparison of solution quality, the average true GDT-TS 
value of the best 10 models in the final population, of three 
evolutionary algorithms against the initial population, all using 
CGDT-TS in the evaluation step. 

 

 
Fig.14.Comparison of solution quality, the average true GDT-TS 
value of all models in the final population, of three evolutionary 
algorithms against the initial population, all using CGDT-TS in the 
evaluation step. 

 
Finally, Figure15 shows the average improvement in terms 

true GDT-TS values for five different algorithm settings. 
P_2P_W improves over the initial population in terms of the 
best model, the average of best 10 models, and the average of 
all models. The results of the other algorithms are mixed. 
Using ProQ2 in the evaluation step is much better than using 

CGDT-TS. 
The result shows that the MDS-based crossover is fast and 

can generate better solutions to refold existing predicted 
models can be a promising approach to improve the best 
predicted protein models’ quality. 

 

 
Fig.  15. Summary of improvement of 5 different evolutionary 
algorithm settings over initial models. A positive value means an 
algorithm’s final solution improves its input, whereas a negative 
value means its solution is worse than its input.  

V. SUMMARY 
The paper presents an evolutionary algorithm framework 

and three new crossover operators, MDS-based, 
MODELLER-based, and hybrid, for protein model 
refinement. Their performances are compared based on the 
ProQ2 and CGDT-TS evaluation. The MODELLER-based 
method is much slower than the MDS-based method. Using 
ProQ2 to evaluate models’ quality is much faster than 
CGDT-TS. All methods improve the overall quality of the 
population, whereas only P_2P_W improves the top 1 and top 
10 models determined by comparing with the native 
structures. The MDS-based crossover operator is purely 
geometric-based and fast, and is a promising complement to 
energy function based methods.  

In this study, the global ProQ2 score was used for quality 
assessment and the local ProQ2 score was used to construct 
the weight matrices. In our future work, other promising local 
score program such as IDDT [40] could be used.  
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