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Abstract— In edge detection, a machine learning algorithm
generally requires training images with their ground truth or
designed outputs to train an edge detector. Meanwhile the com-
putational cost is heavy for most supervised learning algorithms
in the training stage when a large set of training images is
used. To learn edge detectors without ground truth and reduce
the computational cost, an unsupervised Genetic Programming
(GP) system is proposed for low-level edge detection. A new
fitness function is developed from the energy functions in active
contours. The proposed GP system utilises single images to
evolve GP edge detectors, and these evolved edge detectors are
used to detect edges on a large set of test images. The results of
the experiments show that the proposed unsupervised learning
GP system can effectively evolve good edge detectors to quickly
detect edges on different natural images.

I. INTRODUCTION

EDGE detection is an important step in image process-

ing and computer vision [1]. It has developed over

many years [2], and there are many different approaches

to detecting edges [1][3]. In low-level edge detection tasks,

edges are generally detected based on raw pixel values.

Differentiation-based approaches have been popularly ap-

plied to edge detection [3]. These approaches are based on

specific edge domain knowledge. When only weak edge

domain knowledge is provided, some learning algorithms

have been used for training detectors to extract edges [4][5].

In our previous work [5][6], only training images and their

ground truth were provided to automatically evolve good

low-level edge detectors.

When the ground truth or the desired outputs of training

images are not provided, it is hard for a learning algorithm to

find edge detectors. Genetic Programming (GP) as a learning

algorithm has been applied to automatic construction of

edge detectors since at least 1996 [7][8]. From the existing

literature, the developed GP methods for edge detection are

based on supervised learning. When there is no ground truth

or designed outputs for training images, how to evolve edge

detectors by GP needs to be investigated.

When there is no ground truth, a method to evaluate

detected edges might require some degree of domain edge

knowledge. To directly find edges, the active contours ap-

proach [9] uses an energy function. Active contours can find

good closed edges, but there is a heavy computational cost

in the active contours approach. In addition, this approach
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is not stable and usually only detects part of edges in an

image [1][10]. Since the evaluation of edges (by an energy

function) does not need ground truth, it is desirable to

develop a new fitness function for GP using, in order to to

quickly evaluate detected edges.

In order to reduce the computational cost of learning, one-

shot learning has been applied to object recognition [11][12].

After obtaining prior knowledge from existing datasets, such

as predefined feature distributions or learnt classifiers, one-

shot learning can employ a minimal set of training examples

to train new classifiers. Via employing prior edge knowledge,

it is expected to use only a small set of images to train good

GP edge detectors.

A. Goals

The goal of this paper is to investigate unsupervised

learning in GP for edge detection when a low computational

cost is desired in the training and test stages. To the best of

our knowledge, it is the first time that unsupervised learning

in GP has been investigated for edge detection. A new

fitness function developed from the energy functions in active

contours is proposed to select good GP edge detectors. When

GP evolves edge detectors from a single image, the image

gradient as the prior edge knowledge is employed. Rather

than finding GP edge detectors for each image, GP evolved

edge detectors from a single image will be directly used to

test other images. Specifically, we would like to investigate

the following research objectives.

• Whether a single training image without ground truth

can be used to evolve good edge detectors by GP for

directly detecting unseen images.

• Whether GP evolved edge detectors from a single

image are better of finding edges on unseen images

than using a single threshold chosen from a set of fixed

thresholds based on the best fitness on the single image.

• Whether the GP evolved edge detectors can be reason-

ably interpreted by a human.

B. Organisation

In the remainder of this paper, Section II briefly describes

the background of edge detection and GP. Section III in-

troduces the proposed GP system. Section IV gives the

settings of the experiments. Section V provides the results

on a benchmark natural image dataset. Section VI draws

conclusions and suggests future work directions.
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II. BACKGROUND

This section briefly describes the background of edge

detection, active contours, and related work in edge detection

using GP.

A. Edge Detection

In edge detection, differentiation-based approaches have

been popularly used to extract edge features [1][3]. Based

on different directions, image derivatives are calculated and

then they are combined as image gradients, such as in the

Sobel edge detector [13] and the Canny edge detector [14].

Ganesan and Bhattacharyya [13] suggested a common

computational framework using gradients to extract edges on

untextured and textured images. In a 3× 3 moving window,

the horizontal derivative dx is defined by Equation (1), where,

a is a parameter, ⊛ is the convolution operator, and I is

an input image. Parameter a has been used with different

values, such as a = 2 for the Sobel detector, a = 1 for the

Prewitt detector [15], and a =
√
2 for the Frei-Chen edge

detector [16].

dx =


 1 0 −1

a 0 −a

1 0 −1


 ⊛ I (1)

It is difficult to evaluate detected edges because edge

detection is a subjective task. Besides the evaluation from

direct human observation, the ground truth of the detected

images is a popular choice for evaluating the performance

of edge detectors [4][17]. Since edge points are not in-

dependent, the smoothness and connection of edges have

been used to help to extract edges, such as the Hough

transform [18] and active contours [9][19]. Active contours,

also called “snakes”, address how to find edges (detected

curves) from the influence of the curves themselves and

image gradients without ground truth. In general, an energy

function is defined in the active contours approach to find

closed curves, and the detected curves should have minimum

energy.

Let c be a set of curves in an image. An energy function

E(c) generally includes an internal energy IE(c) (from the

curves themselves) and an external energy EE(c) (such

as image gradients) based on the definition of active con-

tours [9][10][19][20]. The general E(c) is defined in Equa-

tion (2), where λ is a weight factor.

E(c) = IE(c) + λEE(c) (2)

The internal energy IE mainly focuses on the smoothness

of the curves [9][10]. The image gradient is popularly used in

EE. From Aubert and Kornprobst [21], EE(c) is suggested

to satisfy: (1) EE is regular monotonic decreasing; and

(2) EE(0) = 1 and limc→∞(c) = 0. The detected curves

in active contours are considered as the solution of an

optimisation problem (finding the minimum energy).

B. Related Work to GP for Edge Detection

GP has been employed for edge detection. However, from

the existing literature, there are no reports using GP as

an unsupervised learning method to evolve edge detectors.

Using desired outputs or ground truth, GP has been used to

evolve programs and these programs are used to detect edges

on unseen images.

In order to construct low-level edge detectors, GP has

been used to evolve programs based on raw pixel values.

Harris and Buxton [7] designed outputs for one-dimensional

step edge responses and utilised GP to evolve programs to

extract edge features. GP was used to select pixels in a

13 × 13 moving window to construct programs to extract

edge features based on multiple objectives (including de-

tection accuracy) [22]. Using pixels in a moving window

as terminals, programs were evolved by GP for detecting

edges [23][24][25]. Rather than using a moving window, GP

has been investigated for constructing edge detectors based

on full images [6][8][26]. The evolved programs can compete

with the results from the existing edge detectors, such as the

Sobel edge detector [26] and the Canny edge detector [22].

Also, ordinary image operators have been employed in

GP for evolving edge detectors. For instance, Gaussian

filters were employed to evolve Gaussian-based edge detec-

tors [27][28]. GP utilised morphological erosion and dilation

as terminals to evolve programs for detecting edges in binary

images [29][30]. The predefined edge features were used for

GP to construct composite edge features [31][32].

In summary, GP has been employed to evolve edge detec-

tors based on ground truth or desired outputs, incorporating

different degrees of prior domain edge knowledge. However,

it remains an open question whether GP can be used to evolve

good programs to detect edges when there are no ground

truth or target edge points available.

III. THE METHOD

In order to quickly evolve an edge detector by GP, the

proposed GP system is inspired by an artificial ant for image

processing [25]. Our proposed GP system evolves a program

based on a single given image. The evolved program is used

to detect edges in other (test) images, rather than evolving

new programs again based on these test images. Since the

initial investigation mainly focuses on unsupervised learning,

a new fitness function, modified from an energy function in

active contours, is proposed to evaluate evolved programs

without the ground truth of the single training image used.

A. Terminals

A GP artificial ant [25] employed actions (turn left, turn

right and move) to find food. Here, edge points are also

considered as food, which is similar to a artificial ant for

tracking boundaries in an image. However, the boundaries

found by an ant [25] include many false alarms. In order

to reduce false alarms, our GP system includes different

terminals to mark pixels. A program will scan pixels from

left to right and from top to bottom in an image.
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The first terminal in the proposed GP system is marker m

based on a single pixel. While a program is marking a pixel,

the pixel is marked as an edge point if marker m is called.

In order to check whether a program can quickly mark a

set of pixels, a new terminal, named marker mH , is used

to mark n horizontally connected pixels as edge points, and

their neighbours (top and bottom positions) are marked as

non-edge points. Also, another new terminal, named marker

mV , is used to mark n vertically connected pixels as edge

points, and their neighbours (left and right positions) are

marked as non-edge points.

In order to mark pixels as non-edge points, a new terminal,

called marker nE, marks the current discriminated pixel as a

non-edge point. Another new terminal, called marker anE,

marks all pixels in a n× n window as non-edge points.

In summary, the terminal set in the proposed GP system

includes {m,mH,mV, nE, anE}.

B. Functions

In order to choose different terminals, logical functions

should be used in the function set. To combine conditions

into logical operation IF , a function IFC(f, t, P1, P2) is

designed, where f is a specific feature extracted from the

current discriminated pixel and its neighbours, t is a random

constant (threshold), and P1 and P2 are sub-programs. In

function IFC(f, t, P1, P2), P1 is executed when f < t;

otherwise, P2 is executed.

Based on the terminal set, the conditions should include

information that could be helpful to discriminate the current

pixels as edge points or non-edge points and the information

of the edge orientation of the discriminated pixels. Therefore,

the horizontal derivative dx and the vertical derivative dy are

selected as specific features f . Similar to the Prewitt edge

detector [15], the horizontal derivative dx for a pixel at the

position (x, y) in image I is defined in Equation (3), where,

k is the half of the window width, namely k = n−1
2 (n is

odd), and Ix,y is the intensity of pixel (x, y). The vertical

derivative dy is defined in Equation (4).

dx(x, y) =

j=k∑
j=−k

i=k∑
i=1

(Ix−i,y+j − Ix+i,y+j) (3)

dy(x, y) =

j=k∑
j=1

i=k∑
i=−k

(Ix+i,y+j − Ix+i,y−j) (4)

Considering the range of threshold t (combined with

different specific features f as conditions), we rescale the

range of the derivatives dx and dy . The rescaled derivatives

dx and dy are defined in Equations (5) and (6).

dx(x, y) =

∑j=k

j=−k

∑i=k

i=1 (Ix−i,y+j − Ix+i,y+j)

n(n− 1)
(5)

dy(x, y) =

∑j=k

j=1

∑i=k

i=−k (Ix+i,y+j − Ix+i,y−j)

n(n− 1)
(6)

To directly discriminate pixels without edge direction

information, the image gradient g is also considered as

a specific feature f . The image gradient g is defined in

Equation (7). Here, we also rescale the image gradient g so

that the image gradient has the same range as the derivatives

dx and dy when only the positive values are considered.

g =

√
d2x + d2y

2
(7)

When the variance or the standard deviation of pixel

intensities in a window is very low, the center pixel in

the window should be a non-edge point. Therefore, the

variance sd is also employed as a specific feature f . Here,

sd is extracted from a n × n window, and it is defined in

Equation (9), where rsd is a scale factor for sd.

sum(x, y) =
∑j=k

j=−k

∑i=k

i=−k Ix+i,y+j (8)

sd(x, y) = rsd
n2 (

∑j=k

j=−k

∑i=k

i=−k I
2
x+i,y+j −

(sum(x,y))2

n
)(9)

The normalised standard deviation based on a 3× 3 win-

dow was successfully used in [31]. Therefore, the normalised

variance nsd is also considered for f . The normalised

variance nsd is defined in Equation (10). Here, the window

size is n× n. Note that the scale parameter rsd in nsd can

be different from sd.

nsd(x, y) =
n2 ∗ sd(x, y)

sum(x, y)
(10)

When IFC is generated, one of the specific features f (dx,

dy , g, sd and nsd) is randomly selected, and t is randomly

generated in the range from 0 to 50. Note that we rescale

the ranges of dx, dy , g, sd and nsd so that threshold t is

expected to be effectively used for all of the specific features.

To construct different programs, functions prog2(P1, P2)
and prog3(P1, P2, P3) are employed in the function set,

where P1, P2 and P3 are sub-programs. In prog2 and

prog3, all sub-programs are executed from left to right. For

instance, prog2(P1, P2) calls P1 firstly, then calls P2.

C. Fitness Function

Energy functions in active contours have been used to

directly find a set of curves in an image without help from

ground truth. However, the existing energy functions are

usually based on the global edge information in a detected

image. The computational cost for finding the minimum

energies is very heavy. In order to quickly find edges using

GP without ground truth, the fitness function in GP should be

simplified from the energy functions used in active contours.

If an energy function is used for a local area only, such

as a moving window, the computational cost of searching

the minimum energy would be reduced obviously. A fitness

function, similar to an energy function used in a moving

window, was proposed to search edges in the moving window

using Particle Swarm Optimisation [33]. The results [33]

show that an energy function based on a local area can be

helpful to find good edges. Therefore, the designed fitness

function in GP will mainly address the edge information from

local areas.

To relax the constrain in an energy function, the designed

fitness function will allow broken edges and thick edges. The
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(a) 23025 (b) 23080 (c) 33066

(d) 370036 (e) 385028 (f) 101085

Fig. 1. Five BSD training images (a)–(e) and one BSD test image (f).

new fitness function Fit is defined in Equation (12). Here,

gi is the image gradient for pixel i, N is the number of

detected edge points, w1 and w2 are weight factors, and pwi

is a penalty weight for thickness. When pixel i (marked as an

edge point) has more than four neighbours marked as edge

points, pwi is equal to 1, otherwise, pwi is equal to 0. Note

that EE returns positive infinity when N is equal to 0.

EE = 1

log

(

∑

N
i=1

gi

N
+1

)

+1
+ w1

log (
∑

N

i=1
gi+1)

(11)

Fit = EE +
w2

∑

N

i=1
pwi

N
(12)

Different from EE(c) in Equation (2), EE ranges from

0 to positive infinity, not from 0 to 1. Since the thickness is

allowed in EE, the first part
∑

N

i=1
gi

N
in EE is used to look

for edge points with high image gradients. The second part∑N

i=1 gi is expected to find as many edge points as possible.

When a high value of the first part in EE is obtained,

pixels with low g would be not considered as edge points.

Therefore, there is a trade-off between the first part and the

second part.

IV. EXPERIMENT DESIGN

This section describes the training images and test images

used for the experiments. Also, the settings of the experi-

ments are provided.

A. Image Dataset

The Berkeley Segmentation Dataset (BSD) [4] has been

popularly used for edge detection and image segmentation.

The BSD dataset provides ground truth for predefined train-

ing images and predefined test images, and the training and

test images are independent. There are 200 training images

and 100 test images. The ground truth are not used in

the training stage in this paper. Note that each image has

481× 321 pixels and comes from the natural world.

Fig. 1 shows five BSD training images and one BSD test

image. Note that these images are rescaled in Fig. 1. These

images are independently used to find GP edge detectors

without ground truth. The reason for selecting these images

is that these images have rich edge information and large

numbers of true edge points.

B. Experiment Settings

The parameter values for GP are: population size 100;

maximum generations 30; and probabilities for mutation

0.30, crossover 0.65 and elitism (reproduction) 0.05. The

maximum depth (of a program) is 3. These values are set

based on initial experiments. The reason for choosing a small

depth is that evolved programs are mainly focused on the

combination of different conditions in IFC(f, t, P1, P2)
and fast detection speed. It is possible to increase the

computational cost for new programs when the depth is large.

We perform 30 independent runs for each single image.

For the n×n moving window, the parameter n is selected

9 in the experiments. To rescale the range of sd and nsd,

we use rsd = 8 in sd and rsd = 10 in nsd.

In fitness function Fit, w1 is set to 80, and w2 is set to

4. The parameters w1 and w2 are set based on initial exper-

iments. How to choose w1 and w2 needs to be investigated

in the future.

V. RESULTS AND DISCUSSION

This section describes the results with discussions. Firstly,

the results (Fit) on the six images are given. Secondly, the

test performance of the GP edge detectors on the BSD test

images is compared to the image gradient using a single

threshold from single images. Thirdly, the computational cost

of training and testing the GP edge detectors will be dis-

cussed. Fourthly, examples of detected images are provided.

Lastly, examples of GP edge detectors are interpreted.

Note that the evolved programs from a single image will

be compared based on the 100 test BSD images. The pop-

ular F-measure [4][34] is employed in the testing phase for

performance evaluation. The F-measure F = 2recall∗precision

recall+precision

combines recall and precision. Here, recall is the ratio of

the total number of correctly marked edge points to the total

number of true edge points; and precision is the ratio of the

total number of correctly marked edge points to the total

number of marked edge points. More details about the F-

measure technique can be found in [4].

A. Fitness Function Fit

Table I gives the final fitness values of the GP edge detec-

tors and the minimum values from using a single threshold

to obtain edges. We use Thresh to indicate the results

from a single threshold selected based on the minimum Fit.

Here, t-tests are used for the comparisons. The p-values

come from the comparisons between the GP edge detectors

and the minimum values from a single threshold, and “↓”

indicates that the fitness values of the GP edge detectors are

significantly lower (better) than the minimum fitness value

from a single threshold. Giving that gmax is the maximum

g in a given single image, we use a set of fixed thresholds
th∗gmax

51 (th = 1, 2, . . . , 51) to find the minimum Fit on the

image gradient g of a given image. Here, 51 thresholds are

considered to be sufficient to find the minimum fitness on

the image gradient, and they are not used in GP.

As we can see, the results from the GP edge detectors on

the six single images are significantly better than the results
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TABLE I

FITNESS FUNCTION F it VALUES (MEAN ± STANDARD DEVIATION) ON

THE GP EDGE DETECTORS AND SINGLE THRESHOLDS

Training Image GP Thresh p-values

23025 15.3742 ± 0.0366 28.6864 0.0000 ↓
23080 15.2990 ± 0.0036 28.1758 0.0000 ↓
33066 15.6053 ± 0.0104 28.7084 0.0000 ↓
370036 15.8087 ± 0.0219 29.2161 0.0000 ↓
385028 15.4535 ± 0.0393 28.7369 0.0000 ↓
101085 14.7406 ± 0.0416 27.2433 0.0000 ↓

from a single threshold, in terms of Fit. From the view of

minimising Fit, GP can find better solutions than using a set

of single thresholds on image gradient g. It is possible that

the condition information in IFC are helpful for finding

detectors with small Fit. Note that fitness function Fit

cannot directly represent the detection performance F and

whether the GP edge detectors found from these given

single images can effectively detect other images. The test

performance on the GP evolved edge detectors is discussed

in the next subsection.

B. Test Performance F

Table II shows the test performance F and the comparisons

between the results from GP edge detectors and the results

from the Sobel edge detector, the image gradient g, and a

single threshold based on the minimum Fit on a single image

(Thresh). Here, the results from the Sobel edge detector and

the image gradient g are selected based on the maximum F

when thresholds th
51 (th = 1, 2, . . . , 51) are used to obtained

binary edges. The maximum performance F is 0.4832 for

the Sobel edge detector, and F = 0.5326 for the image

gradient g. Since these thresholds are selected based on

the test BSD images, we also use thresholds selected from

given single images to directly obtain results based on the

image gradient g. A threshold from th∗gmax

51 is directly used

when the relevant binary edges in the given image has the

minimum Fit. In the table, “↓” indicates that the result from

the relevant row is significantly better than the results from

the GP edge detectors in a given image; and “↑” indicates

that the results from the relevant row is significantly worse

than the results from the GP edge detectors. Here, t-tests

are employed and the significance level is 0.05. Since only

a single threshold is used in the image gradient g and the

Sobel edge detector, there are only single F values from

these detectors.

There are four interesting observations from Table II.

Firstly, the table shows that the GP edge detectors have

stable detection performances, although only single images

are used to find the programs. Secondly, the best performance

F from the image gradient g is significantly better than the

results from the GP edge detectors, but the GP edge detectors

from the five single training images have very close test

performances (less than 0.0061) to the image gradient g in

terms of F . Note that the image gradient g is normalised for

the soft edge maps on the 100 test images. However, fixed

thresholds are directly used to g without normalisation in

TABLE II

TEST PERFORMANCE F VALUES (MEAN ± STANDARD DEVIATION OF

30 RUNS) FOR THE GP EDGE DETECTORS AND SINGLE THRESHOLDS,

AND p-VALUES FOR COMPARISONS.

Training
Image

F p-values

GP Thresh Sobel g Thresh

23025 0.5265 ± 0.0097 0.4904 0.0000 ↑ 0.0020 ↓ 0.0000 ↑
23080 0.5288 ± 0.0010 0.4865 0.0000 ↑ 0.0000 ↓ 0.0000 ↑
33066 0.5278 ± 0.0015 0.4814 0.0000 ↑ 0.0000 ↓ 0.0000 ↑
370036 0.5273 ± 0.0018 0.4762 0.0000 ↑ 0.0000 ↓ 0.0000 ↑
385028 0.5278 ± 0.0047 0.4560 0.0000 ↑ 0.0000 ↓ 0.0000 ↑
101085 0.5218 ± 0.0113 0.4986 0.0000 ↑ 0.0000 ↓ 0.0000 ↑

The results from Thresh are based on the image gradient g using a
single threshold with minimum F it on a single image. The comparisons
are between the results from the GP edge detectors and the results from
the Sobel edge detector (F=0.4832), the image gradient g (F=0.5326) and
Thresh.

the GP edge detectors. Since we use the image derivatives in

the energy function, it is a potential reason that the evolved

GP edge detectors (using fixed thresholds) cannot outperform

than the best performance F from the image gradient g.

Thirdly, a single threshold based on the minimum Fit on

a given image is not good to use for unseen images. The

results based on single thresholds on the given single images

are significantly worse than the results from the GP edge

detectors. For image 385028, the difference performance

between the binary edges from a sing threshold and the

binary edges from GP edge detectors is 0.0718. The GP edge

detectors are significantly better than the Sobel edge detector,

but using a single threshold based on the minimum Fit is

not better than the Sobel edge detector. Lastly, the GP edge

detectors from the test image 101085 can also detect the 100

test images with a stable good performance, in terms of F . It

seems that we can use the GP system to directly evolve good

GP edge detectors on a test image. And, the GP evolved edge

detectors can be effectively used for other unseen images.

In summary, the GP system can use a single image to

evolve good edge detectors for effectively detecting edges

on the 100 test BSD images. However, a single threshold

based on the minimum Fit from a single image is not good

for the image gradient g to obtain binary edges on the test

images. A potential reason for the GP edge detectors to

have good performance is that the GP system not only uses

image derivatives, but also variances. Via combining image

derivatives and variances together, the GP system could

evolve stable edge detectors so that these edge detectors

can also effectively detect edges on other images. Note that

the single images used in the experiments include rich edge

information and large numbers of true edge points. Whether

different types of images (such as including high contrast

objects or only a few true edge points) affect the performance

of evolved edge detectors will be investigated in the future.

C. Computational Cost

Table III gives the averages of training and test times on

the GP edge detectors and the image gradient g on the 100

test BSD images. The p-values are from the comparisons
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TABLE III

AVERAGE OF TRAINING AND TEST TIMES (IN SECONDS) OF THE GP

EDGE DETECTORS AND THE IMAGE GRADIENT g ON THE 100 TEST BSD

IMAGES.

Training Time
Test

Time p-value

23025 88.2253 ± 11.7024 0.0335± 0.0088 0.0000 ↓
23080 87.5247 ± 11.2661 0.0163± 0.0155 0.0202 ↑
33066 87.9527 ± 12.4387 0.0334± 0.0123 0.0000 ↓

370036 83.7397 ± 7.8237 0.0312± 0.0074 0.0000 ↓
385028 87.0747 ± 10.9157 0.0331± 0.0080 0.0000 ↓
101085 86.2603 ± 16.9021 0.0315± 0.0097 0.0000 ↓

g − 0.0199± 0.0021 −

between the GP edge detectors from a single image and the

image gradient g by using t-tests. From the table, GP only

takes around 86 seconds to find a good edge detector based

on a single image. The GP evolved edge detectors takes less

than 0.04 seconds on a BSD test image (of size 321 × 481
pixels), which is suitable for real-time applications (less than

0.1 second).

Compared to the image gradient g, all GP evolved edge

detectors from the six single images, except for image

23080, takes a significantly longer time to detect a test

image. The GP evolved edge detectors from image 23080 are

significantly shorter than the image gradient g. A potential

reason is that some evolved edge detectors include the marker

anE (using a 3×3 window) which has lower computational

cost than markers m and nE (using 9 × 9 window). Also,

the image gradient g includes normalisation, but the GP

edge detectors do not do normalisation. From Table II and

Table III, we can see that the GP edge detectors have good

detection performance and fast detecting speed (shorter than

0.04 seconds).

D. Detected Images

Fig. 2 shows the binary results from the image gradient g

on three example test images 101085, 106024 and 296007

from the BSD test image dataset. Here, “GT” is the ground

truth for the three test images. The ground truth in the BSD

image dataset are combined with the observations from five

to ten people. The threshold (0.25) for these binary edge

maps is selected based on the maximum F values. These

detected binary edges are mainly focused on boundaries in

high contrast areas (between objects and background). Edges

in low contrast areas are filtered by the threshold (0.25).

Fig. 3 gives the binary results of the best GP edge detectors

from single images on the three test images. Here, an image

label in the first column is used to indicate the results

from the GP edge detector trained by this image. From an

overview, the differences among these binary results from the

GP edge detectors and the results from the image gradient

g are not very obvious. Compared to the image gradient g

with the maximum F , the GP edge detectors detect more

true edge points. For instance, in image 106024, the numbers

of true edge points found by the GP edge detectors on the

boundary of the animal are larger than the result from the

image gradient g in Fig. 2. However, in images 101085 and

Image

GT

g

101085 106024 296007

Fig. 2. Example detected images by the image gradient (with the maximum
F on all test images).

23025

23080

33066

370036

385028

101085

101085 106024 296007

Fig. 3. Example detected images by GP edge detectors evolved from the
single images (in the first column).

106024, the numbers of false edge points detected by the

GP edge detectors are larger than the result from the image

gradient g (with the maximum F ).

From the detected edges on images 101085 and 106024,

the thickness occurs in the detection results from the GP edge

detectors. Different from active contours (thinned closed

edges), fitness function Fit allows thick edges, and only

uses a simple penalising weight pwi (see Equation (12)).

However, the detected results on image 296007 from the GP

edge detectors are thinner than the detected edges on images

101085 and 106024. This different detection behaviour on

the three test images might be caused by directly using fixed

thresholds. Further investigation will be done in the future.
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Fig. 4. Example GP edge detector gp1 (F = 0.5304) with a common
structure including IFC, sd, g, m and nE.

E. Example GP Edge Detectors

The GP system mainly focuses on combinations of con-

ditions in function IFC. The evolved GP edge detectors

are analysed in this subsection. Three GP edge detectors are

interpreted in the next paragraphs. The structures of all GP

edge detectors are similar to these three GP edge detectors.

Fig. 4 shows a common structure in all GP evolved edge

detectors. Note that node IFC will only call the left sub-

program (child) if the condition in IFC is true, otherwise,

node IFC only calls the right sub-program. For instance, in

node IFC(g > 17.95), the condition is g > 17.95. When

the image gradient g in the current pixel is larger than 17.95,

only the left sub-program is called.

From Fig. 4, both sub-programs of the root IFC(sd >

44.79) are a common edge detector (using the image gradient

to discriminate pixels as edge points or non-edge points).

Note that the sub-programs use a fixed constant threshold

on the image gradient g without normalisation. From the

structure of GP edge detector gp1, sd in the root is used to

detect the variance of the neighbours around a discriminated

pixel. If sd is high, the image gradient g might be affected

by noise, and a high threshold for g is used to filter noise.

If sd is low, the influence from noise should be low, and a

low threshold for g is used. It seems that GP edge detector

gp1 uses an adaptive threshold on the image gradient g to

discriminate pixels. The value of the threshold is chosen

based on sd.

Fig. 5 gives another GP edge detector gp2. GP edge

detector gp2 firstly marks pixels whose g values are larger

than 18.49. For a pixel with not large g, it could be still

considered as an edge point if its horizontal derivative dx
is high (larger than 25.81). GP edge detector gp2 can be

considered as an ordinary edge detector that utilises double

thresholds (like a Canny edge detector [14]) to find pixels

based on the image gradient g and the image derivative

dx. Note that node prog3 marks the pixel offset from the

current pixel with a large g. Since the image gradient g has

thickness responses on edges and the evaluation F allows

that a detected edge point has limited offset distance from

the true edge point [4], there is no obvious influence on test

performance F from node prog3.

Fig. 6 shows GP edge detector gp3. Here, the root

IFC(nsd > 49.93) performs a filtering function. In node

prog2, if there is a small variance in the current discrim-

inating area, a set of pixels in this area will be marked as

Fig. 5. Example GP edge detector gp2 (F = 0.5283) with a structure
including IFC, prog3, g, dx, m and nE.

Fig. 6. Example GP edge detector gp3 (F = 0.5295) with a structure
including IFC, prog2, g, m, nE and anE.

non-edge points. After we move the current position to a new

position, and the pixel in the new position will be marked

as an edge point immediately. However, when the current

position moves to the right neighbour, the neighbours of the

new position will be marked as non-edge points if nsd in

the new position is lower than 49.93. It is possible that the

left neighbour of the new position, previously marked as an

edge point is marked as a non-edge point. It seems that Node

prog2 detects edges based on the normalised variances of a

discriminated pixel and its neighbours.

From the three example GP edge detectors, those programs

can be reasonably interpreted. Although the maximum depth

of a GP program is small, different effective structures have

been found by the GP system. Based on the three examples

of GP edge detectors, the combination of different edge

features, such as the image gradient and the variance, can

be used to find good edge detectors based on single images.

Since the features in the experiments mainly come from the

image gradient, whether new features (such as the image

histogram) can be included to improve detection performance

needs to be investigated in the future.

In addition, there are two interesting observations from

analysing the structures of all GP edge detectors. Firstly,

the structure of IFC(g, t,m, nE) (using the condition of

whether the image gradient g is larger than threshold t) has

very high occurrences in the evolved GP edge detectors.

Almost of all GP edge detectors include IFC(g, t,m, nE).
Secondly, mH and mV are not found in all GP edge

detectors. A potential reason is that mH and mV could

falsely mark pixels (true non-edge points) as edge points.

Also, it is possible that anE falsely marks pixels (true edge

points) as non-edge points. From all GP edge detectors, there

are only a few anE nodes. It seems that directly marking

a set of pixels might be not good for extracting edges.

Statistical techniques will help to analyse the structures of
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GP evolved edge detectors in the future.

VI. CONCLUSIONS

The goal of this paper was to develop an unsupervised

learning GP system with low computational cost for edge

detection. A fitness function, modified from the energy

functions in active contours, was used to select good GP

edge detectors without ground truth. Six single images were

separately used to evolve edge detectors by GP. The GP

evolved edge detectors from the six single images were used

to test a set of unseen images (the 100 test BSD images).

From the results, the goal was successfully achieved.

The experiments show that GP can be used to evolve

good edge detectors from a single image without ground

truth. Those GP evolved edge detectors are better than the

Sobel edge detector on the 100 test BSD images, and the

test performance of those GP edge detectors is close to the

best performance from the image gradient. Also, the results

show that the GP edge detectors evolved from a single image

can be used to effectively detect other unseen images, but a

threshold selected based on the image is not good to detect

other images. In addition, from the analysis of the structures

of GP edge detectors, the GP evolved edge detectors can be

reasonably interpreted.

From the detected images, the problem of detecting thick

edges should be addressed in the future work. To improve

detection performance, a more effective GP system will be

also investigated in the future.
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