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Abstract—Personal rapid transit (PRT) systems are on-
demand transportation services that use guided automated ve-
hicles. The present study proposes an artificial bee colony (ABC)
heuristic for solving the routing problem associated with PRTs.
ABC is a swarm-based heuristic that mimics the behavior of bees.
The present study proposes an enhanced version of this algorithm,
which includes a specific method for escaping from local optima.
Experimental results based on 1320 randomly generated instances
are also presented and analyzed.

I. INTRODUCTION

In congested cities, the rapid and safe movement of people
among locations is a major problem for city planners, gov-
ernments, and other stakeholders. Fortunately, scientists and
engineers have developed a variety of different transportation
tools that can relieve congestion in cities. In particular, the
present study considers personal rapid transit (PRT) systems. A
PRT is a futuristic system, which mainly comprises driverless
electric vehicles (also called pods) that run on dedicated
guideways( see figure 1). The aim of a PRT system is to
transport up to six people on a direct nonstop transit service
to any of its stations. The stations are located off the main
line, thus each vehicle can proceed directly to its destination
without unnecessary intermediate stops. A PRT is also an on-
demand transportation service where the vehicles only move
passengers upon request. Early PRTs were proposed in the
1960s, but only a few PRT projects have been completed or
are in the planning stages (e.g., Morgan Town PRT in West
Virginia, USA; Heathrow PRT in London; and Masdar PRT
in Abu Dhabi, UAE). The on-demand feature of this system
means that there is a high level of unused capacity and wasted
energy because of empty vehicle movements.

A variety of PRT-related optimization problems have been
reported previously. In 2006, Won et al. [2] presented four
different optimization problems relate to the design process
and costs of PRT traffic, where they formulated an empty
vehicle allocation problem, a vehicle routing problem, a station
design problem, and a guideway network design problem for
PRTs. The problem of optimizing the size of PRT fleets by
minimizing the number of vehicles in a PRT system has also

Fig. 1: PRT vehicle [1]

been studied [3]. In 2012, Lees-Miller et al. [4] presented two
proactive empty vehicle redistributions for PRT systems where
the objective was minimizing the passenger waiting time. The
present study addresses the routing problem associated with
PRTs, where the objective is to minimize the energy consump-
tion and empty vehicle movements given the assumption that
the vehicles are battery-operated. This problem is challenging
because it involves an additional empty movement, i.e., to
and from the depot to charge the vehicles’ batteries. This
problem has only been address previously by Mrad and Hidri
[5], who analyzed the optimal electric energy consumption
for a PRT transportation system. The present study proposes
an artificial bee colony (ABC) algorithm to solve the PRT
problem. Computational experiments were performed using a
set of 1320 randomly generated instances to verify the efficacy
of the proposed method.
The remainder of this paper is organized as follows. Section 2
outlines the problem addressed in this study. Section 3 presents
the major components of the proposed ABC algorithm. Section
4 analyzes the results obtained using the algorithm. Finally,
Section 5 concludes this paper.

II. PROBLEM DEFINITION AND MATHEMATICAL
FORMULATIONS

The present study focuses specifically on the static problem
of routing electric vehicles in a PRT system for a predefined
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list of trips. This problem is important in several respects.
The Morgan Town PRT system has two basic modes of
operation: demand mode and schedule mode. It operates in
the demand mode outside the rush hours, where vehicles react
dynamically to passenger demands. It operates in the schedule
mode at other times, where vehicles run on fixed roads with
known demand based on a predefined list of known origin and
destination pairs. The static solution developed in the present
study can be applied to problems related to the schedule mode
of operation. This static solution is also useful for the demand
mode because it can be used to evaluate various dynamic
strategies for routing PRT pods. Indeed, the use of static
solutions to evaluate dynamic strategies is common in previous
studies of the vehicle routing problem (see [6] and [7] for more
details).

The PRT problem was defined previously by Mrad and
Hidri[5]. It can be stated as follows: consider the set of trips
to perform T , where T has a cardinality ∣T ∣. Suppose that
a PRT network has M stations, where movement is possible
between any two stations. The depot is defined as D, which
contains an unlimited number of vehicles with an initially
battery capacity of B. Each trip ti ∈ T is characterized by
the triplet (origin station (OSi), destination station (DSi),
departure time (OTi)). The arrival time (ATi) is calculated
using the following formula:

ATi = OTi +Distance(OSi, OTi) (1)

where Distance is a matrix cost that defines the direct cost
(consumed electric energy) between each pair of stations. In a
PRT network, this cost is calculated using the Floyd Warshall
algorithm[8]. The PRT problem requires the assignment of
each vehicle to a set of trips that does not exceed the
battery capacity of each vehicle. Thus, an asymmetric graph
G = {V⃗ , E⃗}, where V⃗ = {v0, v1, v2, ..., vn} defines a set
of nodes, where v0 is the depot and v1, v1, v2, ..., vn are n
different trips that the PRT system must complete. In addition,
V⃗ ∗ = V⃗ /v0 is defined. Let E⃗ = {(vi, vj); vi, vj ∈ V⃗ } be the
set of arcs defined as follows:

∙ If (vi, vj) ∈ V ∗ with ATi+Distance(DSi, OSj) ≤
OTj , then the arc (i, j) exists and it has a cost cij that
represents the energy consumed between the arrival
station for trip i (DSi) and the arrival station for trip
j (DSj). Thus, each edge has a combined cost: the
cost of the movement among trips and the cost of the
trip.

∙ For each node i ∈ V ∗, an arc (0, i) is added. The cost
of this arc is c0i and it represents the energy used to
reach the arrival station for trip i from the depot.

∙ For each node i ∈ V ∗, an arc (i, 0) is added with a
cost ci0, which represents the energy used between the
arrival station for trip i and the depot.

In addition, E⃗′ = {(vi, vj); vi, vj ∈ V⃗ ∗} is defined.
This problem can be viewed as a classical node routing
problem, i.e., the asymmetrical distance-constrained vehicle
routing problem (ADCVRP), where the total travel distance
allowed for each vehicle should be equal to or less than a
certain distance. This problem is proven to be NP-Hard [9].
However, the major difference between this problem and the

ADCVRP is that the graph G is not complete. In fact, if arc (ij)
exists, then the opposite arc (ji) does not exist. A heuristics
approach was used to solve this problem because it is NP-
hard, which would have an exponential computational time
using exact methods.

III. ABC ALGORITHM

Various metaheuristics are available for simulating and
modeling different aspects of the lives of insects such as bees
and ants. Bee colonies can be considered recent advances in
this field. ABC is a relatively new heuristic technique, which
was first proposed by Karaboga and modified subsequently
by Karaboga and Akay. Apart from the modification proposed
by Karaboga and Akay, many recent interesting modifications
could be found such as [10],[11],[12],[13]. ABC is a heuristic
that aims to simulate the life and behavior of bees, where the
simulation is applied to solve various real world problems. A
number of researchers have used ABC to solve combinatorial
problems. For example, Wong et al. [14] and Chong et al.
[15] applied ABC to the job shop problem, Rebrayand et al.
[16] to the multiprocessor scheduling problem, and Szeto et
al. [17] solved the capacitated vehicle routing problem using a
bee swarm algorithm. For more details on ABC algorithm and
its applications the reader is refereed to [18]. The components
of the ABC algorithm are described as follows.

In the ABC algorithm, there are three bee colonies
(groups): employed bees, onlooker bees, and scout bees. The
employed bees can exploit food sources (solutions). Thus, the
number of food sources is equal to the number of employed
bees. In this algorithm, each employed bee searches for a food
source (solution) in its neighborhood during the employed bee
phase.

By contrast, onlooker bees wait in the hives for the arrival
of the employed bees, which share their information about
food sources by dancing in the dance area of the hives. The
dance is proportional to the nectar content of the food source
discovered. In general, the number of onlooker bees is also
equal to the number of employed bees. Onlooker bees watch
the dance and choose a food source according to probabilities
determined by the qualities of the food sources. Therefore,
good food sources have a greater chance of being selected and
exploited. In the algorithm, the onlooker bee phase follows the
employed bee phase. In general, the onlooker bees will search
all the information stored by the employed bees and select a
specific food source with a certain probability related to its
fitness. The onlooker bees will then produce a modification
of the selected food source and greedy selection is applied
to retain the food source with the best nectar food. Scout
bees search for new food sources in the neighborhood around
the hives. Normally, the scout bees intervene only after the
employed and onlooker bees finish their searches. The scout
bees consider each food source and decide whether to abandon
it or not. In general, the ABC algorithm assigns a counter to
each food source, which is updated during the search phases
[19]. If this counter exceeds a specific value, this indicates that
the food source is exhausted and it should be abandoned. The
scout bees replace the abandoned food source with new, fresh,
and randomly generated food sources.

The ABC algorithm can be formalized as follows.
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Algorithm 1 ABC algorithm

1: Initialize-the-population()
2: cycle ←− 1
3: while cycle <= max− cycle do
4: Employed-Bee-Phase
5: Calculate probabilities for Onlookers
6: Onlooker bee phase
7: Scout bee phase
8: Memorize best solution
9: Cycle++

10: end while

A. Representation and Evaluation Method

To maintain the simplicity of the algorithm, the solutions
are represented as permutation of trips, as shown in Figure 2.

1 4 8 7 3 2 5 10 6 9

Fig. 2: Permutation representation

In the algorithm, the search space is also restricted to
feasible solutions. As a consequence, an adaptation of the
split function initially introduced by Prins [20] is applied to
vehicle routing problems to evaluate the different solutions.
This function can extract a set of roads from a permutation
and find the cost associated with the permutation’s optimal
splitting. (More details of the split function can be found in
[20]).

An enhancement to the proposed algorithm is used with
the evaluation function. Due to the low connectivity rate of the
graph G, the split function can generate many permutations for
different roads with a low battery capacity usage B for each
vehicle. Therefore, a self-recombining function is introduced
that takes the available information for each road and it tries to
combine this information to reduce the interlinkages between
the generated roads. This method operates as follows.

Assuming that each generated road has a head trip (H)
and a queue trip (Q), and that the depot is represented by a
node D, the self-recombining algorithm is as follows.

Algorithm 2 Self-recombination (Solution S)

1: evaluate S using the Split function
2: for i = 1→ nb−Road do
3: for j = 1→ nb−Road do
4: R1 ←− ChooseAtRandom
5: R2 ←− ChooseAtRandom
6: if cost(QR1

;HR2
) < cost(QR1

;D) + cost(D;HR2
)

then
7: RECOMBINE(R1, R2)
8: end if
9: end for

10: end for

The RECOMBINE function combines two different
roads to obtain one road.

1) Initial Solutions: At the start of the algorithm, it is pos-
sible to choose either to initialize the first solutions randomly
or to select a relatively structured solution. A better initial
solution for the algorithm can yield a better final solution.

The first permutation is selected to start the search, where
the SLP solution(Solution of a Linear Program) requires the
solution of the following linear program.

First, the following integer variable is introduced:

xij =

{

1 if node j is visited after node i
0 Otherwise

PRT: Min
∑

(i,j)∈E
cijxij

∑

j∈�+(i)

xij = 1∀i ∈ V ∗

∑

j∈�−(i)

xji = 1∀i ∈ V ∗

xij ∈ {0, 1}∀ (i, j) ∈ E

This linear program outputs various roads without con-
sidering the battery capacity but it yields a relatively good
solution. The use of the split function facilitates the generation
of a feasible solution from all the unfeasible roads that are
generated. The use of this initialization ensures that the first
generation yields relatively good solutions, as well as ensuring
that the algorithm converges rapidly to a good final solution.

2) Neighborhood Operator: In general for heuristics, there
exists a distinctive type of neighborhood operator [21] Three
different neighborhood operators are used to obtain the new
solution for both employed and onlooker bees: exchange
operator, displacement operator, and inversion operator. The
exchange operator choose at random two different trips and
exchange their positions. The displacement operator choose at
random a subsequence of trips and change its position at ran-
dom. The inversion operator choose at random a subsequence
of trips and inverse the order of the trips in it.
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During both the onlooker and employed bee phases, one of
these three mutation operators is selected randomly to obtain
the new solutions.

IV. COMPUTATIONAL RESULTS

This section describes the results of experiments where the
ABC algorithm was applied to a set of randomly generated
problems. The proposed heuristics developed in the previous
sections were implemented in the C++ language. The experi-
ments were performed on a laptop with an Intel i5 2.3 GHz
CPU and 6 GB of RAM, with the Microsoft Windows 7
operating system.

A. Test problems

The tests were conducted using 33 different classes (40
instances for each class), where the number of trips, n, was
given as
n ∈ {10; 15; 20; 25; 30; 35; 40; 45; 50; 55; 60; 65; 70; 75; 80; 85;

90; 95; 100; 110; 120; 130; 140; 150; 160; 170; 180; 190; 200;
250; 300; 350; 400} Each instance was generated based on the
following assumptions:

∙ Number of stations = 12

∙ Cost of the arcs of the network: Generated randomly
between 1 and 15 min

∙ Departure stations: Generated randomly between 1
and 12

∙ Arrival stations: Generated randomly between 1 and
12

∙ Departure time for each trip: Generated randomly
between 1 and 3600 s

∙ Battery capacity: 40 min

∙ Max-wait: the maximum amount of time that a vehicle
could wait at a station before starting a trip was 1000
s.

The set of generated instances was based on assumptions
employed in [22].

GAP was used to verify the quality of each algorithm,
which is defined by the following formula.

∙

GAP = (
(SOLℎeuristic − Lowerbound)

lowerbound
) ∗ 100

For each instance, the lower bound was taken as the linear
relaxation of the mathematical model given in [23] to resolve
the ADCVRP coded using Cplex12.1. It should also be noted
that the SLP solution was calculated using Cplex12.1.

B. Results Obtained Using the Proposed Heuristic

Tuning the parameters of the ABC algorithm to improve
its obtained results is a widely studied issue in combinatorial
optimization [24],[25],[26]. The objective is to obtain the best
possible results by testing on a relatively small number of
instances a restricted number of parameter combinations. For

that purpose, we used a simple algorithm based on three simple
steps[27]:

1) choose the test instances.
2) select a parameter values using a simple method.
3) apply a statistical test to choose the best parameters

option.

As for the first step, we took the 40 instances of size
200 trips as they present a good testing instances bed due
to their relative complexity. As for second step, and starting
from a promising parameters configuration, the ABC algorithm
is tested on the instances used as a test bed. Next, we
choose randomly one or two parameters and change them.
The ABC algorithm is tested again on the testing bed. The
new obtained results are compared against the old results.
If they are better, the new configuration replaces the old
configuration. If the two results are almost equivalent, then the
parameter combination that yields the small CPU run time is
kept. We used a Wilcoxon’s matched-pairs signed rank test to
know if a parameter combination performs better than another
parameter combination. This procedure is run for 20 iterations.
Although this method would not present an optimal parameters
tuning, it presents a good alternative to find quickly a good
parameter’values for an heuristic algorithm.

Finally, the obtained parameters were as follows:

∙ Onlooker bee size: 10.

∙ Employer bee size: 10.

∙ Max-Cycle: 1000.

∙ Limit for the scout bee: 15.

To test the importance of integrating the various com-
ponents of the algorithm, the ABC algorithm was run with
and without different operators to determine the proportions
of the final results that were attributable to each component.
The results of this analysis are shown in Table II. Table II
confirms that the proposed ABC algorithm performs better than
all other versions of the ABC. The results also confirm the
importance of combining all the components to obtain better
quality results.

A global statistical analysis of the results obtained was also
conducted because a simple comparison of the overall average
GAP using different versions of the ABC algorithm cannot
yield the same conclusions and results as an appropriate statis-
tical comparison. The statistical analysis determined whether
the results were significant and not simple consequences of
chance or sampling errors.

First, it was necessary to determine whether to apply a
parametric test or a nonparametric test. Thus, tests of normality
were performed, i.e., the Kolmogorov-Smirnov normality (K-
S) test and the D’Agostino-Pearson normality test. The results
of these two tests were significant because the P − value was
less than 0.05, thus the data were not normally distributed
Therefore, Wilcoxon’s matched-pairs signed rank test was used
for the comparative study. An R program was developed in
RStudio to compare the different ABC versions based on the
trip size for each class. This facilitated an evaluation of the
performance based on the trip size. Table III shows the results
of this test.
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TABLE III: Comparative results based on Wilcoxon’s matched-pairs signed rank test

ABC vs. ABC Ver1 ABC vs. ABC Ver2 ABC vs. ABC Ver3 ABC vs. ABC Ver4
All < 0.001 < 0.001 < 0.001 < 0.001
10 NaN NaN NaN NaN
15 NaN NaN NaN NaN
20 NaN 0.0679 0.0679 0.0180
25 NaN 0.3173 0.0180 0.0007
30 NaN 0.0077 0.0015 < 0.001
35 0.8927 0.0033 0.0010 < 0.001
40 0.0431 0.0010 0.0004 < 0.001
45 0.8927 0.0022 0.0030 < 0.001
50 0.4008 < 0.001 < 0.001 < 0.001
55 0.0117 < 0.001 < 0.001 < 0.001
60 0.0926 < 0.001 < 0.001 < 0.001
65 0.0401 < 0.001 < 0.001 < 0.001
70 0.0152 < 0.001 < 0.001 < 0.001
75 0.0017 < 0.001 < 0.001 < 0.001
80 0.0130 < 0.001 < 0.001 < 0.001
85 0.0003 < 0.001 < 0.001 < 0.001
90 0.0008 < 0.001 < 0.001 < 0.001
95 < 0.001 < 0.001 < 0.001 < 0.001
100 < 0.001 < 0.001 < 0.001 < 0.001
110 < 0.001 < 0.001 < 0.001 < 0.001
120 < 0.001 < 0.001 < 0.001 < 0.001
130 < 0.001 < 0.001 < 0.001 < 0.001
140 < 0.001 < 0.001 < 0.001 < 0.001
150 < 0.001 < 0.001 < 0.001 < 0.001
160 < 0.001 < 0.001 < 0.001 < 0.001
170 < 0.001 < 0.001 < 0.001 < 0.001
180 < 0.001 < 0.001 < 0.001 < 0.001
190 < 0.001 < 0.001 < 0.001 < 0.001
200 < 0.001 < 0.001 < 0.001 < 0.001
250 < 0.001 < 0.001 < 0.001 < 0.001
300 < 0.001 < 0.001 < 0.001 < 0.001
350 < 0.001 < 0.001 < 0.001 < 0.001
400 < 0.001 < 0.001 < 0.001 < 0.001

TABLE I: Results obtained using the ABC algorithm

Average Gap % Average Time
10 1.105 0.882
15 0.793 1.198
20 0.577 1.565
25 0.883 1.870
30 0.782 2.308
35 1.102 2.569
40 0.804 2.946
45 0.697 3.155
50 0.658 3.517
55 0.936 3.926
60 0.713 4.193
65 0.810 4.493
70 1.243 4.814
75 0.921 5.153
80 1.082 5.714
85 1.165 5.844
90 1.032 6.492
95 1.209 7.145
100 1.457 7.125
110 1.233 7.931
120 1.490 8.967
130 1.932 9.383
140 1.277 10.173
150 1.403 11.072
160 1.894 12.252
170 1.879 12.781
180 1.713 14.514
190 1.928 15.143
200 2.245 15.558
250 2.006 22.519
300 2.539 26.574
350 2.900 37.782
400 3.523 46.444
Average 1.392 9.879

TABLE II: Results of the comparison of different versions of
the ABC algorithm

ABC ABC Ver1 ABC Ver2 ABC Ver3 ABC Ver4
Number of values 1320 1320 1320 1320 1320
Sum 990.1 1425 2189 1493 3413
Minimum 0 0 0 0 0
25% Percentile 0 0.1342 0.3343 0.1649 0.5525
Median 0.4494 0.7067 1.241 0.7944 1.946
75% Percentile 1.194 1.649 2.589 1.731 3.981
Maximum 6.231 6.911 9.104 6.231 14.87
Mean 0.7501 1.079 1.658 1.131 2.586
Std. Deviation 0.8916 1.173 1.594 1.165 2.54
Std. Error of Mean 0.02454 0.03228 0.04388 0.03207 0.0699
Lower 95% CI of mean 0.702 1.016 1.572 1.068 2.448
Upper 95% CI of mean 0.7983 1.143 1.744 1.194 2.723
ABC Ver1 ABC Without the SLP
ABC Ver2 ABC Without The recombine function
ABC Ver3 ABC Without Onlooker Bee phase
ABC Ver4 ABC Without Employed Bee phase

In this test, H0 assumed that the percentage deviations of
the results obtained using the two algorithms would be the
same. By contrast, H1 hypothesis assumed that the average
deviation of one algorithm was better than that of the other
algorithm.

Table III shows that the proposed ABC algorithm per-
formed better than all the other versions because the P−value
was less than 0.05.

The statistical analyses confirmed that the different versions
of the algorithm delivered significantly different performance.
The results also confirmed that the proposed ABC algorithm
performed better according to the statistical analysis. In partic-
ular, the results of the statistical tests show that for small size
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TABLE IV: Results of the runs test

Nonlinear equation Linear equation
Points above curve 14 14
Points below curve 19 19
Number of runs 21 3
P-value (runs test) 0.945 ¡ 0.0001
Deviation from Model Not significant Significant
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Fig. 3: Linear and nonlinear regressions for the CPU runtime

instances the results were almost the same, especially with
ABC ver1 and ver2. However, as the size of the problem
(and therefore the difficulty) increased, it was necessary to
combine all of the different ABC components to obtain high
quality results. In particular, the recombining method had
an especially strong effect in improving the results obtained.
This was demonstrated clearly in the experiments because the
version of the ABC algorithm without the recombining method
yielded an average GAP of 1.658, whereas the proposed ABC
algorithm had an average GAP of 0.908.

The previous tables show the comparative results with
different ABC algorithms. The following table provides a
comparative analysis of the proposed ABC algorithm.
The ABC algorithm differs from traditional evolutionary algo-
rithms because it exploits an intensive neighborhood policy to
search for and generate new solutions. The ABC algorithm
has also the advantage of inserting new solutions into the
population during the scout bee phase, which can help the
algorithm to escape from local optima. The integration of
the proposed ABC algorithm with the recombining method
also helps to escape from local optima because it allows the
possibility of mixing the solutions in a uniform manner by
rearranging the various roads generated.

Finally, the CPU runtime was estimated as a function of
the trip size. This analysis aimed to determine the relationship
between these two variables. First, a correlation test was
performed to determine the statistical relationship between the
two variables. The result of the Spearman’s rank correlation
coefficient test was significant (P value < 0.05), thus it was
concluded that there was a relationship between the two vari-
ables. Next, linear and nonlinear (cubic function) regression
models were used to estimate the exact CPU runtime as a
function of the trip size. The results obtained using these two
models are shown in Figure 3 and post-analysis results for the
two models are shown in Table IV. Based on the results of
the runs test, it was concluded that the cubic function was a
better estimator of the CPU runtime, where the P value was
0.945. This could be explained by the fact that we have several

O(n2) steps in our algorithm. In fact, the evaluation function
(The split procedure) have a complexity of O(n2) [20].

To assess the quality of our ABC, a simple genetic algo-
rithm (GA)[28],[29],[30] was developed in order to compare
the results of our ABC with those of an algorithm that focuses
more on the global search and the exploration of the search
space. The main features of the testing GA are presented in
the following algorithm.

Algorithm 3 Genetic Algorithm

1: Initialize-parameter()
2: while Termination criterion not satisfied do
3: for all Individuals in the population do
4: parent1 ←− Select-at-random(pop)
5: parent2 ←− Select-at-random(pop)
6: Apply the one-point crossover operator to the two

parents
7: Apply the insertion mutation operator to the offspring

generated
8: Recombine the offspring generated
9: Evaluate the offspring

10: x←− Get-Worst(pop)
11: ∆ = evaluation(offspring) −

evaluation(Individual − at(x))
12: if ∆ < 0 then
13: Insert(offspring, pop, x)
14: end if
15: end for
16: end while
17: individual ←− Best-individual(pop)

Note that the representation and the evaluation of indi-
viduals in the GA as well as the initialization of the initial
population are the same as with the ABC algorithm.

For comparing the ABC and the GA, we used the average
relative percent deviation (ARPD) computed as follows:

∙

ARPD = (
(SOLℎeuristic − SOL∗ℎeuristic)

SOL∗ℎeuristic
) ⋅ 100

where SOL∗ℎeuristic is either the best value obtained
from the GA or the ABC.

Results of table V confirm the superiority of our ABC in
comparison with the GA. This could be explained by the fact
that the ABC algorithm combine both local search moves in
addition to global search moves in order to discover properly
the whole search space of the problem.

V. CONCLUSIONS

Bee algorithms have been tested successfully using a large
set of different problems. In the present study, the ABC
algorithm was adapted to solve the problem of reducing empty
vehicle movements in PRT systems. The proposed hybrid al-
gorithm benefits from the application of a linear programming
technique to find a good solution that is used to start the
search, while a specific self-recombination method considers
the global information stored in each generated road for
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TABLE V: Results of the Comparison between the GA and
the ABC Algorithms

Number of trips Average ARPD for the ABC Average ARPD for the GA
10 0 0
15 0.034 0.038
20 0 0.125
25 0.012 0.304
30 0.037 0.299
35 0.017 0.716
40 0.015 0.605
45 0.010 0.613
50 0.015 0.726
55 0.031 0.731
60 0 0.697
65 0.026 0.702
70 0.026 0.906
75 0.013 0.900
80 0.026 0.787
85 0.044 0.889
90 0.021 0.760
95 0 0.857
100 0.014 0.852
110 0.008 0.715
120 0.046 0.852
130 0.052 0.570
140 0.003 0.701
150 0.033 0.634
160 0.012 0.735
170 0.026 0.416
180 0.065 0.534
190 0.031 0.724
200 0.039 0.622
250 0.083 0.468
300 0.107 0.411
350 0.060 0.390
400 0.125 0.463
Average 0.031 0.598

each solution to escape from local optima. The computational
results demonstrate that the algorithm is competitive because
it can find a good GAP within a relatively short computational
time. The results of comparative studies conducted using
different versions of the algorithm showed that the proposed
ABC algorithm obtained better results for the PRT problem
compared with the basic ABC algorithm.
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