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Abstract— F-Race and its variant, Iterated F-Race, is an
automated procedure for sampling and evaluating potential
values of parameters for algorithms. The procedure is controlled
by means of a computational budget that limits the number of
evaluations that may be conducted, thus forcing the determi-
nation of the best possible configuration to be made within a
limited time. When time is not severely constrained, the a priori
choice of a computational budget becomes unjustifiable because
the relationship between the computational budget and the
quality of the optimization of a black box subject is not obvious.
This paper proposes an extension to F-Race in the form of a
heuristic method for reasonably terminating the optimization
procedure.

I. INTRODUCTION

THE application of a metaheuristic to a problem in-
cludes the configuration of the metaheuristic by the

choosing of its variable components and the values of its
free parameters. When no suitable configurations are known
it becomes necessary to search for a reasonable, if not
optimal, configuration by means of a structured procedure.
The specific procedure may vary, depending on the nature of
the problem and the presence or absence of expert, domain
knowledge, but generally involves the selection and evalua-
tion of candidate configurations. The goal of an optimization
procedure is to locate a space of reasonable configurations or
the best configuration amongst a fixed-size set of candidate
configurations.

When the number of free parameters is low, the possible
parameter values are discrete, and the search space is small
or finite, a brute force approach, whereby every combination
of values is tested, is a feasible choice of optimization
procedure. However, when the number of free parameters
increases, the possible parameter values are continuous, and
the space of values is large or infinite, a linear search
can become too time-consuming to be feasible. Equally so,
the metaheuristic to be optimized can require a non-trivial
amount of time to complete a run, thereby contributing to an
overall impractical total time to run the search for suitable
parameter values.

A commonly used alternative method is that of full fac-
torial design (FFD) [9]. An optimization procedure that
employs FFD will sample values at varying levels, 𝑙, for
the free parameters (factors), 𝑓 , to yield 𝑙𝑓 configurations.
Initially, the levels are chosen with some expert knowledge
of the domain. Once the initial set of samples is evaluated,
the search can be refined by focusing on a promising area of
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the search space, as determined by the testing of the initial
samples. New values are then once again sampled according
to levels that are determined by the domain expert. Thus
is the optimization guided and eventually terminated by the
researcher.

F-Race [3][4] is a structured procedure that facilitates the
automation of the selection and evaluation of candidate con-
figurations and provides a specific criterion by which superior
candidates are chosen, namely, statistical significance tests.
Nevertheless, F-Race leaves open the choices of the initial set
of candidates, the number of tests to perform (alternatively,
the duration of testing), and the number of elite, surviving
candidates from which to select a suitable configuration or
by which to guide further optimization.

Iterated F-Race [2] is an extension to F-Race that refines
the search for configurations by narrowing the configuration
search space over multiple iterations. Each iteration is a run
of the F-Race algorithm. The candidate configurations for the
initial iteration are chosen by the researcher. The candidate
configurations for subsequent iterations are automatically
sampled around one of an elite group of surviving candidates
from a previous iteration.

This paper presents two modifications to F-Race with the
aim of producing a variant algorithm that is not dependent
on parameters as much as on a well-defined procedure.
Furthermore, the new variant is intended to be used in
situations where time is not extremely constrained and ex-
ploration of a configuration search space is both feasible and
desired. Simultaneously, unneccessary computations should
still be avoided by stopping the optimization procedure when
configurations of a reasonable quality have been found and
further exploration would become costly.

In related research, Yuan et al. [15] have studied the use of
mesh adaptive direct search (MADS) to control the number
of evaluations of a candidate configuration adaptively and
have produced a hybrid of MADS and F-Race. The MADS/F-
Race algorithm allocates more computing time to promising
candidates and less to inferior ones. Branke and Elomari [6]
have proposed setting the significance level of the statistical
significance tests employed by F-Race adaptively in order
to eliminate the need to choose the level manually, thus
eliminating a free parameter of the F-Race procedure.

The remainder of this paper presents each modification
in detail and is organized as follows: Section II provides
an overview of F-Race and Iterated F-Race, Section III
describes the proposed modifications, Section IV describes
the experimental procedure used to test the modifications
and discusses the results, and Section V concludes the paper
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TABLE I

VISUALIZATION OF CANDIDATE CONFIGURATIONS, PROBLEMS, AND

COSTS IN F-RACE. 𝑃 IS THE PROBLEM CLASS, 𝑃1, . . . , 𝑃𝑘 ARE THE

PROBLEM INSTANCES, 𝜃1, . . . , 𝜃𝑚 ARE THE CANDIDATE

CONFIGURATIONS, AND 𝑐
𝜃𝑗
𝑖 IS THE COST OF APPLYING THE SUBJECT

WITH CONFIGURATION 𝜃𝑗 TO PROBLEM INSTANCE 𝑃𝑖 FOR 𝑖 = 1, . . . , 𝑘

AND 𝑗 = 1, . . . ,𝑚.

𝑃 𝜃1 𝜃2 . . . 𝜃𝑚

𝑃1 𝑐𝜃1
1

𝑐𝜃2
1

⋅ ⋅ ⋅ 𝑐𝜃𝑚
1

𝑃2 𝑐𝜃1
2

𝑐𝜃2
2

⋅ ⋅ ⋅ 𝑐𝜃𝑚
2

...
...

...
. . .

...

𝑃𝑘 𝑐𝜃1𝑘 𝑐𝜃2𝑘 ⋅ ⋅ ⋅ 𝑐𝜃𝑚𝑘

with a summary of the findings and suggested directions for
further study.

II. OVERVIEW OF F-RACE AND ITERATED F-RACE

F-Race repeatedly evaluates a set of candidate configu-
rations in specifying an application of a metaheuristic, the
subject, to a class of problems. Each evaluation of a candidate
yields evidence of its fitness for configuring the subject.
When sufficient evidence is gathered to differentiate the
candidates statistically, the lower performing candidates are
discarded. Evaluation continues until either a specified num-
ber of candidates remains or a predetermined computational
budget is exhausted.

A problem class describes multiple problem instances,
where instances can differ by such variations as stochastic
perturbations and inputs from an unpredictable operating
environment. In such a case, it is not feasible to evaluate
the entire population of the problem class in order to find
the configuration that is optimal over all instances. Instead,
a subset of problem instances is chosen to represent the
problem class such that a generalization about the fitness
of a configuration can be made. For instance, if the testing
problem subset is chosen according to the same probability
model as that by which problem instances occur in practice,
then it can be justifiably argued that the testing problem
subset represents the problem class.

F-Race proceeds in steps. At each step, each candidate
configuration in the current set is applied to the same problem
instance. The candidates are then ranked in terms of their
fitness. The measure of fitness depends on the optimization
criterion for the specific problem class. Table I depicts the
arrangement of candidates, problem instances, and fitness
values.

Comparing candidates in pairs for a statistically significant
difference in fitness is computationally wasteful if conducted
at each step, regardless of the existence of sufficient evidence
to discard any of the candidates. Therefore, a single test
of the entire set of candidates is conducted first and if this
initial test suggests that a statistically significant difference

does exist within the current set of candidates, then pairs of
candidates are tested in order to determine which candidates
should be discarded. F-Race employs the Friedman test for
variance by ranks [7] to test a candidate set, and the Wilcoxon
signed ranks test [7] to test candidate pairs.

Candidates that remain after F-Race is stopped are the best
configurations in the initial candidate set but are not necessar-
ily the best existing configurations. Additional testing may
be required to locate a better candidate or to reject, with
some certainty, the existence of a better candidate. Iterated
F-Race defines the procedure for choosing a new set of
candidates that are based around an elite, surviving candidate
from the previous run of the F-Race procedure. Repeated
iterations of F-Race narrow the search space of candidate
configurations by using the best performing candidates from
previous iterations as a guide.

Birattari et al. [5] suggest choosing an elite set of survivors
by 𝑁𝑒 = 𝑚𝑖𝑛(𝑁𝑠𝑢𝑟𝑣𝑖𝑣𝑒, 𝑁𝑚𝑖𝑛) where 𝑁𝑠𝑢𝑟𝑣𝑖𝑣𝑒 is the
number of candidates remaining after the previous iteration
of F-Race completes and 𝑁𝑚𝑖𝑛 is a predetermined, desired
number of survivors. The elite candidates are weighted by

𝑤𝑧 =
𝑁𝑒 − 𝑟𝑧 + 1

𝑁𝑒 ⋅ (𝑁𝑒 + 1)/2
(1)

for 𝑧 = 1, . . . , 𝑁𝑒 and where 𝑟𝑧 is the rank of an elite
configuration. One of the elite survivors is then chosen with a
probability that is proportional to 𝑤𝑧 and each new candidate
configuration, 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑚), is sampled around the
chosen elite candidate, 𝑥𝑧 = (𝑥1𝑧, 𝑥

2
𝑧, . . . , 𝑥

𝑚
𝑧 ), where 𝑚 is

the number of parameters. Each component, 𝑥𝑖, is sampled
according to a normal distribution with 𝑥𝑖𝑧 as the mean and
𝜎𝑖
𝑙 as the standard deviation, defined by

𝜎𝑖
𝑙+1 = 𝑣𝑖 ⋅

(
1

𝑁𝑙+1

) 1

𝑑

(2)

for 𝑙 = 1, . . . , 𝐿−1 and where 𝐿 is the number of iterations,
𝑑 is the number of components of a configuration, and 𝑣𝑖

is the range of the component 𝑥𝑖. The elite candidate is
included with the new newly sampled candidates and all of
these candidates are tested again. The implication of this
design is that the bias of the sampling distribution towards
the elite candidate is increased as the number of components
(or parameters) is increased and as the number of candidate
configurations to be sampled is increased.

The computational budget, 𝐵, is distributed over all iter-
ations according to

𝐵𝑙 =
𝐵 −𝐵𝑢𝑠𝑒𝑑

𝐿− 𝑙 + 1
(3)

where 𝑙 = 1, ⋅ ⋅ ⋅ , 𝐿 and 𝐵𝑢𝑠𝑒𝑑 is the computational budget
used up to and including iteration 𝑙 − 1.

Each iteration of F-Race is stopped when at most 𝑁𝑚𝑖𝑛

candidate configurations remain, where

2548



𝑁𝑚𝑖𝑛 = 2 + 𝑟𝑜𝑢𝑛𝑑(𝑙𝑜𝑔2𝑑) (4)

The choice of the candidate set for the first iteration, the
conditions under which each iteration is terminated, and the
method by which subsequent candidate configurations are
selected, as described above, are modified in this paper. The
following section discusses the proposed modifications in
detail.

III. MODIFICATIONS TO THE F-RACE AND ITERATED

F-RACE PROCEDURES

F-Race is designed to balance computational time with
quality of optimization. However, the duration of the opti-
mization procedure is chosen by the researcher. When the
subject to be optimized is a black box or exploration of
the configuration search space is desired, a heuristic that
is relatable to the quality of the optimization presents a
justifiable means of controlling the expenditure of computa-
tional time. The modifications presented next aim to replace
free parameters with non-configurable procedures without
affecting the general quality of optimization.

A. Initial Candidate Selection

The initial set of candidate configurations determines the
extent of the search space within which a good or optimal
configuration is expected to be found. A single iteration of F-
Race will select the most promising one (or more) candidates
from a set. A subsequent iteration of F-Race will generate
new candidates around the most promising candidate from
the previous iteration and select the most promising candidate
from the new set, thus narrowing the extent of the search
space and increasing the resolution of the search.

The choice of initial candidates depends on a researcher’s
insight into the subject to be optimized. Domain knowledge
of the subject can be used to determine the range of values
for each configuration parameter; expertise can inform the
choice of parameter levels in a full factorial design. Whether
or not the initial search space can be constrained, the location
of possibly good configurations within the search space is not
exactly known.

One approach to initiating the search is to sample the
initial candidate configurations randomly from the defined
search space. The choice of random number generator is a
determining factor in the distribution of this sample. Figure 1
depicts a distribution of configurations, of two parameters
each, sampled using the widely known Mersenne Twister
[12] pseudo-random number generator. Ideally, the search
space should be covered as evenly as possible to avoid
leaving unexplored areas and to avoid clustering the initial
configurations, thus wasting time on comparing relatively
similar configurations when exploration is desired. In the
case of the Mersenne Twister, relatively large spaces can
be left unsampled while some configurations are sampled
close together. Figure 2 depicts a more evenly distributed set
of configurations that were sampled using a Sobol sequence

Fig. 1. 100 points sampled using the Mersenne Twister pseudo-random
number generator. A primary generator was used to produce seeds for the
secondary generators, each of which produced a sequence for one of the
parameters. (Primary seed was 141141652.)

Fig. 2. 100 points sampled using the Sobol quasi-random number generator.
(Skipped initial 4096 points.)

[13]. As noted by Joe and Kuo [11], it has been suggested
that an initial part of the sequence is skipped in order
to compensate for a potentially poor choice of the initial
direction numbers used to initialize the Sobol generator.
Acworth, Broadie, and Glasserman [1] suggest skipping the
largest power of two that is smaller than the number of
points desired. Since this study experimented with a variety
of sample sizes, none of which exceed 104, the skip count
was fixed at 4096 points for the sake of consistency.

When the distribution of candidates is uneven, an increased
number of candidates is required to cover the search space.
On the other hand, an even distribution of candidates allows
for the first F-Race iteration to test lower numbers of
configurations in order to determine which areas within the
search space are promising. As such, a Sobol quasirandom
number generator is proposed as the sampling method for
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cases where a random sample of a search space is required.

B. Termination Condition

The proposal of a novel metaheuristic or a new variation
or application of an existing metaheuristic necessitates the
substatiation of the choice of the configuration employed. A
substantiation can be a description of the procedure followed
in determining the configuration or a reference to a consensus
on an established, reasonable configuration in the existing
literature. F-Race provides a well-defined procedure.

When the time available for optimization is limited, a
computational budget serves as a means to find the best pos-
sible configuration within said time constraints. Furthermore,
when the subject to be optimized is well understood and the
initial set of configuration candidates is chosen accordingly,
a computational budget limits unnecesary testing that would
otherwise be conducted beyond an expected outcome of
the optimization procedure. Nevertheless, the choice of a
computational budget and that of a termination condition can
be difficult to justify.

When the time available for optimization is not severely
limited, it is preferable to allow the optimization procedure
to explore the given search space. When the subject to be
optimized is a black box, one cannot know the number of
evaluations of candidate configurations that will be required
to differentiate the configurations to a statistically significant
degree. The uncertainty in the choice of a computational
budget is due to it not being possible to state reasonably that
exceeding the budget is likely to be fruitless and, likewise,
that the budget is not unnecessarily excessive and therefore
wasteful.

F-Race is based on the use of the Friedman test for
variance by ranks to determine if a statistically significant
difference in fitness exists within a set of candidate config-
urations. This test is employed to avoid testing each pair
of candidates when no statistically significant difference is
expected to be found and is conducted at each step of the
optimization procedure - in other words, each time that the
set of candidates is evaluated against a new problem instance.
This paper proposes using the p-values of the Friedman test
as an indicator of the likelihood that statistically significant
differences will be found in further testing.

A set of candidate configurations would typically be
evaluated against multiple problems before a statistically
significant difference between them could be established.
Birattari et al. [5] refer to this as “gathering evidence”.
In cases where a difference between candidates is to be
found, the p-values produced by the Friedman test depict a
downward trend, which eventually terminates in a sufficiently
low p-value to effect a discard of one or more of the
candidates. Naturally, in cases where the candidates can no
longer be differentiated after any number of evaluations the
trend of Friedman test p-values would be observed eventually
to become constant.

The proposed method for terminating the optimization
procedure is to gather a minimum number of Friedman test
p-values as evidence of the trend of the evaluation results.

The trend is determined by means of least squares linear
regression, whereby a line is fitted to the sample of p-values.
When one or more candidates are discarded, the sample of
p-values is discarded and a new sample is taken. As long
as no candidates are discarded and the slope of the trend
line is decreasing, optimization is permitted to continue.
Once the slope of the line becomes constant or begins to
increase, optimization is terminated by the reason that testing
no longer appears to lead towards further discarding of
candidates.

The minimum size of the p-value sample is a constant
and should not be used as a parameter. The number of p-
values sampled before a trend line is calculated is related
to a computational budget in that changes to the minimum
sample size would be subject to the same a priori estimates.
For this proposal, a minimum of ten p-values are sampled
before the termination condition is evaluated.

The size of the p-value sample is increased with each new
test as long as no candidates are discarded. An alternative
was considered whereby the sample size 𝑛 would remain
fixed and the sample would be a sliding window that would
include the latest 𝑛 p-values. However, this method would
introduce a parameter that would subject the outcome of an
optimization procedure to a potentially arbitrary choice of
value for 𝑛. Instead, the outcome remains dependant on the
quality of the underlying procedure.

While a least squares fit (LSF) was used in this proposal,
because the method is sensitive to outliers a more robust
approach like least absolute deviations (LAD) may be more
economical. At issue is the typical progression of p-values,
which start out relatively large and tend to decrease some-
what either before reaching a critical value or stabilising at
some higher value. The slope of an LSF trend line is affected
by the initial, large p-values and many smaller, subsequent p-
values are required to alter that slope. Such situations would
incur unnecessary testing before termination. An LAD trend
line would not be affected by outliers as much as the LSF
trend line and might be a more suitable method.

IV. EXPERIMENTS AND RESULTS

The modified version of the F-Race algorithm, herein
referred to as Heuristic F-Race (H/F-Race), was compared
with the unmodified version (F-Race) in terms of the quality
of the configurations found and the number of function
evaluations performed to find a configuration. The subject
provided for parameter optimization was an application of
the ant system (AS) [8] version of the ant colony opti-
mization (ACO) metaheuristic to the travelling salesman
problem. Both algorithm and problem were chosen because
they are simple and easy to implement. Problem instances
were obtained from the pla85900 dataset of TSPLIB95 [14],
which defines a fully connected graph of 85900 nodes. Each
problem instance consisted of a randomly chosen subset
of 100 of the total nodes. The problem class was thus all
possible combinations of 100 nodes. Problem instances were
generated randomly during optimization and each instance
was unique. Configurations were tested on problem instances
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generated in the same way and excluded all problem in-
stances used during optimization.

Five parameters of the AS algorithm were chosen for
optimization: pheromone influence, heuristic information in-
fluence, pheromone evaporation rate, initial pheromone, and
number of ants, which in [8] are 𝛼, 𝛽, 𝜌, 𝜏0, and 𝑚, respec-
tively. The ranges of values from which initial candidates
were generated were informed by the suggested settings for
ACO algorithms without local search in [8] and are listed in
Table II.

TABLE II

RANGES OF PARAMETER VALUES FOR INITIAL CONFIGURATION

CANDIDATES

Parameter Range
𝛼 [0.0,1.0]
𝛽 [0.0,10.0]
𝜌 [0.0,1.0]
𝜏0 [0.0,1.0]
𝑚 [1,100]

Furthermore, each run of the AS algorithm with a can-
didate configuration and a problem instance was allowed
to perform 25 iterations and to execute to completion. The
distance of the shortest path reported after the 25 iterations
were completed was taken as the fitness value by which the
candidate configuration was evaluated.

To establish the performance of H/F-Race in relation to
that of the unmodified algorithm, the modified algorithm
was executed first to produce 30 runs. The mean number
of function evaluations per run was calculated and this
value was used as the basis for a choice of budget for
the unmodified algorithm. The unmodified algorithm was
executed for 30 runs with only the minimum budget required
to complete an evaluation, then again with half the mean
number of function evaluations as budget, and, finally, with
double the mean number of function evaluations as budget.
In total, thirty candidate configurations were sampled for
each execution of each algorithm. The configurations found
by H/F-Race were then compared with those found by the
three executions of the unmodified algorithm. If multiple
candidate configurations survived after an optimization run,
then the candidate with the lowest rank was chosen as the
final configuration.

To evaluate the found configurations, each set of con-
figurations found by each algorithm (and budget variation)
was evaluated in an application of AS to 100 new problem
instances that did not include any of the instances used during
optimization. The mean of the shortest path length over each
candidate’s 30 runs was calculated to produce 30 means for
each algorithm and budget variation. These sets of 30 means
were then compared using the Student’s t-test to determine
if there was a statistically significant difference between the
results obtained by each algorithm.

The Friedman test statistic is approximated by the 𝜒2

distribution when the number of ranks (candidate configu-
rations) is three and the number of observations (problem

instances) is greater than nine and when the number of ranks
is four and the number of observations exceeds four [10].
The implementation of F-Race used for this study evaluated
10 problem instances before beginning testing in order to
ensure a good approximation by the Friedman statistic of 𝜒2.
Therefore, the minimum number of evaluations performed
before statistical testing was begun was ten times the number
of configuration candidates.

The significance level used for the Friedman test by each
algorithm was set to 95.0% and that of the Wilcoxon signed
ranks test was set to 97.5%.

No limit on the number of surviving candidates was set
and each run was terminated when the computation budget
was exhausted, when the termination heuristic determined
that no further testing should be conducted, or when only
one configuration remained.

The size of a candidate configuration set was chosen as
follows. Each dimension of the configuration search space
was divided into some number of segments. Each segment
was required to contain at least one configuration. Each
configuration that appeared in a segment of one dimension,
was required to appear in a segment of each of the other
dimensions. Candidate configurations were then generated
by the Sobol sequence generator until no segments were left
empty.

The experiment divided the search space, as de-
fined by Table II, according to the segment sizes
0.33, 3.30, 0.33, 0.33, 33.00 for the parameters, 𝛼, 𝛽, 𝜌, 𝜏0,
and 𝑚, respectively, to produce 1750 candidate configura-
tions. As described previously, the minimum number of func-
tion evaluations performed by both algorithms was 17500,
after which statistical testing commenced. The mean number
of function evaluations performed by H/F-Race after the
initial 17500 evaluations was approximately 4939. Therefore,
the zero-budget execution was allocated a budget of 17500,
the half-budget execution was allocated a budget of 19970,
and the double-budget execution was allocated a budget
of 27378. The results of the experiment are presented in
Table III and Table IV, with H/F denoting H/F-Race and F
denoting F-Race.

TABLE III

P-VALUES FOR COMPARISONS OF RESULTING CONFIGURATIONS

Algorithm (budget) F (0.0) F (0.5) H/F (1.0) F (2.0)
H/F-Race (1.0) 0.0294 0.1808 - -
F-Race (0.5) 0.3129 - - -
F-Race (2.0) 0.0183 0.1202 0.8164 -

The resulting mean shortest path values are in line with
expectations that larger budgets afford the general F-Race
algorithm more opportunity to determine the best configura-
tion from the given initial set of candidates. The results of
the statistical significance tests, interpreted at a significance
level of 95%, suggest that the zero-budget execution leaves
room for further gains to be made with a larger budget.

The hybrid algorithm obtained significantly better config-
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TABLE IV

SHORTEST PATHS FOR COMPARISONS OF RESULTING CONFIGURATIONS,

ORDERED BY MEAN VALUE.

Algorithm (budget) Mean Std Deviation
F-Race (0.0) 6046091.5733 41232.4964
F-Race (0.5) 6035970.1900 34151.1044
H/F-Race (1.0) 6023675.4967 34969.4114
F-Race (2.0) 6021512.2867 35654.7412

urations than the zero-budget execution but not more so than
the half-budget execution. However, the half-budget execu-
tion did not obtain significantly better configurations than the
zero-budget execution. This suggests that the computing time
spent by the hybrid algorithm was not wasted and illustrates
that should a researcher have provided an estimated budget
near to that of the half-budget execution, the optimization
procedure would have been terminated too soon and would
have been a waste of computing time.

The double-budget execution did not signficiantly improve
upon the results of the hybrid algorithm, suggesting that
there was little to be gained beyond the termination point
determined by the heuristic. The latter statement is supported
furthermore by the relatively large p-value obtained by the
comparison of the hybrid algorithm with the double-budget
execution. Once again, the implication is that an estimated
budget, introduced as a parameter value to the configuration
procedure, and falling beyond the termination point deter-
mined by the heuristic would have yielded little gain in better
configurations.

V. CONCLUSION

This paper presented an extension to the F-Race optimiza-
tion procedure that aims to alter the algorithm’s locus of
control in favour of exploration without specific cognisance
to a computational budget. The duration of the exploration
is left to a heuristic that does not need to be configured by
a researcher and can be referenced in the substantiation of a
statement of parameters in an empirical study.

The modified F-Race algorithm was evaluated with a
focus on the heuristic employed to decide when optimization
should be stopped. This was done to determine the viability
of the principle idea. While the results suggest that the
heuristic can balance function evaluation with optimization
quality, the results do not rule out the possibility that the
heuristic will terminate an optimization procedure before the
best possible configurations are found.

Therefore, future work will aim to ascertain the volatility
of the LSF method employed by this study and to test the
LAD regression method as an alternative heuristic.
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