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Abstract—The team orienteering problem with time windows
(TOPTW) is a well studied routing problem. In this paper, a coop-
erative algorithm is proposed. It collaborates metaheuristic and
branch-and-price. A restricted master problem and subproblem
are defined. It uses a heuristic to obtain an integral solution for
the restricted master problem and a metaheuristic to generate
new columns for the subproblem. Experimental study shows that
this algorithm can find new better solutions for several instances
in short time, which supports the effectiveness of the cooperative
mechanism between metaheuristic and branch-and-price.

I. INTRODUCTION

Although the optimization arsenal has become increasingly
rich, solving to optimality is still a big challenge. Exact
algorithms such as branch-and-price (B-P) can, at least in
theory, find an optimal solution if it exists. However, for a lot
of optimization problems, especially, those so-called NP-hard
problems, the exact algorithms are not applicable in practice
due to the limitation of computation resources (e.g., CPU time
and memory).

The team orienteering problem with time windows
(TOPTW) [1] is such a NP-hard problem, extended from
orienteering problem [2]. In the TOPTW, a fixed number of
vehicles are required to serve a set of nodes, each of which
has a reward and a time window. Once a node is served by a
vehicle within its time window, the reward of this node will
be received. The objective is to maximize the total received
reward while the travel time of each path must be not more
than a time limit. Even for the TOP, a special case of TOPTW
without time window constraints, B-P only can solve very
limited size instances [3]. A practicable approach is to resort
to approximate algorithms, which often can find a satisfactory
solution in a reasonable amount of running time at the cost of
the optimality.

So far, several approximate algorithms have been developed
[4]. An ant colony system algorithm was proposed in [1] and
extended in [5], [6]. In [7], a variable neighborhood search
(VNS) was proposed for the TOPTW. An iterated local search
was proposed in [8]. In [9], iterated local search was combined
with a greedy randomized adaptive search procedure for the
multi-constraint team orienteering problem with multiple time
windows, which can be viewed as a variant of the TOPTW,

and the experimental results on the TOPTW demonstrate that
the hybrid algorithm is effective for the TOPTW. A hybrid
metaheuristic which combines the greedy randomized adaptive
search procedure with the evolutionary local search approach
was developed in [10]. Two simulated annealing algorithms
were proposed in [11]. A VNS algorithm which explores
granular neighborhoods (GVNS) based on linear programming
was introduced in [12]. An iterative framework incorporating
three components was developed in [13]. It uses a local search
procedure and a simulated annealing procedure to generate a
set of paths, and the third procedure to recombine the paths to
find high quality solutions. In [14], a bee colony algorithm was
proposed. A cluster-based algorithm was introduced in [15].

In this paper, a new approach is proposed which cooperates
metaheuristic with B-P. B-P is a popular exact algorithm which
combines column generation and branch-and-bound [16]. B-P
starts from a subset of columns and formulates a restricted
master problem (RMP) and a subproblem using the dual
information obtained by solving the RMP. It gradually adds
new columns by solving a subproblem and updates the RMP.
These two steps stop repeating once no new column can be
generated. If the resulting solution is integral, the algorithm
stops. Otherwise, the branch and bound is invoked. In the
exact version, an exact algorithm, (e.g. dynamic programming)
is used for generating columns, which makes B-P very slow.
Since metaheuristics can find a promising solution for many
complex optimization problems, we use a metaheuristic, in-
stead of an exact algorithm, for column generation. In other
words, the metaheuristic is used to solve the subproblem. Once
metaheuristic fails to generate new columns, a heuristic is used
to generate an integral solution and update the bound. We
observe that some efforts have been made to combine exact
algorithms and approximate algorithms. A good survey can
be found in [17]. To the best of our knowledge, no similar
algorithm has been developed and much less applied on the
TOPTW.

The remainder of the paper is structured as follows. Section
II describes the problem model. Section III presents the
cooperative algorithm. Section IV presents the experimental
results. Finally, the main results are concluded in section V.
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II. PROBLEM FORMULATION

The TOPTW is defined on an undirected complete graph
G = (V,E), where V = {0, 1, · · · , n+ 1} is the set of nodes
and E = {(i, j) |i, j ∈ V } is the set of edges. Each edge
(i, j) ∈ E is associated with a travel time cij . Each node i
has a reward ri and a time window [oi, ci]. A vehicle must
arrive at node i before ci. If it arrives before oi, i.e., the time
window does not open, it should wait until oi to serve node i.
A path is said to be feasible if it starts at node 0 and finishes
at node n + 1, and its travel time cannot exceed a time limit
Tmax, moreover, each node of the path is visited in its time
window. Let Ω be the set of all feasible paths.

Let R(r) be the total received reward of a path r. Binary
variable air = 1 if path r ∈ Ω visits node i (1 ≤ i ≤ n),
otherwise air = 0. Binary variable xr = 1 if path r ∈ Ω is
traveled, otherwise xr = 0. The model of the TOPTW can be
described as follows:

maximize
∑
r∈Ω

R(r)xr (1)

subject to
∑
r∈Ω

airxr ≤ 1, 1 ≤ i ≤ n (2)

∑
r∈Ω

xr ≤ m (3)

xr ∈ {0, 1},∀r ∈ Ω (4)

In the TOPTW, the objective value of solution x = (xr)r∈Ω
is defined as f(x) =

∑
r∈ΩR(r)xr. The objective function

(1) maximizes the total received reward. The constraints (2)
guarantee that each node only can be visited at most once,
and (3) ensure that a feasible solution consists of at most m
paths, and (4) are the integrality constraints.

III. THE COOPERATIVE ALGORITHM

This section first describes the restricted master problem
and subproblem, and then introduces the cooperative algo-
rithm.

A. The restricted master problem and subproblem

The restricted master problem is stated as follows:

maximize
∑
r∈Ω′

R(r)xr (5)

subject to
∑
r∈Ω′

airxr ≤ 1, 1 ≤ i ≤ n (6)

∑
r∈Ω′

xr ≤ m (7)

xr ∈ {0, 1},∀r ∈ Ω′ (8)

where Ω′ ∈ Ω is a subset of columns. In our algorithm, we
solve the linear relaxation of the restricted master problem in
which constraints (8) is replaced by the following constraints:

0 ≤ xr ≤ 1,∀r ∈ Ω′ (9)

Let �i (1 ≤ i ≤ n) denotes the nonnegative dual variable
corresponding to constraints

∑
r∈Ω′ airxr ≤ 1 (1 ≤ i ≤ n) for

node i and �0 the nonnegative dual variable correspond-
ing to constraint

∑
r∈Ω′ xr ≤ m. The subproblem aims to

find a feasible path r with a maximum positive reduced
cost. The reduced cost satisfies the following conditiofis-
chetti1998solvingn:

g(r) = R(r)−
∑
i∈J

air�i − �0 > 0 (10)

where g(r) is the fitness of path r, J = {1, · · · , n}.

Algorithm 1: The cooperative Algorithm
input : a TOPTW instance
output: the best so far solution s∗

1 initialize Restricted Master problem RMP
2 initialize the set of columns Ω′ with simple set of paths

and generate the root of the list of nodes, denoted as
NodeQueue

3 initialize the best so far solution s∗
4 push root into NodeQueue
5 while NodeQueue is not empty do
6 node← the top node of NodeQueue
7 pop up the top node of NodeQueue
8 [s,Ω′]← ColumnGeneration(node,Ω′) /*see

Algorithm 2*/
9 if each component of s is integral then

10 if s is better than s∗ then
11 s∗ ← s
12 end
13 else
14 generate an integral solution and update the

bound by Algorithm 4
15 perform the branching and add nodes into

NodeQueue
16 end
17 update NodeQueue
18 end

Algorithm 2: Column generation procedure
input : node,Ω′

output: Ω′

1 do
2 determine RMP
3 solve linear relaxation of RMP
4 generate the dual values �i(0 ≤ i ≤ n) of RMP
5 obtain a set of columns with positive reduced cost,

denoted as A, by Algorithm 3
6 add A into Ω′

7 while A is not empty

B. Outline of the cooperative algorithm

Our algorithm initializes n columns, each of which only
visits one node, and forms a root node. For the node, two
steps are repeated. It first obtains the dual values by solving
the linear relaxation of the restricted master problem. After
that, the subproblem is renewed by these dual values, and a
metaheuristic is called with the aim of finding new columns
with positive reduced costs. Once no new path can be obtained,
the node is set to be inactive. If the optimal solution of
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Algorithm 3: The VNS procedure for generating new
columns

input : a path x
output: a new path x

1 k ← 1, it← 0, f lag = 0
2 while it < NoImp do
3 x′ ← Shake(x, k)/ ∗ x′ ∈ Nk(x) ∗ /
4 x′′ ← Localsearch(x′)
5 if g(x′′) > g(x) then
6 x← x′′

7 k ← 1
8 it← 0
9 flag ← 1

10 else
11 k ← max(k + 1, kmax + 1)
12 if k > kmax then
13 k ← 1
14 end
15 it← it+ 1
16 end
17 end
18 if flag = 1 then
19 add x into Ω′

20 end

the linear relaxation of the restricted master problem is not
integral, a branching procedure is called, and new nodes
are formed and added into the list of nodes, denoted as
NodeQueue. The pseudo-code of the cooperative algorithm
is given in Algorithm 1.

The initialization step is presented in the lines (1-4). At
line 8, the RMP is solved by the column generation procedure
(see Algorithm 2). After that, if the final solution is integral,
the best so far solution is updated, otherwise, a heuristic is
carried out in line 14 for generating an integral solution. Then a
branching procedure is adopted once the solution is fractional.
The algorithm stops when NodeQueue is empty.

The column generation procedure is presented in Algorithm
2. Note that RMP depends on the set of columns Ω′, and each
column corresponds to a feasible path. The dual information is
updated in line 4. Line 5 generates new columns by Algorithm
3. The algorithm stops when no column with positive reduced
cost can be generated.

In line 15, the child nodes are generated by branching.
If
∑

r∈Ω(airr) is fractional, two new branches are generated.
Otherwise, the arc strategy is used. In this case, if the flow
of arc (k, l) is fractional, three new branches are generated.
More details are available in [3]. In the cooperative algorithm,
if the size of NodeQueue is less than 30, all new nodes
are added. Otherwise, only one node selected randomly is
added into NodeQueue and the others are added into an
auxiliary list AuxQueue. Finally, in line 17, those nodes in
NodeQueue whose upper bound is smaller than the integral
bound bound are discarded. If NodeQueue is empty, the nodes
in AuxQueue are added into NodeQueue.

Algorithm 4: The heuristic for generating an integral
solution and updating the bound

input : Λ = {r ∈ Ω′|xr > 0}, bound
output: an integral solution s∗, bound

1 s∗ = ∅
2 set the objective value of s∗ as 0
3 for each r ∈ Λ do
4 set r as the first path of a solution s
5 it← 1
6 while it < m do
7 Λ← Λ
8 for each r′ ∈ Λ do
9 remove from r′ the same nodes in s and

replace r′ by the resulting path
10 end
11 find the path rbest ∈ Λ with the largest total

reward
12 add rbest into s
13 it← it+ 1
14 end
15 if f(s) > f(s∗) then
16 s∗ ← s
17 end
18 end
19 if f(s∗) > bound then
20 bound← f(s∗)
21 end

C. The metaheuristic for the subproblem

In our implementation, a variable neighborhood search
(VNS) is adopted to generate new columns since VNS is
simple and effective [18]. It finds a local optimum in one
neighborhood and uses a shaking move to get out of the
local basin and then searches in a new neighborhood by local
search. For a path r, its neighborhood Nk(k = 1, · · · , kmax)
is defined by removing k nodes from it and inserting new
nodes as many as possible, where kmax is a parameter. Let
Λ = {r ∈ Ω′|xr > 0}. VNS starts from each path in Λ
and iteratively improves it with the attempt of finding a better
path. The shaking move randomly selects a solution from the
neighborhood Nk of the incumbent solution. The local search
determines the first-best solution in the neighborhood N1 of the
incumbent solution and updates it. Local search stops repeating
until no improved incumbent solution can be found. The detail
of VNS is given in Algorithm 3.

D. Generating an integral solution for the restricted master
problem

We use a heuristic to generate an integral solution. At
first, we obtain the optimal solution of the linear relaxation
of the restricted master problem. We try to use each path in
Λ as the first path of the integral solution. After that, for each
path in Λ, those nodes included in the integral solution are
removed. From the resulting paths, the path with the maximum
reward is selected as the next path of the integral solution.
This procedure is repeated until no path can be added into
the solution. The final integral solution is the solution with
the largest total reward. The detail of the heuristic is given in
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TABLE I. THE RESULTS ON THE TOTAL REWARD OBTAINED FOR THE TEN INSTANCES WHEN THE TIME LIMIT IS 120S

Instance Best known The cooperative algorithm GVNS
name n m Worst Average Best Worst Average Best

pr01 48 4 657 635 643.4 651 654 655.8 657
pr02 96 4 1079 1056 1061.4 1064 1055 1064.2 1070
pr03 144 4 1232 1234 1239.2 1243 1202 1209.6 1215
pr04 192 4 1585 1547 1560.2 1571 1522 1525.8 1531
pr05 240 4 1838 1768 1805.6 1825 1785 1811.4 1827
pr06 288 4 1860 1837 1852.2 1875 1826 1840.4 1855
pr07 72 4 876 876 876.0 876 855 862.6 870
pr08 144 4 1382 1337 1358.8 1384 1355 1358.2 1361
pr09 216 4 1619 1606 1608.8 1610 1589 1595.4 1607
pr10 288 4 1943 1862 1874.4 1891 1894 1903.6 1916

Boldface indicates a new best result is obtained
Italic indicates the same best-so-far results is obtained

TABLE II. THE RUNNING TIME (IN SECONDS) CONSUMED BY THE COMPARED ALGORITHMS FOR THE TEN INSTANCES WHEN THE TIME LIMIT IS 120S

Instance The cooperative algorithm GVNS
name n m Minimal Average Maximal Minimal Average Maximal

pr01 48 4 ≥ ≥ ≥ 2.9 3.6 4.4
pr02 96 4 ≥ ≥ ≥ 15.2 25.6 34.0
pr03 144 4 16.0 50.6 ≥ 30.9 57.2 75.3
pr04 192 4 ≥ ≥ ≥ 61.4 137.2 196.9
pr05 240 4 ≥ ≥ ≥ 134.3 208.4 252.0
pr06 288 4 ≥ ≥ ≥ 216.0 309.9 363.0
pr07 72 4 77.0 102.4 ≥ 14.1 17.9 22.3
pr08 144 4 ≥ ≥ ≥ 45.3 67.3 93.7
pr09 216 4 26.0 76.2 ≥ 149.3 171.1 186.3
pr10 288 4 ≥ ≥ ≥ 246.6 275.1 310.1

≥ means that the time consumed is not smaller than 120 seconds

Algorithm 4.

IV. EXPERIMENTAL STUDY

The cooperative algorithm was coded in C++ and tested
on a PC with Pentium IV 3.0GHz CPU and 2GB RAM. The
linear relaxation of the restricted master problem is solved by
CPLEX. It was tested on ten instances, called pr01-pr10, which
are available at http://www.mech.kuleuven.be/en/cib/op. The
parameter NoImp and kmax were set to 20 and 9 respectively.
Each instance was tested 5 times as done in [12].

We compared the cooperative algorithm with the granular
neighborhoods based VNS algorithm (GVNS) [12] since it is
effective and the details of experimental results are available.
GVNS was tested on a PC Pentium(R)IV with 3.0 GHZ CPU.

In the experiments, our algorithm was stopped when the
time limit is reached even when the list of nodes is not empty.

A. The time limit is 120s

Table I reports the results obtained by these algorithms.
Column 1-3 present the information of each instance including
name, the number of nodes and the number of vehicles.
Column 4 presents the best known results obtained so far
(Best known). Column 5-7 report the worst, average, and best
values of the cooperative algorithm. Column 8-10 report the
worst, average, and best values of the GVNS.

In terms of the best value, our algorithm can find 3 new
better results. With respect to the average value, our algorithm
is better than GVNS on 6 out of 10 instances.

As seen from Table II, in terms of the average time, our
algorithm consumes less time than GVNS on 6 instances and
consumes more time on 4 instances.

B. The time limit is 600s

We further study the performance by setting the time limit
as 600s. The results obtained by our algorithm are compared
with the ones obtained by GVNS in Table III.

In terms of the best value, our algorithm can find 4 new
better results, and it finds the same value for 2 instances. With
respect to the average value, the cooperative algorithm is better
than GVNS on 9 out of 10 instances.

The running times of these algorithms are reported in Table
IV. It can be seen that our algorithm consumes more time than
GVNS except pr03.

V. CONCLUSION

This paper has introduced a cooperative algorithm which
combines metaheuristic and branch-and-price for the team
orienteering problem with time windows. In contrast to the
exact version of branch-and-price, the proposed algorithm uses
a VNS for generating new columns, and uses a heuristic to
obtain an integral solution. Based on experimental study, this
algorithm can find new better solutions for several instances,
which shows that it is potential to design algorithms inspired
by the ideas of branch-and-price and metaheuristic. However,
we notice that the proposed algorithm may require more
running time. In the future, we plan to use some acceleration
strategies to alleviate this limitation, such as, using node
selection heuristic [19] and adopting other metaheuristics for
generating new columns.
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TABLE III. THE RESULTS ON THE TOTAL REWARD OBTAINED FOR THE TEN INSTANCES WHEN THE TIME LIMIT IS 600S

Instance Best known The cooperative algorithm GVNS
name n m Worst Average Best Worst Average Best

pr01 48 4 657 647 653.6 657 654 655.8 657
pr02 96 4 1079 1067 1068.8 1071 1055 1064.2 1070
pr03 144 4 1232 1234 1240.2 1246 1202 1209.6 1215
pr04 192 4 1585 1560 1568.0 1575 1522 1525.8 1531
pr05 240 4 1838 1804 1826.8 1844 1785 1811.4 1827
pr06 288 4 1855 1856 1867.2 1886 1826 1840.4 1855
pr07 72 4 876 875 875.8 876 855 862.6 870
pr08 144 4 1382 1362 1374.0 1385 1355 1358.2 1361
pr09 216 4 1619 1601 1611.0 1618 1589 1595.4 1607
pr10 288 4 1943 1907 1911.6 1914 1894 1903.6 1916

Boldface indicates a new best result is obtained
Italic indicates the same best-so-far results is obtained

TABLE IV. THE RUNNING TIME (IN SECONDS) CONSUMED BY THE COMPARED ALGORITHMS FOR THE TEN INSTANCES WHEN THE TIME LIMIT IS 600S

Instance The cooperative algorithm GVNS
name n m Minimal Average Maximal Minimal Average Maximal

pr01 48 4 180.0 394.6 ≥ 2.9 3.6 4.4
pr02 96 4 ≥ ≥ ≥ 15.2 25.6 34.0
pr03 144 4 9.0 27.4 53.0 30.9 57.2 75.3
pr04 192 4 ≥ ≥ ≥ 61.4 137.2 196.9
pr05 240 4 ≥ ≥ ≥ 134.3 208.4 252.0
pr06 288 4 ≥ ≥ ≥ 216.0 309.9 363.0
pr07 72 4 66.0 93.4 125.0 14.1 17.9 22.3
pr08 144 4 ≥ ≥ ≥ 45.3 67.3 93.7
pr09 216 4 56.0 388.8 ≥ 149.3 171.1 186.3
pr10 288 4 ≥ ≥ ≥ 246.6 275.1 310.1

≥ means that the time consumed is not smaller than 600 seconds
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