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Abstract— The design of linear sparse array is a constrained
multi-objective optimization problem(CMOP). There are
three objectives: minimization of peak sidelobe level(PSLL),
half-power beam width(HPBW) and spatial aperture. The
amplitude coefficients of elements and sensor positions of
the array are decision variables. Dynamic constrained multi-
objective evolutionary algorithm(DCMOEA) is used to design
linear sparse arrays in this paper. It makes a difference that
the output is a set of Pareto solutions (antenna arrays), not
just only one solution. The users can choose an array from the
set to meet their preferences for low PSLL, small HPBW, small
spatial aperture or a trade-off among them. Experimental
results showed that the DCMOEA performs better than peer
state-of-art algorithms referred in this paper, especially on the
arrays’ spatial aperture optimization.

Index Terms— Dynamic constrained multi-objective evolution-
ary algorithm(DCMOEA), linear sparse arrays, peak sidelobe
level(PSLL), half-power beam width(HPBW), spatial aperture

I. INTRODUCTION

Antenna array is a group of isotropic radiators such that the
currents running through them are of different amplitudes and
phases. Antenna arrays constitute one of the most versatile
classes of radiators due to their capacity for beam shaping,
beam steering and high gain. Antenna arrays have been
widely used in different applications such as radar, sonar
and communications[1]. In many applications it is necessary
to design antenna arrays with very directive characteristics
and a small HPBW. Meanwhile, PSLL reduction has a
great importance in recent communication systems. It is
considered as one of the most important applications of
digital beamforming since it reduces the effect of interference
arriving outside the main lobe[2].

Sparse array is one where the inter-sensor spacing is
larger than half of the signal wave length[3]. In order to
obtain lower PSLL, improve spatial resolution and reduce
implementation complex and cost, sparse array is better than
equally-spaced arrays[4].

The design techniques of sparse arrays which all the
element currents are identical have been proposed mainly
centered on two problems. Firstly, element position syn-
thesis is a nonlinear problem. Secondly, element spacing
constraint has to be placed on the solutions[5] [6].In order
to solve these problems efficiently, evolutionary algorithms
have been considered and successfully applied to antenna
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array designing[4] [7]. Meanwhile optimizing the amplitude
coefficients of elements and sensor positions of the array
simultaneously makes the problem more complex[8] [9]. In
addition, many evolutionary algorithms has been successfully
applied to the designing of linear arrays. For example,
linear arrays designed by genetic algorithm(GA)[2] [5] [10]
[11], improved genetic algorithm(IGA)[4], invasive weed
optimization(IWO)[12] . However, the simulate results of the
algorithms mentioned above were simplex, only one linear
array was provided.

Linear sparse array designing problem is a minimization
constrained multi-objective optimization problem(CMOP).
To solve this problem, DCMOEA is proposed in this paper.
The amplitude coefficients and sensor positions are jointly
optimized by using DCMOEA. What make a difference is
that the output of DCMOEA is a set of Pareto solutions
(antenna arrays), not just only one solution. The users can
choose an array from the set to meet their preferences for
low PSLL, small HPBW, small spatial aperture or a trade-off
among them. The difference between the method proposed in
this paper and other methods is that the method in this paper
provides not only one solution, which makes the solution
meet different preferences of users.

The remaining part of this paper is organized as follows. In
the second section, linear sparse array synthesis formulation
is briefly introduced. The third section describes the dynamic
constrained multi-objective evolutionary algorithm proposed
in this paper. The simulation results using DCMOEA is
presented in the fourth section. Finally, the last section
presents the conclusions of this paper.

II. LINEAR SPARSE ARRAY SYNTHESIS FORMULATION

Linear sparse array designing problem is a minimiza-
tion constrained optimization problem(COP), it is a multi-
objective problem as well. The PSLL, spatial aperture and
HPBW are considered in this paper.

The PSLL, spatial aperture and HPBW are not only
required to be minimized but also required to satisfy specific
constraints. The linear sparse array designing problem is
defined as:
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min y1 = fPSLL(
−→x )

min y2 = fAperture(
−→x )

min y3 = fHPBW (−→x )
st : gPSLL(

−→x )− CPSLL ≤ 0
gaperture(

−→x )− Caperture ≤ 0
gHPBW (−→x )− CHPBW ≤ 0

where −→x = (−→x 1,
−→x 2) ∈ (X1,X2)

X1 = {(x11, · · · , x1n)|l1i ≤ x1i ≤ u1i,
i = 1, · · · , n1}

X2 = {((x21, · · · , x2n)|l2i ≤ x2i ≤ u2i,
i = 1, · · · , n2}

−→
l1 = (l11, l12, ..., l1n1

)
−→u1 = (u11, u12, ..., u1n1

)
−→
l2 = (l21, l22, ..., l2n2

)
−→u2 = (u21, u22, ..., u2n2

)

(1)

where fPSLL(
−→x ), fAperture(

−→x ) and fHPBW (−→x ) are ob-
jectives, gPSLL(

−→x ), gaperture(
−→x ) and gHPBW (−→x ) are

constraints. (−→x 1 , −→x 2) are decision variables, −→x denotes
decision space. −→x 1 are the amplitude coefficients of ele-
ments, −→x 2 are the distances between two elements, l1 and
u1 are the lower bound and upper bound of the amplitude
coefficient, respectively. l2 and u2 are the lower bound and
upper bound of the distance between two elements. Before
defining fPSLL(

−→x ), here gives a definition of array factor:

AF (θ) =
N∑

n=1

x1ne
�jkdncos(θ) (2)

Where x1n are amplitude coefficients of the elements, k =
2π/λ, λ represents the wavelength, dn are the locations
of the elements on the X axis and d0 = 0, while dn =∑n

i=0 x2i, (x2i >= 0.5λ), θ is the steering angle of the array,
0 < θ < π. To ensure the array response at the preestablished
target direction θ0, a constraint on array as AF (θ0) = 1 is
set in optimization. Then fPSLL(

−→x ) is given as

fPSLL(
−→x ) = 20 log

AFθpeakside

AFθmainbeam

(3)

Where AFθpeakside
and AFθmainbeam

are the array factor of
side beam and main beam. fAperture(

−→x ) is a function to
calculate the spatial aperture of a array, it is given as:

fAperture(
−→x ) =

N−1∑
i=1

x2i (4)

where x2i is the distance between the ith element and the
(i + 1)th element.

−→
d =d1,d2,...,dN , in this paper,

−→
d is set

to be symmetrical which means di=dN−i. fHPBW (−→x ) is
the half power beam width of the array pattern which is
measured at -3dB.

As discussed above, linear sparse array designing is a
constrained multi-objective problem(CMOP). To solve C-
MOP by constrained multi-objective evolutionary algorith-
m(CMOEA), the key issue is to achieve feasible population.It
is impossible to always maintain a feasible population during

the evolutionary process. However, we could maintain a
population with most solutions feasible which ensures the
performance of CMOEA not to decrease too much. It is
implemented by adopting dynamic technique as follows:

Assume
−→
0 is the original boundaries of the linear s-

parse array designing problem, it is broadened to −→e (0) at
the beginning to achieve a feasible population. Then the
broadened boundaries −→e (0) are shrank gradually back to
−→
0 . Each shrinking should be small enough so that most

of the solutions in the population are not destroyed into
infeasible ones. This prosess constructs a series of CMOPs
(CMOP (k)),k=0,1,2,3,...,i.e., a dynamic constrained multi-
objective optimization problem(DCMOP) is shown as fol-
lows

COMP 0 =

(
min−→y = (

−→
f (−→x ),

−→
φ (−→x ))

st : −→g (−→x ) ≤ −→e
(0)

)

COMP 1 =

(
min−→y = (

−→
f (−→x ),

−→
φ (−→x ))

st : −→g (−→x ) ≤ −→e
(1)

)
......

COMPK = COMP ∼= COP =

(
min−→y = (

−→
f (−→x ),

−→
φ (−→x ))

st : −→g (−→x ) ≤ −→e
(K)

)

Where−→e
(k)

= (−→e1
(k)
,−→e2

(k)
, ...,−→em

(k)
),−→e

(0)
>−→e

(1)
...>−→e

(K)
=

−→
0 ., −→y are objectives and −→g are the constraints. When there

is a solution meet −→g <−→e , this solution is −→e -feasible, other
wise, the solution is −→e -infeasible.−→
φ (−→x ))=(φ1(

−→x ),φ2(
−→x ),φ3(

−→x )) is violations
objectives.Given a solution, The violation of a constraint in
is usually defined as

Gi(�x) = max{gi(�x), 0}, i = 1, 2, ...,m (5)

φ1(
−→x ) is the first violation objective, it is defined as fol-

lowed:

φ1(�x) =

m∑
i=1

Gi(�x)

max
�x∈P(0)

{Gi(�x)}
, (6)

φ2(
−→x ) is the second violation objective, it is the max value

of the violations of constraints. It is defined as followed:

φ2(�x) =
MAX(G(�x))

max
�x∈P(0)

{Gi(�x)}
, (7)

φ3(
−→x ) is the third violation objective, it is the number of

the violations of constraints which is grater than 0.
Here m = 3, all the values of objectives(−→y ) and con-

straints depend on variables −→x as well as k in the DCMOP.
Linear sparse array designing is a constrained multi-

objective problem. To solve this problem, DCMOEA is
proposed.

III. DYNAMIC CONSTRAINED MULTI-OBJECTIVE

EVOLUTIONARY ALGORITHM

In order to solve the design problem of linear sparse array,
dynamic constrained multi-objective evolutionary algorithm
is proposed in this section.
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A. The Framework of DCMOEA

DCMOEA for solving the dynamic constrained multi-
objective problems(DCMOP) is a dynamic version of con-
strained multi-objective evolutionary algorithm. The details
are as follows.

Algorithm 1 The framework of DCMOEA
step 1 : Initiation

step 1.1 Create parent population P(0) and evaluate
P(0). Set evolutionary generation counter t=0.
step 1.2 Set environment parameter k=0. Initialize
elastic-boundaries −→e = −→e (0)

satisfying P(0) is −→e -
feasible.

step 2 :
step 2.1 t=t+1.
step 2.2 if all −→x ∈ P(t) are −→e -feasible, the set
−→e = −→e (k+1)

, k=k+1 and update −→e -feasibility of
all −→x ∈ P(t).

step 3 : Generate offspring population S(t) from P(t) and
evaluate S(t), the offspring generation process is
shown in Algorithm 2.

step 4 : Create next parent population P(t+1) by selecting
solutions from P(t) and S(t). It is shown in Algo-
rithm 3.

step 5 : If k achieves K or t achieves AbortingT then
goto Step 6, else goto Step 2.

step 6 : Output P(t).

Algorithm 1 is a dynamic version of a CMOEA by
insertion Step1.2 and Step2.2.

B. Generate offspring population S(t) from P(t)

Algorithm 2 Generate offspring population

input : Parents P(t) = {P1, P2, ..., PN}.
output : Offsprings S(t) = {S′1, S

′′
1 , ..., S

′
N , S

′′
N}.

FOR i=1 TO N
step 1 : Affine crossover on P(t) \Pi:

Randomly select M different solutions
Pi1,Pi2,...,Pin from P(t)\Pi. Randomly create
M coefficient: aj , j = 1, 2, 3, ...,M,

∑M

j=1 aj = 1
and -1 ≤ aj ≤ M.
Create offspring: Oi =

∑M

j=1 ajPij .
step 2 : Uniform crossover on Oi and Pi:

Suppose Oi = (Oi1, Oi2, ..., Oin), Pi =
(Pi1, Pi2, ..., Pin).
FOR j = 1 TO n, exchange Pij and Oij with
exchange probability pc
Suppose offspring being S′i, S

′′
i .

step 3 :let S′i = (S′i1, S
′
i2, ..., S

′
in),S

′′
i =

(S′′i1, S
′′
i2, ..., S

′′
in). FOR j=1 TO n, let

S′ij ⇐ rand(li, ui), S′′ij ⇐ rand(li, ui) under the
probability of pm, [li, ui]

step 4 : Calculate (f(S′i)), φ(S
′
i), f(S

′′
i )), φ(S

′′
i ))

END FOR i
step 5 : Output:S(t) = {S′1, S

′′
1 , ..., S

′
N , S

′′
N}.

Algorithm 2 shows the offspring process in this part, it
contains crossover and mutation. The input of this algorithm
is parent population which contains N individuals and the
output contains 2N individuals.

C. Create next parent population

In this part, next parent population which contains N

individuals will be chosen from 2N individuals, using con-
strained −→e − Pareto− domination.

Algorithm 3 Create next parent population
Create next parent population P(t+1) by selecting solutions
from R=P(t) ∪ S(t)

step 1 : Empty P(t+1).
step 2 :Perform a non-dominated sorting aiming at R(t)

by using constrained −→e − Pareto− domination,
and identify different non-dominated sets: B1, B2,
· · · .

step 3 :Move N solutions from R(t) to P(t+1) by using
the sorting order.
step 3.1 Set i=1
step 3.2
WHILE |P(t+ 1) ∪ Bi| < N

P(t+ 1) = P(t+ 1) ∪ Bi; i=i+1.
END WHILE
step 3.3
If|P(t+ 1) ∪ Bi| > N ,then execute the cutoff oper-
ator which eliminates |P(t+ 1) ∪ Bi| - N solutions
from Bi and assings the reduced Bi to P(t+ 1).

step 4 :Output P(t+1).

The comparison of the simulate result depends on the value
of objectives −→y and constraints

−→
φ . Array a is better than

array b if a and b are all e-feasible and

yia<yib and φia<φib for all i

or a is e-feasible and b is e-infeasible. Array b is better than
array a if a and b are all e-feasible and

yib<yia and φib<φia for all i

or b is e-feasible and a is e-infeasible. If a and b are both
e-infeasible, compare the distance between a solution to the
current e-boundary, the smaller, the better. Otherwise, a and
b are incomparable. If a and b is incomparable, they will be
added into the non-dominated set.

IV. SIMULATE RESULTS AND COMPARISONS

A. The initial parameter settings

In order to start the optimization precess of a linear
19-elements array antenna, the initial value of parameters
are set. The populations size is 50, the number of iter-
ations is set to 2500, the mutation probability is 0.01,
the exchange probability is 0.9. The dynamic-boundaries
�e(k) = (e

(k)
1 , e

(k)
2 , . . . , e

(k)
m ) (k = 0, 1, · · · ,K) in DCMOP

are modelled as:

e
(k)
i = Aie

−( k

Bi
)2 − ε, i = 1, 2, · · · ,m (8)
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where ε is a given small positive number ( ε = 0.0001 in
this paper).

Ai = max
�x∈P(0)

{Gi(�x)}+ ε, i = 1, 2, · · · ,m

Bi =
K√√√√ln

(
max

�x∈P(0)

{Gi(�x)}+ε

ε

) , i = 1, 2, · · · ,m (9)

The element number is set to be N = 19, the lower bound
of amplitude coefficient l1 = 0 while the upper bound u1 =
1, the lower bound of the distance between two element l2 =
0.5λ and the upper bound u2 = 2.5λ, the constraints of
PSLL is set to be CPSLL = 14dB, the constrain of spatial
aperture is Caperture = 22λ and the constrain of HPBW is
CHPBW = 1.5◦.

To consider the HPBW and PSLL, the steering angle is set
to arranging from θStart = 0◦(0) to θEnd = 180◦(π) while
the sampling number is 1025.

B. Simulate results and comparisons

The optimization process ended when the simulate times
reaches 2500. The output of DCMOEA is a non-dominated
set which contains 46 different solutions, each solution
represents a sparse linear array. The distribution of the the
non-dominated set are shown in Fig.1, Fig.2, Fig.3 and Fig.4.
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The overall conditions of the non-dominated set is shown
in Fig.1. The distribution of aperture and PSLL is shown in
Fig.2, the distribution of HPBW and aperture is shown in
Fig.3 and Fig.4 shows the distribution of HPBW and PSLL.

The apertures of these arrays ranges from 17.97λ to
18.66λ, the HPBWs are all 1.23◦ and the PSLL ranges from
-14.64dB to -14.01dB. One sparse linear array in the non-
dominated set is shown as follows. Taking PSLL, spatial
aperture and HPBW into account, this array has a better
performance than the arrays proposed in [3] and [4]. The
comparison between the method proposed in [3] and the
method proposed in this paper is shown in Table I . The
comparison between [4] and the this paper is shown in Table
II .

TABLE I

THE COMPARISON BETWEEN THE METHOD PROPOSED IN [3] AND THE

METHOD PROPOSED IN THIS PAPER

Referenced [3] This Paper
Sensor number 24 19

PSLL -14.45dB -14.64dB
Aperture 25λ 18.6641λ
HPBW 1.23◦ 1.23◦

u
−3dB 0.0214 0.0214

The amplitude coefficient of this array is shown in Table
III and Fig.5. The location of this array is shown in Table
IV and Fig.6.
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TABLE II

THE COMPARISON BETWEEN THE METHOD PROPOSED IN [4] AND THE

METHOD PROPOSED IN THIS PAPER

Referenced [4] This Paper
PSLL -14.49dB -14.64dB

Aperture 21.0898λ 18.6641λ
HPBW 1.32◦ 1.23◦

u
−3dB 0.0230 0.0214

TABLE III

THE AMPLITUDES COEFFICIENT OF THE ARRAYS DESIGNED BY

DCMOEA

element Amplitude Coefficient element Amplitude Coefficient
1 0.3850 11 0.9101
2 0.6312 12 0.7739
3 0.5083 13 0.5875
4 0.5751 14 0.4369
5 0.5076 15 0.5076
6 0.4369 16 0.5751
7 0.5875 17 0.5083
8 0.7739 18 0.6312
9 0.9100 19 0.3850

10 0.6140
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Fig. 5. The amplitudes coefficient of the arrays designed by DCMOEA

TABLE IV

THE LOCATION OF THE ARRAYS DESIGNED BY DCMOEA

element Distance to the 1st one element Distance to the 1st one
1 0 11 10.2267
2 0.8992 12 12.1545
3 1.8564 13 12.9645
4 2.5785 14 13.7622
5 3.5683 15 15.0957
6 4.9018 16 16.0855
7 5.6995 17 16.8076
8 6.5095 18 17.7648
9 8.4374 19 18.6641

10 9.3320
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Fig. 6. The location of the element of the array designed by DCMOEA
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Fig. 7. The radiation pattern of the array designed by DCMOEA

This sparse linear array has a lower PSLL, a smaller
spatial aperture and a smaller HPBW compared with the
result in [4]. In [4], the steering angle is set to arranging
from θStart = 0 to θEnd = π while the sampling number
is 1024. the HPBW in [4] is measured at AF = −3dB
where cos(θ−3dB) = 0.0203. If the sampling number is
1024 and the array response at θ = 0.5π, θ = 0.5π is not
a sampling point. Because of this, when calculating PSLL,
it will be not too accurate. Besides, in these 1024 points,
there does not exist any point θk around θ = 0.5π such
that cos(θk) = 0.0203. However, there is a sampling point
θk = 1.5938 that abs(cos(θk)) = 0.0230 (The HPBW here
is 1.32◦). We suppose that this is an error in [4], mistakenly
written 0.0230 to 0.0203.

V. CONCLUSION

In order to solve constrained multi-objective problem,
DCMOEA is proposed in this paper. Dynamic technique is
used to ensure the performance of CMOEA do not decrease
too much.

Linear sparse array designing problem is a minimization
constrained optimization problem(COP), and it is a multi-
objective problem as well. The PSLL, spatial aperture and
HPBW are not only required to be minimized but also
required to satisfy specific constraints.

DCMOEA is proposed to solve this problem, and the
output of DCMOEA are Pareto optimal solutions which is a
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non-dominated set. The set contains 46 different solutions,
each solution represents a linear sparse array. The apertures
of these arrays ranges from 17.97λ to 18.66λ, the HPBWs
are all 1.23◦ and the PSLL ranges from -14.64dB to -
14.01dB.Compared to the arrays designed in [3] and [4],
an array designed by DCMOEA has lower PSLL, spatial
aperture and HPBW. Notably, the spatial aperture is much
smaller than that in [3] and [4].
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