

l

Abstract—This paper presents a new algorithm that extends
Particle Swarm Optimization (PSO) to deal with multi-objective
problems. It makes two main contributions. The first is that the
square root distance (SRD) computation among particles and
leaders is proposed to be the criterion of the local best selection.
This new criterion can make all swarms explore the whole
Pareto-front more uniformly. The second contribution is the
procedure to update the archive members. When the external
archive is full and a new member is to be added, an existing
archive member with the smallest SRD value among its
neighbors will be deleted. With this arrangement, the
non-dominated solutions can be well distributed. Through the
performance investigation, our proposed algorithm performed
better than two well-known multi-objective PSO algorithms,
MOPSO-σ and MOPSO-CD, in terms of different standard
measures.

I. INTRODUCTION
article Swarm Optimization (PSO) was presented by
Kennedy and Eberhart [1] in 1995, inspired by the
behavior of swarms. Like bird flocking, there are a

number of particles moving in a given search space. Each
member moves in the space according to its previous best
position and a global best leader’s position of the swarm. PSO
is an efficient algorithm for solving single objective problems
and it motivates researchers to extend PSO to solve
multi-objective problems (MOPs) [16].

MOPs consist of two or more objectives that need to be
optimized simultaneously, though sometimes they may be in
conflict. In MOPs, a set of non-dominated solutions (called
Pareto-optimal solutions [11]) is generated instead of one
global solution. A set of “good” Pareto-optimal solutions is
obtained if it can:

1. Maximize the number of Pareto-optimal solutions;
2. Minimize the distance between the Pareto-optimal

solutions and the true solutions, and
3. Maximize the distribution of the Pareto-optimal

solutions.
Different research contributions have been made to deal

with multi-objective problems after the first release of PSO
[12 – 14]. Results showed that PSO is competitive with

Man-Fai Leung, Sin-Chun Ng and Andrew Lui are with the School of
Science and Technology, The Open University of Hong Kong, Hong Kong,
China. (Their e-mails are : mfleung@ouhk.edu.hk, scng@ouhk.edu.hk and
alui@ouhk.edu.hk respectively).

Chi-Chung Cheung is with the Department of Electronic and Information
Engineering, Hong Kong Polytechnic University, Hong Kong, China
(e-mail: encccl@polyu.edu.hk).

evolutionary algorithms (EAs) on multi-objective problems,
though PSO is relatively younger than many EAs. Thus it is
believed that there should still be room for improvement.
Different research works, which have recently been carried
out in this field, involve Multi-objective PSO algorithms
(MOPSO).

A Pareto-optimal set, which will be generated when
optimizing a multi-objective problem, usually consists of a
number of non-dominated solutions that are found in a
feasible region. A decision variable x is said to be a
non-dominated solution when there are no other solutions in
the feasible region which dominates it.

In [4], Mostaghim and Teich proposed a MOPSO
algorithm with sigma method (i.e., MOPSO-σ) for finding
local guides. Their performance investigation showed that the
proposed method can find solutions with good convergence
and diversity. However, the population size of search
particles should be sufficiently large to obtain good results.
Moreover, MOPSO-σ may sometimes fail to generate
solutions with larger spread due to the premature
convergence of some search swarms (i.e., the solution
obtained is not good enough). [5] proposed an algorithm
called MOPSO-CD that adopts the crowding distance
mechanism for finding the global best guide and deleting
solutions when the external archive is full. The crowding
distance computation is used to promote diversity of solutions.
Their performance investigation showed that their algorithm
can generate a set of well-distributed solutions and it
performs well in converging to the true Pareto-front (a full set
of non-dominated solutions is called Pareto-front).

Recent investigations in [17, 18] showed that Sigma and
crowding distance methods for leader selections in MOPSO
are competitive. Both of them can produce very good results.
So, it should be noted that the leader selection on local/global
guide(s) plays a key role in MOPSO algorithms. Different
leader selections may result in different trajectories of search
swarm during their flights, and hence affect the quality,
quantity, and distribution of the final solutions. Another key
factor is the adoption of the external archive. The external
archive is used to maintain a set of Pareto-optimal solutions.
Although there are some MOPSO proposals [2, 3] that adopt
unlimited archive size, they are not very popular because the
number of non-dominated solutions can grow very fast and
hence increase the computation cost significantly when
updating the archive. Thus, spending a lot of time to find a
huge number of solutions is not cost effective. To maintain a
fixed size of the external archive, the way to remove existing
members when the archive is full is very important. To

A New Strategy for Finding Good Local Guides in MOPSO

Man-Fai Leung, Sin-Chun Ng, Senior Member, IEEE, Chi-Chung Cheung, Senior Member, IEEE, and
Andrew K Lui, Member, IEEE

P

1990

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

control the size of the external archive, MOPSO-σ adopts
clustering-based size control [19] and MOPSO-CD adopts
crowding-distance based size control. However, their controls
are highly dependent on the optimization problem that they
are applied to. In this paper, a better leader selection and a
better archive size control algorithm are proposed to improve
the performance of our MOPSO algorithm.

The remainder of this paper is as follows. Section II
describes two popular MOPSO algorithms, MOPSO-σ and
MOPSO-CD. Section III presents our proposed algorithm —
MOPSO-SRD — with examples. Section IV shows the
performance comparisons of MOPSO-σ, MOPSO-CD and
MOPSO-SRD in different optimization problems. Section V
presents our conclusions.

II. THE POPULAR EXISTING MOPSO ALGORITHMS
There are two most popular MOPSO algorithms,

MOPSO-σ and MOPSO-CD. This section describes them and
their limitations.

A. Multi-objective Particle Swarm Optimization Using
Sigma Method (MOPSO-σ)

Sigma method is used to find a local guide for each particle
[4]. To group particles into different archive members, the
sigma value of each particle (denoted as σ) is calculated. The
sigma value of a particle is defined as the slope of the line
connecting the fitness value of the particle and the origin of
the objective space. For 2-objective problems, σ is defined as:

2 2 2 2
1 2 1 2() () () ()() / () (1)σ f f f fx x x x= − +

For 3-objective problems, σ is a vector and it is defined as:

()
2 2

1 2
2 2 2 2 2

2 3 1 2 3
2 2

3 1

/
() ()
() () () () ()
() ()

 (2)
f f
f f f f f
f f

x x
x x x x x
x x

σ
⎛ ⎞−
⎜ ⎟= − + +
⎜ ⎟−⎝ ⎠

In a two-objective problem, when the sigma values of two
particles are equal, the two particles must lie on the same line.
Based on this method, each particle in the swarm selects the
leader particle from the archive by finding an archive member
with the closest sigma value (i.e., the difference between the
sigma values of the particle and the archive member is the
smallest among all archive members). By using this method,
all search particles can move directly towards the Pareto-front
through their corresponding leaders, and it is hoped that they
can obtain solutions with good convergence. Note that an
external archive with clustering-based size control is used to
store non-dominated solutions during the search process, and
its size is fixed. Moreover, to retain the vitality of the swarm,
MOPSO-σ has introduced a turbulence factor [2] to the
MOPSO. This factor adds a random number to the position of
each particle, which acts like a mutation operator in EAs. The
performance investigation in [4] showed that the overall
performance of MOPSO-σ is good in different
multi-objective optimization problems. However, some
studies reported that this method may sometimes cause
premature convergence and hence not be able to generate a
better spread to cover the Pareto-front [16, 22].

B. Multi-objective Particle Swarm Optimization using the
Crowding Distance (MOPSO-CD)

Raquel and Naval adopted the crowding distance
calculation mechanism, which is from the Non-dominated
Sorting Genetic Algorithm II (NGSA-II) [15] into the PSO
algorithm [5]. The crowding distance of a particular solution
is calculated to estimate the density of the surrounding
solutions. The calculated values of the archive solutions are
sorted in descending order so that a global best guide can be
selected randomly from archive members in a specified top
portion (e.g., 10%) for each particle. Note that the boundary
archive members are always set to an infinite value to ensure
that they are always in the top portion (i.e., they are always
available to be selected). The crowding distance computation
is also used to remove solutions (i.e., archive members) when
the archive is full. Finally, a mutation operator is used to
enrich the search ability of the proposed algorithm.

MOPSO-CD is very popular to search for solutions to
multi-objective problems. However, since each particle is
associated with its own global guide solely selected from the
top 10% less crowded area of the archive, it is too restrictive
for those particles far away from the less crowded area and
could possibly perturb their original flight [21].

III. MOPSO-SRD
To address the limitations of these two popular MOPSO
algorithms, a new algorithm called MOPSO using the Square
Root Distance (MOPSO-SRD) is proposed. This algorithm
makes two main contributions by adding (a) a new leader
selection algorithm and (b) a new control mechanism for the
external archive.

A. Leader Selection Algorithm
In the original PSO algorithm, the swarm can converge

quickly because the whole search swarm is guided by one
global leader. As mentioned in Section I, PSO cannot be
applied to solve multi-objective problems directly, and thus a
leader selection algorithm is required for each particle to find
its own leader. In MOPSO-SRD, each particle can freely
choose its own leader, but not a single global best particle, by
using the square root distance calculation. The square root
distance calculation of two points 1x and 2x is shown as:

1 2 1 2
1

(,) () ()
m

n n
n

SRD x x f x f x
=

= −∑ (3)

In each generation, for each particle in the search swarm,
the square root distance between the particle and all archive
members is calculated and the archive member with the
shortest square root distance is chosen as the leader of that
particle, i.e.,

Min(∑
=

−
m

n
nn xfyf

1
1)()(, …, ∑

=
−

m

n
nkn xfyf

1
)()() (4)

where m is the number of objectives, { }kyyy ,,, 21 is the

archive set with k members, and P x= where P is the particle.
Fig. 1 shows a small example to illustrate the operations of

1991

the leader selection. There is a particle D to select a leader
from an external archive which has three archive members
(A, B and C). The particle D chooses archive member A as its
leader because the square root distance of AD (SRD(D, A) = 2
units) is the smallest one among all others (SRD(D, B) = 3.46
units and SRD(D, C) = 2.73 units).

Fig. 1. An example to illustrate the operations of the leader selection.

As mentioned above, MOPSO-σ may not be able to

generate a better spread to cover the Pareto-front because of
the premature convergence. Compared with MOPSO-σ, a
particle can be attracted by all possible leaders and thus all
particles can fairly explore the whole Pareto-front. Fig. 2
shows 100 particles that are randomly generated in a two
objective space, and they are grouped by using the SRD
computation. Fig. 3 shows the same particles but they are
grouped by using the sigma method. The crosses in these two
figures are archive members and the dots are searching
particles. It is clearly found that the particles grouped by
using the SRD computation are more evenly distributed in
relation to the Pareto-front than the sigma method. However,
in Fig. 3, most of particles are guided by the center of the
archive set and only a few particles are guided by archive
members near the boundary of the whole archive set.
Compared with MOPSO-CD, MOPSO-SRD does not have
any restrictions on finding a local guide and thus the
limitation found in MOPSO-CD does not exist in
MOPSO-SRD.

Fig. 2. Leader selection by using the SRD computation.

Fig. 3. Leader selection by using the sigma method.

B. Archive Control Algorithm
The two popular MOPSO algorithms, MOPSO-σ and

MOPSO-CD, use an archive to store the set of non-dominated
solutions. The archive adopts the concept of an archive
controller in [6]. When a new archive member is found and
there are no archive members in the archive that can dominate
this new member, it is added into the archive. When the
archive is full, a procedure is required to remove an archive
member from the archive. MOPSO-σ uses a clustering-based
size control to remove archive members when the archive is
full. MOPSO-CD selects an archive member with the shortest
crowding distance among all to remove when the archive is
full. MOPSO-SRD considers the sum of SRD of an archive

D

B C

A

1992

member among its two neighbors. The calculation of this sum
(called Neighbor Factor (NF) in this paper) is shown below:

1 1() (,) (,)i i i i iNF x SRD x x SRD x x− += + (5)
for the ith archive member with n non-dominated solutions
and 1<i<n. An archive member with the smallest NF value
will be removed when the archive is full. Note that no
boundary members will be considered for removal because
they need to remain in the archive to maintain a
well-distributed Pareto front. The reason to consider NF as a
factor in the removal procedure is that it makes the remaining
non-dominated solutions more evenly distributed and closer
to the true Pareto-front.

Fig. 4 illustrates when the archive members are almost
equally close to the Pareto-front, the member with the
smallest value of NF will be removed. This measure can
preserve diversity. Table I shows the NF value of each
archive member (excluding the boundary member A and H).
In this scenario, archive member C has the smallest NF value.
Thus it is selected to be removed. Fig. 5 shows another
scenario. Compared with Fig.4, it has an additional archive
member I which is far away from the Pareto-front and it will
significantly affect the decision to remove a selected member.
This time archive member C will not be removed. Instead, the
archive member I will be removed.

Fig. 4. Removal of an archive member (Scenario 1)

Table I. NF values of archive members in Fig. 4.

Archive members B C D E F G
Neighbor Factor (NF) 4 3.41 3.86 5.28 4.83 4

Fig. 5. Removal of an archive member (Scenario 2)

Table II. NF values of archive members in Fig. 5.

Archive members B C D E I F G
Neighbor Factor (NF) 4 3.41 3.86 3.86 2.83 3.41 4

C. The Main MOPSO-SRD Algorithm
Fig. 6 shows the MOPSO-SRD algorithm. At the

beginning, the positions, speeds and past best locations of all
particles are initialized. Then each particle is evaluated based
on the objective functions (fitness functions). The evaluated
fitness values of particles are compared with each other and
the one that is not dominated (i.e., a non-dominated solution)
by others will be added into the archive. The above procedure
will be repeated until the end of iterations. The new leader
selection is applied in each iteration and each particle
performs its flight (updates its velocity and new position) at
the end of each iteration. Mutation is applied to enhance the
exploratory ability of the algorithm. After moving to the new
position, evaluation is carried out to re-calculate the fitness
value of each particle. Then the archive will be updated, as
well as the past best position of the swarm. If the archive is
full, the proposed removal procedure will be applied to
maintain the size of the archive.

1993

Begin
1. Initialize Archive A={};
2. For each particle j,

 Initialize each particle’s position randomly P[j]
 Initialize the speed of each particle to zero V[j]=0
 Initialize the past best of each particle Pb[j]=P[j]
 Evaluate particles P[j]

 End for
3. Update archive A
4. For i = 1 to the specified number of iterations
 For each particle j,
 SRD_Computation(A,j), which returns local best leader Lb

 Update each particle’s new velocity V[j]:
 V[j]=w*V[j]+r1*c1*(Pb[j]-P[j])+r2*c2*(Lb-P[j])
 where
 w is an inertia weight,
 r1 and r2 are random numbers between 0 and 1,
 c1 is local weight and it is a constant,
 c2 is global weight and it is a constant,
 Pb is the particle with the past best value, and
 Lb is the particle with the local best value.
 Update new position of particles: P[j]=P[j]+V[j]

 End for
 Mutation
 Evaluate particles
 Update archive A

 Insert non-dominated solutions
 If A is full
 NF_Computation(A), which returns an archive member

 Remove the selected archive member
 End if
 Find the personal best position of each particle
 Increase iteration i by 1

 End for
End

Fig. 6. The MOPSO-SRD algorithm

IV. PERFORMANCE COMPARISONS
This section describes the performance comparisons

among MOPSO-σ, MOPSO-CD and MOPSO-SRD. Four
performance measures and five multi-objective optimization
problems were used to compare their performance. For each
optimization problem, 50 independent runs were carried out.
All the runs were performed under the same environment
(Matlab) on Intel Core i3-3217U 1.8GHz CPU with 4GB
DDR3 RAM.

A. Performance Metrics
Spacing (S): This performance metric proposed by Schott

[7], is used to measure the distance variance of neighboring
non-dominated solutions. The metric is defined as:

()2

1

1
1

n

i
i

S θ d
n =

= −
− ∑ (6)

1

| () () | , 1,2, ,
m

k k
i j

i
k

jwhere d min f x f x i j n
=

= − = …∑

θ is the mean of all dis, m is the number of objectives, and n is
the number of found non-dominated solutions. This
performance metric is good if S is small. A value of zero
means that all found non-dominated solutions are spaced
equidistantly.

Error Ratio (ER): ER was proposed by Van Veldhuizen [8]
and is used to measure the error percentage of found

non-dominated solutions. The metric is defined as:

∑
=

=
n

i
ie

n
ER

1

1 (7)

If the non-dominated solution i belongs to the true
Pareto-front, ei = 0; otherwise, ei = 1. This performance metric
is good if ER is small. A value of zero means that all found
non-dominated solutions belong to the true Pareto-front. Note
that this metric requires prior knowledge about the true
Pareto-front of the test case.

Generational distance (GD): GD was also proposed by
Van Veldhuizen [8], and is used to measure the difference
between found non-dominated solutions and the true
Pareto-front. The metric is defined as:

 ∑
=

=
n

i
in

GD
1

21 α (8)

where αi is the Euclidean distance between the
non-dominated solution i and the nearest member of the true
Pareto set. This performance metric is good if GD is small. A
value of zero means that all the found non-dominated
solutions lie on the true Pareto front. Like ER, this metric
requires prior knowledge about the true Pareto-front of the
test case.
 Searching Time (ST): It is a common performance metric in
the performance comparisons of optimization algorithms.
The ST is the total time taken for the computer to execute in
an experiment. The number of generations in each test
function will be described later in this section. The
performance of an algorithm is good if its searching time is
short.

B. Test Functions
Kursawe test function: This consists of two objective

functions with three variables [9]. Its true Pareto front is
non-continuous. It is defined as:

() ()()
() ()()

2 2
1 1

1

0.

2

3
2

1

3
8

10exp 0.2
minimize

5sin

i i
i

i i
i

f x x x

f x x x

+
=

=

⎧ = − − +⎪⎪
⎨
⎪ = +
⎪⎩

∑

∑
 (9)

where -5 ≤ x1, x2, x3 ≤ 5.
ZDT1: This consists of two objective functions with 30

variables [10]. Its true Pareto front is convex and continuous.
It is defined as:

()
() () () ()()

1 1

2 1

minimize
,

f x x
f x g x h f x g x

=⎧⎪
⎨ =⎪⎩

 (10)

 where

()

() ()

()

1

2
2

1 1

, ,

, , 1 9 / 1

, /1
30 1 and 0

E

E i

E

i

i

x x x

g x x x E

h f g f g
E x

=

≤

= …⎛ ⎞
⎜ ⎟

⎛ ⎞⎜ ⎟… = + −⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟
⎜ ⎟= −
⎜ ⎟⎜ ⎟= ≤⎝ ⎠

∑

ZDT2: This consists of two objective functions with 30
variables [10]. Its true Pareto front is concave and continuous.
It is defined as:

1994

()
() () () ()()

1 1

2 1

minimize
,

f x x
f x g x h f x g x

=⎧⎪
⎨ =⎪⎩

 (11)

where

()

() ()

()

1

2
2

2
1 1

, ,

, , 1 9 / 1

, 1 ()
30 an 0 1d

/

i
i

i

E

E

E

x x x

g x x x E

h f gg f
E x

=

= …⎛ ⎞
⎜ ⎟

⎛ ⎞⎜ ⎟… = + −⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟
⎜ ⎟= −
⎜ ⎟⎜ ⎟= ≤ ≤⎝ ⎠

∑

ZDT3: This consists of two objective functions with 30
variables [10]. Its true Pareto front is non-continuous. It is
defined as:

()
() () () ()()

1 1

2 1

minimize
,

f x x
f x g x h f x g x

=⎧⎪
⎨ =⎪⎩

 (12)

 where

()

() ()

() () ()

1

2
2

1 1 1 1/

, ,

, , 1 9

/
1

/ 1

, 1 sin 10
30 and 0

E

E

i
i

i

E

x x x

g x x x E

h f g f g f g πf
E x

=

= …⎛ ⎞
⎜ ⎟

⎛ ⎞⎜ ⎟… = + −⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟
⎜ ⎟= − −
⎜

≤
⎟⎜ ⎟= ≤⎝ ⎠

∑

Viennet test function: This consists of three objective
functions with two variables [20]. Its true Pareto front is a
three dimensional convoluted line. It is defined as:

()
()
()

2

2 2 2 2
1

2 2

2 2 2 2
3

, 0.5() sin()

minimize , (3 -2 4) /8 (- 1) /27 15

, 1/(1) 1.1exp()

f x y x y x y

f x y x y x y

f x y x y x y

⎧ = + + +
⎪⎪ = + + + +⎨
⎪ = + + − − −⎪⎩

 (13)

where -3 ≤ x, y ≤ 3.

Table III. Parameter values for each algorithm with respect to each test
function.

Algorithm MOPSO-σ MOPSO-CD MOPSO-SRD
Kursawe

inertia rate(w) 0.7 0.7 0.7
local weight (c1) 1.2 1.2 1.2
global weight (c2) 1.3 1.3 1.3
mutation rate 0.05 0.05 0.05

ZDT1
inertia rate(w) 1.5 1.5 1.5
local weight (c1) 1.5 1.5 1.5
global weight (c2) 1.5 1.5 1.5
mutation rate 0.03 0.03 0.03

ZDT2
inertia rate(w) 1.5 1.5 1.5
local weight (c1) 1.5 1.5 1.5
global weight (c2) 1.5 1.5 1.5
mutation rate 0.03 0.03 0.03

ZDT3
inertia rate(w) 0.55 0.55 0.55
local weight (c1) 2 2 2
global weight (c2) 2 2 2
mutation rate 0.03 0.03 0.03

Viennet
inertia rate(w) 1.5 1.5 1.5
local weight (c1) 1.5 1.5 1.5
global weight (c2) 1.5 1.5 1.5
mutation rate 0.03 0.03 0.03

The MOPSO-σ, MOPSO-CD and MOPSO-SRD
algorithms were implemented in our simulation program.
Since the parameters in the clustering method proposed by [4]
are quite difficult to follow, for simplicity, an alternative
proposed by [22] was implemented for the archive control
algorithm for MOPSO-σ. In all experiments, the number of
generations and population size were set to 100 for Kursawe
test function. For ZDT1, ZDT2 and ZDT3, the number of
generations and population size were set to 150 and 100
respectively. For Viennet test function, the number of
generations and population size were set to 50 and 100
respectively. Table III lists out the parameter values (the
inertia rate, the local weight, the global weight and the
mutation rate) for each algorithm with respect to each test
function. Figs 7 to 11 show some Pareto-fronts produced by
these three algorithms for different optimization problems. It
can be found that the Pareto-front produced by MOPSO-SRD
is generally more evenly distributed than MOPSO-σ and
MOPSO-CD. Tables IV to VIII show the performance
comparisons of different MOPSO algorithms in different
optimization problems. A number highlighted in bold is the
winner in such corresponding performance metric. For
example, the error rate (ER) of MOPSO-SRD is 0.0342,
which is smaller (better) than MOPSO-σ (0.0598) and
MOPSO-CD (0.269) in Table IV. Table IX summarizes the
statistics of winners of different performance metrics in
different optimization problems. For a particular metric with
respect to a test function, the algorithm which outperforms
other algorithms (i.e., the winner) is counted. For example,
MOPSO-σ performed better than MOPSO-CD and
MOPSO-SRD in ZDT1 test function in terms of the searching
time (ST), so MOPSO-σ is counted once in the column of ST
in Table IX. Note that the comparison focuses on the average
value only, not the standard deviation. It can be found that
MOPSO-CD is good in terms of searching time but
MOPSO-SRD is good in the rest of the performance metrics
(totally three performance metrics). Overall, the performance
of MOPSO-σ was the worst and MOPSO-SRD generally
outperformed MOPSO-σ and MOPSO-CD.

Fig. 1. Pareto-fronts produced by MOPSO-σ (left), MOPSO-CD (middle)
and MOPSO-SRD (Right) for Kursawe test function.

Fig. 2. Pareto-fronts produced by MOPSO-σ (left), MOPSO-CD (middle)
and MOPSO-SRD (Right) for ZDT1 test function.

1995

Fig. 3. Pareto-fronts produced by MOPSO-σ (left), MOPSO-CD (middle)
and MOPSO-SRD (Right) for ZDT2 test function.

Fig. 4. Pareto-fronts produced by MOPSO-σ (left), MOPSO-CD (middle)
and MOPSO-SRD (Right) for ZDT3 test function.

Fig. 5. Pareto-fronts produced by MOPSO-σ (left), MOPSO-CD (middle)
and MOPSO-SRD (Right) for Viennet test function.

Table IV. Results for the Kursawe test function.
Algorithm MOPSO-σ MOPSO-CD MOPSO-SRD

S
Average 0.137 0.123 0.125
Std. Dev. 0.0102 0.0137 0.0052

ER
Average 0.0598 0.269 0.0342
Std. Dev. 0.02788 0.04071 0.01751

GD
Average 2.24E-03 6.27E-03 1.38E-03
Std. Dev. 0.0008462 0.001410 0.0002361

ST
Average 17.6 seconds 7.55 seconds 14.2 seconds
Std. Dev. 0.8457 seconds 0.8737 seconds 0.9042 seconds

Table V. Results for the ZDT1 test function.

Algorithm MOPSO-σ MOPSO-CD MOPSO-SRD
S

Average 8.28E-03 9.50E-03 4.13E-03
Std. Dev. 0.0008000 0.0006542 0.0007683

ER
Average 0.0800 0.0606 0.0328
Std. Dev. 0.03130 0.02478 0.02071

GD
Average 7.09E-05 4.99E-05 3.27E-05
Std. Dev. 3.237E-05 2.482E-05 2.740E-05

ST
Average 18.00 seconds 21.3 seconds 21.2 seconds
Std. Dev. 0.8084 seconds 0.9598 seconds 0.8322 seconds

Table VI. Results for the ZDT2 test function.
Algorithm MOPSO-σ MOPSO-CD MOPSO-SRD

S
Average 1.45E-02 9.68E-03 9.76E-03
Std. Dev. 0.01191 0.0005846 0.003096

ER
Average 0.02 0.018 0.017
Std. Dev. 0.01591 0.01587 0.01266

GD
Average 6.56E-05 2.20E-05 5.28E-05
Std. Dev. 5.533E-05 2.488E-05 4.524E-05

ST
Average 4.50 seconds 19.6 seconds 4.35 seconds
Std. Dev. 0.9834 seconds 2.0264 seconds 0.612373137

Table VII. Results for the ZDT3 test function.

Algorithm MOPSO-σ MOPSO-CD MOPSO-SRD
S

Average 3.24E-02 2.83E-02 2.82E-02
Std. Dev. 0.002499 0.0008293 0.001162

ER
Average 0.197 0.264 0.165
Std. Dev. 0.06390 0.08463 0.05950

GD
Average 9.64E-05 8.38E-05 4.97E-05
Std. Dev. 4.103E-05 3.040E-05 1.948E-05

ST
Average 20.8 seconds 12.5 seconds 16.4 seconds
Std. Dev. 1.3886 seconds 1.0221 seconds 0.7559 seconds

Table VIII. Results for Viennet test function.
Algorithm MOPSO-σ MOPSO-CD MOPSO-SRD

S
Average 6.29E-02 7.02E-02 6.26E-02
Std. Dev. 0.009477 0.02628 0.01147

ER
Average 0.150 0.175 0.101
Std. Dev. 0.03605 0.04515 0.03442

GD
Average 8.83E-04 1.02E-03 5.59E-04
Std. Dev. 0.0005250 0.0006130 0.0003132

ST
Average 6.91 seconds 5.84 seconds 7.53 seconds
Std. Dev. 0.4925 seconds 0.3529 seconds 0.6109 seconds

Table IX. The summary of their overall performance.
Algorithm
/ Metric

No. of winners
MOPSO-σ MOPSO-CD MOPSO-SRD

S 0 2 3
ER 0 0 5
GD 0 1 4
ST 1 3 1

Total 1 6 13

V. CONCLUSION
This paper has presented a new MOPSO algorithm called

MOPSO using the square root distance (MOPSO-SRD) to
solve multi-objective optimization problems. It makes two
main contributions: (a) a new leader selection algorithm is
proposed by using the square root distance (SRD)
computation and (b) a new archive control algorithm to
remove an archive member if the archive is full. The
performance investigation showed MOPSO-SRD generally

1996

outperforms two popular MOPSO algorithms, MOPSO-σ and
MOPSO-CD, in terms of different performance metrics in
different multi-objective optimization problems. Future work
will focus on optimizing more multi-objective optimization
problems with higher dimensions.

REFERENCES
[1] Eberhart R, Kennedy J., “A new optimizer using particle swarm

theory”, Proceedings of the Sixth International Symposium on. IEEE,
1995.

[2] Fieldsend J E, Uk E Q, Singh S., “A Multi-Objective Algorithm based
upon Particle Swarm Optimisation, an Efficient Data Structure and
Turbulence”, Proceedings of the 2002 U. K. Workshop on
Computational Intelligence, pp. 37 – 44, 2002.

[3] Alvarez-Benitez J E, Everson R M, Fieldsend J E, “A MOPSO
algorithm based exclusively on pareto dominance concepts”,
Evolutionary Multi-Criterion Optimization, Springer Berlin
Heidelberg, 2005.

[4] Mostaghim S, Teich J, “Strategies for finding good local guides in
multi-objective particle swarm optimization (MOPSO)”, Proceedings
of Swarm Intelligence Symposium, pp., 26-33, 2003.

[5] Raquel C R, Naval Jr P C, “An effective use of crowding distance in
multiobjective particle swarm optimization”, Proceedings of the 2005
conference on Genetic and evolutionary computation, 2005.

[6] Coello C A C, Pulido G T, Lechuga M S, “Handling multiple objectives
with particle swarm optimization”,. Evolutionary Computation, IEEE
Transactions on, 2004, 8(3): 256-279, 2004.

[7] Schott J R, “Fault Tolerant Design Using Single and Multicriteria
Genetic Algorithm Optimization”, AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH, 1995.

[8] Van Veldhuizen D A, “Multiobjective evolutionary algorithms:
classifications, analyses, and new innovations”, AIR FORCE INST OF
TECH WRIGHT-PATTERSON AFB OH SCHOOL OF
ENGINEERING, 1999.

[9] Kursawe F, “A variant of evolution strategies for vector optimization”,
Parallel Problem Solving from Nature, Springer Berlin
Heidelberg,193-197, 1991

[10] Zitzler E, Deb K, Thiele L, “Comparison of multiobjective
evolutionary algorithms: Empirical results”, Evolutionary computation,
2000.

[11] Deb K, “Multi-objective optimization”, Multi-objective optimization
using evolutionary algorithms, 2001: 13-46.

[12] Moore J, Chapman R, “Application of particle swarm to multiobjective
optimization ”, Department of Computer Science and Software
Engineering, Auburn University, 1999.

[13] Parsopoulos K E, Vrahatis M N, “Particle swarm optimization method
in multiobjective problems”, Proceedings of the 2002 ACM symposium
on Applied computing, 603-607, 2002.

[14] Coello Coello C A, Lechuga M S, “MOPSO: A proposal for multiple
objective particle swarm optimization” Proceedings of Evolutionary
Computation, 1051-1056, 2002.

[15] Deb K, Pratap A, Agarwal S, et al., “A fast and elitist multiobjective
genetic algorithm: NSGA-II”, Evolutionary Computation, IEEE
Transactions on, 6(2): 182-197, 2002.

[16] Reyes-Sierra M, Coello CAC. Multi-objective particle swarm
optimizers: A survey of the state-of-the-art. International Journal of
Computational Intelligence Research, 2(3): 287-308, 2006.

[17] Durillo J J, García-Nieto J, Nebro A J, et al., “Multi-objective particle
swarm optimizers: An experimental comparison”, Evolutionary
Multi-Criterion Optimization. Springer Berlin Heidelberg, 495-509,
2009.

[18] Castro O R, Britto A, Pozo A, “A comparison of methods for leader
selection in many-objective problems” Evolutionary Computation
(CEC), IEEE Congress on, 1-8, 2012.

[19] Zitzler E, “Evolutionary algorithms for multiobjective optimization:
Methods and applications”, Ithaca: Shaker, 1999.

[20] Viennet R, Fonteix C, Marc I, “Multicriteria optimization using a
genetic algorithm for determining a Pareto set”, International Journal
of Systems Science, 27(2): 255-260, 1996.

[21] F. T. S. Chan and M. K. Tiwari, “Swarm Intelligence: Focus on Ant and
Particle Swarm Optimization”, pp. 532, Itech Education and Publishing,
Australia, December, 2007.

[22] Padhye, Nikhil, Juergen Branke, and Sanaz Mostaghim. “Empirical
comparison of mopso methods-guide selection and diversity
preservation.” Evolutionary Computation, 2009. CEC'09. IEEE
Congress on. IEEE, 2009.

1997

