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Abstract—This paper presents a new algorithm that extends 
Particle Swarm Optimization (PSO) to deal with multi-objective 
problems. It makes two main contributions. The first is that the 
square root distance (SRD) computation among particles and 
leaders is proposed to be the criterion of the local best selection. 
This new criterion can make all swarms explore the whole 
Pareto-front more uniformly. The second contribution is the 
procedure to update the archive members. When the external 
archive is full and a new member is to be added, an existing 
archive member with the smallest SRD value among its 
neighbors will be deleted. With this arrangement, the 
non-dominated solutions can be well distributed. Through the 
performance investigation, our proposed algorithm performed 
better than two well-known multi-objective PSO algorithms, 
MOPSO-σ and MOPSO-CD, in terms of different standard 
measures.  

I. INTRODUCTION 
article Swarm Optimization (PSO) was presented by 
Kennedy and Eberhart [1] in 1995, inspired by the 
behavior of swarms. Like bird flocking, there are a 

number of particles moving in a given search space. Each 
member moves in the space according to its previous best 
position and a global best leader’s position of the swarm. PSO 
is an efficient algorithm for solving single objective problems 
and it motivates researchers to extend PSO to solve 
multi-objective problems (MOPs) [16]. 

MOPs consist of two or more objectives that need to be 
optimized simultaneously, though sometimes they may be in 
conflict. In MOPs, a set of non-dominated solutions (called 
Pareto-optimal solutions [11]) is generated instead of one 
global solution. A set of “good” Pareto-optimal solutions is 
obtained if it can: 

1. Maximize the number of Pareto-optimal solutions; 
2. Minimize the distance between the Pareto-optimal 

solutions and the true solutions, and 
3. Maximize the distribution of the Pareto-optimal 

solutions. 
Different research contributions have been made to deal 

with multi-objective problems after the first release of PSO 
[12 – 14]. Results showed that PSO is competitive with 
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evolutionary algorithms (EAs) on multi-objective problems, 
though PSO is relatively younger than many EAs. Thus it is 
believed that there should still be room for improvement. 
Different research works, which have recently been carried 
out in this field, involve Multi-objective PSO algorithms 
(MOPSO). 

A Pareto-optimal set, which will be generated when 
optimizing a multi-objective problem, usually consists of a 
number of non-dominated solutions that are found in a 
feasible region. A decision variable x is said to be a 
non-dominated solution when there are no other solutions in 
the feasible region which dominates it. 

In [4], Mostaghim and Teich proposed a MOPSO 
algorithm with sigma method (i.e., MOPSO-σ) for finding 
local guides. Their performance investigation showed that the 
proposed method can find solutions with good convergence 
and diversity. However, the population size of search 
particles should be sufficiently large to obtain good results. 
Moreover, MOPSO-σ may sometimes fail to generate 
solutions with larger spread due to the premature 
convergence of some search swarms (i.e., the solution 
obtained is not good enough). [5] proposed an algorithm 
called MOPSO-CD that adopts the crowding distance 
mechanism for finding the global best guide and deleting 
solutions when the external archive is full. The crowding 
distance computation is used to promote diversity of solutions. 
Their performance investigation showed that their algorithm 
can generate a set of well-distributed solutions and it 
performs well in converging to the true Pareto-front (a full set 
of non-dominated solutions is called Pareto-front). 

Recent investigations in [17, 18] showed that Sigma and 
crowding distance methods for leader selections in MOPSO 
are competitive. Both of them can produce very good results. 
So, it should be noted that the leader selection on local/global 
guide(s) plays a key role in MOPSO algorithms. Different 
leader selections may result in different trajectories of search 
swarm during their flights, and hence affect the quality, 
quantity, and distribution of the final solutions. Another key 
factor is the adoption of the external archive. The external 
archive is used to maintain a set of Pareto-optimal solutions. 
Although there are some MOPSO proposals [2, 3] that adopt 
unlimited archive size, they are not very popular because the 
number of non-dominated solutions can grow very fast and 
hence increase the computation cost significantly when 
updating the archive. Thus, spending a lot of time to find a 
huge number of solutions is not cost effective. To maintain a 
fixed size of the external archive, the way to remove existing 
members when the archive is full is very important. To 

A New Strategy for Finding Good Local Guides in MOPSO 

Man-Fai Leung, Sin-Chun Ng, Senior Member, IEEE, Chi-Chung Cheung, Senior Member, IEEE, and 
Andrew K Lui, Member, IEEE 

P

1990

2014 IEEE Congress on Evolutionary Computation (CEC) 
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE



 
 

 

control the size of the external archive, MOPSO-σ adopts 
clustering-based size control [19] and MOPSO-CD adopts 
crowding-distance based size control. However, their controls 
are highly dependent on the optimization problem that they 
are applied to. In this paper, a better leader selection and a 
better archive size control algorithm are proposed to improve 
the performance of our MOPSO algorithm. 

The remainder of this paper is as follows. Section II 
describes two popular MOPSO algorithms, MOPSO-σ and 
MOPSO-CD. Section III presents our proposed algorithm — 
MOPSO-SRD — with examples. Section IV shows the 
performance comparisons of MOPSO-σ, MOPSO-CD and 
MOPSO-SRD in different optimization problems. Section V 
presents our conclusions. 

II. THE POPULAR EXISTING MOPSO ALGORITHMS 
There are two most popular MOPSO algorithms, 

MOPSO-σ and MOPSO-CD. This section describes them and 
their limitations. 

A. Multi-objective Particle Swarm Optimization Using 
Sigma Method (MOPSO-σ) 

Sigma method is used to find a local guide for each particle 
[4]. To group particles into different archive members, the 
sigma value of each particle (denoted as σ) is calculated. The 
sigma value of a particle is defined as the slope of the line 
connecting the fitness value of the particle and the origin of 
the objective space. For 2-objective problems, σ is defined as: 

2 2 2 2
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In a two-objective problem, when the sigma values of two 
particles are equal, the two particles must lie on the same line. 
Based on this method, each particle in the swarm selects the 
leader particle from the archive by finding an archive member 
with the closest sigma value (i.e., the difference between the 
sigma values of the particle and the archive member is the 
smallest among all archive members).  By using this method, 
all search particles can move directly towards the Pareto-front 
through their corresponding leaders, and it is hoped that they 
can obtain solutions with good convergence. Note that an 
external archive with clustering-based size control is used to 
store non-dominated solutions during the search process, and 
its size is fixed. Moreover, to retain the vitality of the swarm, 
MOPSO-σ has introduced a turbulence factor [2] to the 
MOPSO. This factor adds a random number to the position of 
each particle, which acts like a mutation operator in EAs. The 
performance investigation in [4] showed that the overall 
performance of MOPSO-σ is good in different 
multi-objective optimization problems. However, some 
studies reported that this method may sometimes cause 
premature convergence and hence not be able to generate a 
better spread to cover the Pareto-front [16, 22]. 

B. Multi-objective Particle Swarm Optimization using the 
Crowding Distance (MOPSO-CD) 

Raquel and Naval adopted the crowding distance 
calculation mechanism, which is from the Non-dominated 
Sorting Genetic Algorithm II (NGSA-II) [15] into the PSO 
algorithm [5]. The crowding distance of a particular solution 
is calculated to estimate the density of the surrounding 
solutions. The calculated values of the archive solutions are 
sorted in descending order so that a global best guide can be 
selected randomly from archive members in a specified top 
portion (e.g., 10%) for each particle. Note that the boundary 
archive members are always set to an infinite value to ensure 
that they are always in the top portion (i.e., they are always 
available to be selected). The crowding distance computation 
is also used to remove solutions (i.e., archive members) when 
the archive is full. Finally, a mutation operator is used to 
enrich the search ability of the proposed algorithm. 

MOPSO-CD is very popular to search for solutions to 
multi-objective problems. However, since each particle is 
associated with its own global guide solely selected from the 
top 10% less crowded area of the archive, it is too restrictive 
for those particles far away from the less crowded area and 
could possibly perturb their original flight [21].  

III. MOPSO-SRD 
To address the limitations of these two popular MOPSO 
algorithms, a new algorithm called MOPSO using the Square 
Root Distance (MOPSO-SRD) is proposed. This algorithm 
makes two main contributions by adding (a) a new leader 
selection algorithm and (b) a new control mechanism for the 
external archive. 

A.  Leader Selection Algorithm 
In the original PSO algorithm, the swarm can converge 

quickly because the whole search swarm is guided by one 
global leader. As mentioned in Section I, PSO cannot be 
applied to solve multi-objective problems directly, and thus a 
leader selection algorithm is required for each particle to find 
its own leader. In MOPSO-SRD, each particle can freely 
choose its own leader, but not a single global best particle, by 
using the square root distance calculation. The square root 
distance calculation of two points 1x  and 2x  is shown as: 

1 2 1 2
1

( , ) ( ) ( )
m

n n
n

SRD x x f x f x
=

= −∑      (3) 

In each generation, for each particle in the search swarm, 
the square root distance between the particle and all archive 
members is calculated and the archive member with the 
shortest square root distance is chosen as the leader of that 
particle, i.e., 
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where m is the number of objectives, { }kyyy ,,, 21  is the 

archive set with k members, and P x=  where P is the particle. 
Fig. 1 shows a small example to illustrate the operations of 
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the leader selection. There is a particle D to select a leader 
from an external archive which has three archive members 
(A, B and C). The particle D chooses archive member A as its 
leader because the square root distance of AD (SRD(D, A) = 2 
units) is the smallest one among all others (SRD(D, B) = 3.46 
units and SRD(D, C) = 2.73 units). 

 

 

 
Fig. 1. An example to illustrate the operations of the leader selection. 

 
As mentioned above, MOPSO-σ may not be able to 

generate a better spread to cover the Pareto-front because of 
the premature convergence. Compared with MOPSO-σ, a 
particle can be attracted by all possible leaders and thus all 
particles can fairly explore the whole Pareto-front. Fig. 2 
shows 100 particles that are randomly generated in a two 
objective space, and they are grouped by using the SRD 
computation. Fig. 3 shows the same particles but they are 
grouped by using the sigma method. The crosses in these two 
figures are archive members and the dots are searching 
particles. It is clearly found that the particles grouped by 
using the SRD computation are more evenly distributed in 
relation to the Pareto-front than the sigma method. However, 
in Fig. 3, most of particles are guided by the center of the 
archive set and only a few particles are guided by archive 
members near the boundary of the whole archive set. 
Compared with MOPSO-CD, MOPSO-SRD does not have 
any restrictions on finding a local guide and thus the 
limitation found in MOPSO-CD does not exist in 
MOPSO-SRD. 

 
Fig. 2. Leader selection by using the SRD computation. 

 
Fig. 3. Leader selection by using the sigma method. 

 

B. Archive Control Algorithm 
The two popular MOPSO algorithms, MOPSO-σ and 

MOPSO-CD, use an archive to store the set of non-dominated 
solutions. The archive adopts the concept of an archive 
controller in [6]. When a new archive member is found and 
there are no archive members in the archive that can dominate 
this new member, it is added into the archive. When the 
archive is full, a procedure is required to remove an archive 
member from the archive. MOPSO-σ uses a clustering-based 
size control to remove archive members when the archive is 
full. MOPSO-CD selects an archive member with the shortest 
crowding distance among all to remove when the archive is 
full. MOPSO-SRD considers the sum of SRD of an archive 

D 
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member among its two neighbors. The calculation of this sum 
(called Neighbor Factor (NF) in this paper) is shown below: 

1 1( ) ( , ) ( , )i i i i iNF x SRD x x SRD x x− += +       (5) 
for the ith archive member with n non-dominated solutions 
and 1<i<n. An archive member with the smallest NF value 
will be removed when the archive is full. Note that no 
boundary members will be considered for removal because 
they need to remain in the archive to maintain a 
well-distributed Pareto front. The reason to consider NF as a 
factor in the removal procedure is that it makes the remaining 
non-dominated solutions more evenly distributed and closer 
to the true Pareto-front.  

Fig. 4 illustrates when the archive members are almost 
equally close to the Pareto-front, the member with the 
smallest value of NF will be removed. This measure can 
preserve diversity. Table I shows the NF value of each 
archive member (excluding the boundary member A and H). 
In this scenario, archive member C has the smallest NF value. 
Thus it is selected to be removed. Fig. 5 shows another 
scenario. Compared with Fig.4, it has an additional archive 
member I which is far away from the Pareto-front and it will 
significantly affect the decision to remove a selected member. 
This time archive member C will not be removed. Instead, the 
archive member I will be removed. 

 

 
Fig. 4. Removal of an archive member (Scenario 1) 

 
Table I.  NF values of archive members in Fig. 4. 

Archive members B C D E F G 
Neighbor Factor (NF) 4 3.41 3.86 5.28 4.83 4 
 
 

 
Fig. 5. Removal of an archive member (Scenario 2) 

 
Table II.  NF values of archive members in Fig. 5. 

Archive members B C D E I F G 
Neighbor Factor (NF) 4 3.41 3.86 3.86 2.83 3.41 4 
 

C. The Main MOPSO-SRD Algorithm 
Fig. 6 shows the MOPSO-SRD algorithm. At the 

beginning, the positions, speeds and past best locations of all 
particles are initialized. Then each particle is evaluated based 
on the objective functions (fitness functions). The evaluated 
fitness values of particles are compared with each other and 
the one that is not dominated (i.e., a non-dominated solution) 
by others will be added into the archive. The above procedure 
will be repeated until the end of iterations. The new leader 
selection is applied in each iteration and each particle 
performs its flight (updates its velocity and new position) at 
the end of each iteration. Mutation is applied to enhance the 
exploratory ability of the algorithm. After moving to the new 
position, evaluation is carried out to re-calculate the fitness 
value of each particle. Then the archive will be updated, as 
well as the past best position of the swarm. If the archive is 
full, the proposed removal procedure will be applied to 
maintain the size of the archive. 
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Begin 
1. Initialize Archive A={}; 
2. For each particle j, 

   Initialize each particle’s position randomly P[j] 
   Initialize the speed of each particle to zero V[j]=0 
   Initialize the past best of each particle Pb[j]=P[j] 
   Evaluate particles P[j] 

    End for 
3. Update archive A 
4. For i = 1 to the specified number of iterations 
       For each particle j, 
           SRD_Computation(A,j), which returns local best leader Lb 

 Update each particle’s new velocity V[j]: 
      V[j]=w*V[j]+r1*c1*(Pb[j]-P[j])+r2*c2*(Lb-P[j]) 
      where 
  w is an inertia weight, 
       r1 and r2 are random numbers between 0 and 1, 
          c1 is local weight and it is a constant, 
          c2 is global weight and it is a constant, 
       Pb is the particle with the past best value, and 
       Lb is the particle with the local best value. 
 Update new position of particles: P[j]=P[j]+V[j]  

   End for 
   Mutation 
   Evaluate particles 
   Update archive A 

   Insert non-dominated solutions 
   If A is full 
        NF_Computation(A), which returns an archive member  

             Remove the selected archive member 
        End if 
   Find the personal best position of each particle 
   Increase iteration i by 1 

  End for 
End 

Fig. 6. The MOPSO-SRD algorithm 

IV. PERFORMANCE COMPARISONS 
This section describes the performance comparisons 

among MOPSO-σ, MOPSO-CD and MOPSO-SRD. Four 
performance measures and five multi-objective optimization 
problems were used to compare their performance. For each 
optimization problem, 50 independent runs were carried out. 
All the runs were performed under the same environment 
(Matlab) on Intel Core i3-3217U 1.8GHz CPU with 4GB 
DDR3 RAM. 

A. Performance Metrics 
Spacing (S): This performance metric proposed by Schott 

[7], is used to measure the distance variance of neighboring 
non-dominated solutions. The metric is defined as: 
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θ is the mean of all dis, m is the number of objectives, and n is 
the number of found non-dominated solutions. This 
performance metric is good if S is small. A value of zero 
means that all found non-dominated solutions are spaced 
equidistantly. 

Error Ratio (ER): ER was proposed by Van Veldhuizen [8] 
and is used to measure the error percentage of found 

non-dominated solutions. The metric is defined as: 

∑
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1              (7)  

If the non-dominated solution i belongs to the true 
Pareto-front, ei = 0; otherwise, ei = 1. This performance metric 
is good if ER is small. A value of zero means that all found 
non-dominated solutions belong to the true Pareto-front. Note 
that this metric requires prior knowledge about the true 
Pareto-front of the test case. 

Generational distance (GD): GD was also proposed by 
Van Veldhuizen [8], and is used to measure the difference 
between found non-dominated solutions and the true 
Pareto-front. The metric is defined as: 

    ∑
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=
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i
in

GD
1

21 α             (8) 

where αi is the Euclidean distance between the 
non-dominated solution i and the nearest member of the true 
Pareto set. This performance metric is good if GD is small. A 
value of zero means that all the found non-dominated 
solutions lie on the true Pareto front. Like ER, this metric 
requires prior knowledge about the true Pareto-front of the 
test case. 
 Searching Time (ST): It is a common performance metric in 
the performance comparisons of optimization algorithms. 
The ST is the total time taken for the computer to execute in 
an experiment. The number of generations in each test 
function will be described later in this section. The 
performance of an algorithm is good if its searching time is 
short. 

B. Test Functions 
Kursawe test function: This consists of two objective 

functions with three variables [9]. Its true Pareto front is 
non-continuous. It is defined as: 
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where -5 ≤ x1, x2, x3 ≤ 5.  
ZDT1: This consists of two objective functions with 30 

variables [10]. Its true Pareto front is convex and continuous. 
It is defined as: 
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ZDT2: This consists of two objective functions with 30 
variables [10]. Its true Pareto front is concave and continuous. 
It is defined as: 
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ZDT3: This consists of two objective functions with 30 
variables [10]. Its true Pareto front is non-continuous. It is 
defined as: 
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Viennet test function: This consists of three objective 
functions with two variables [20]. Its true Pareto front is a 
three dimensional convoluted line. It is defined as: 

( )
( )
( )

2

2 2 2 2
1

2 2

2 2 2 2
3

, 0.5( ) sin( )

minimize , (3 -2 4) /8 ( - 1) /27 15

, 1/( 1) 1.1exp( )

f x y x y x y

f x y x y x y

f x y x y x y

⎧ = + + +
⎪⎪ = + + + +⎨
⎪ = + + − − −⎪⎩

   (13) 

where -3 ≤ x, y ≤ 3.  
 

Table III.  Parameter values for each algorithm with respect to each test 
function. 

Algorithm MOPSO-σ MOPSO-CD MOPSO-SRD 
Kursawe 

inertia rate(w) 0.7 0.7 0.7 
local weight (c1) 1.2 1.2 1.2 
global weight (c2) 1.3 1.3 1.3 
mutation rate 0.05 0.05 0.05 

ZDT1 
inertia rate(w) 1.5 1.5 1.5 
local weight (c1) 1.5 1.5 1.5 
global weight (c2) 1.5 1.5 1.5 
mutation rate 0.03 0.03 0.03 

ZDT2 
inertia rate(w) 1.5 1.5 1.5 
local weight (c1) 1.5 1.5 1.5 
global weight (c2) 1.5 1.5 1.5 
mutation rate 0.03 0.03 0.03 

ZDT3 
inertia rate(w) 0.55 0.55 0.55 
local weight (c1) 2 2 2 
global weight (c2) 2 2 2 
mutation rate 0.03 0.03 0.03 

Viennet 
inertia rate(w) 1.5 1.5 1.5 
local weight (c1) 1.5 1.5 1.5 
global weight (c2) 1.5 1.5 1.5 
mutation rate 0.03 0.03 0.03 

 
 

The MOPSO-σ, MOPSO-CD and MOPSO-SRD 
algorithms were implemented in our simulation program. 
Since the parameters in the clustering method proposed by [4] 
are quite difficult to follow, for simplicity, an alternative 
proposed by [22] was implemented for the archive control 
algorithm for MOPSO-σ. In all experiments, the number of 
generations and population size were set to 100 for Kursawe 
test function. For ZDT1, ZDT2 and ZDT3, the number of 
generations and population size were set to 150 and 100 
respectively. For Viennet test function, the number of 
generations and population size were set to 50 and 100 
respectively. Table III lists out the parameter values (the 
inertia rate, the local weight, the global weight and the 
mutation rate) for each algorithm with respect to each test 
function. Figs 7 to 11 show some Pareto-fronts produced by 
these three algorithms for different optimization problems. It 
can be found that the Pareto-front produced by MOPSO-SRD 
is generally more evenly distributed than MOPSO-σ and 
MOPSO-CD. Tables IV to VIII show the performance 
comparisons of different MOPSO algorithms in different 
optimization problems. A number highlighted in bold is the 
winner in such corresponding performance metric. For 
example, the error rate (ER) of MOPSO-SRD is 0.0342, 
which is smaller (better) than MOPSO-σ (0.0598) and 
MOPSO-CD (0.269) in Table IV. Table IX summarizes the 
statistics of winners of different performance metrics in 
different optimization problems. For a particular metric with 
respect to a test function, the algorithm which outperforms 
other algorithms (i.e., the winner) is counted. For example, 
MOPSO-σ performed better than MOPSO-CD and 
MOPSO-SRD in ZDT1 test function in terms of the searching 
time (ST), so MOPSO-σ is counted once in the column of ST 
in Table IX. Note that the comparison focuses on the average 
value only, not the standard deviation. It can be found that 
MOPSO-CD is good in terms of searching time but 
MOPSO-SRD is good in the rest of the performance metrics 
(totally three performance metrics). Overall, the performance 
of MOPSO-σ was the worst and MOPSO-SRD generally 
outperformed MOPSO-σ and MOPSO-CD. 

 
Fig. 1. Pareto-fronts produced by MOPSO-σ (left), MOPSO-CD (middle) 
and MOPSO-SRD (Right) for Kursawe test function. 

 
Fig. 2. Pareto-fronts produced by MOPSO-σ (left), MOPSO-CD (middle) 
and MOPSO-SRD (Right) for ZDT1 test function. 
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Fig. 3. Pareto-fronts produced by MOPSO-σ (left), MOPSO-CD (middle) 
and MOPSO-SRD (Right) for ZDT2 test function. 

 
Fig. 4. Pareto-fronts produced by MOPSO-σ (left), MOPSO-CD (middle) 
and MOPSO-SRD (Right) for ZDT3 test function. 

 
Fig. 5. Pareto-fronts produced by MOPSO-σ (left), MOPSO-CD (middle) 
and MOPSO-SRD (Right) for Viennet test function. 
 

Table IV.  Results for the Kursawe test function. 
Algorithm MOPSO-σ MOPSO-CD MOPSO-SRD 

S 
Average 0.137 0.123 0.125 
Std. Dev. 0.0102 0.0137 0.0052 

ER 
Average 0.0598 0.269 0.0342 
Std. Dev. 0.02788 0.04071 0.01751 

GD 
Average 2.24E-03 6.27E-03 1.38E-03 
Std. Dev. 0.0008462 0.001410 0.0002361 

ST 
Average 17.6 seconds 7.55 seconds 14.2 seconds 
Std. Dev. 0.8457 seconds 0.8737 seconds 0.9042 seconds 

 
Table V.  Results for the ZDT1 test function. 

Algorithm MOPSO-σ MOPSO-CD MOPSO-SRD 
S 

Average 8.28E-03 9.50E-03 4.13E-03 
Std. Dev. 0.0008000 0.0006542 0.0007683 

ER 
Average 0.0800 0.0606 0.0328 
Std. Dev. 0.03130 0.02478 0.02071 

GD 
Average 7.09E-05 4.99E-05 3.27E-05 
Std. Dev. 3.237E-05 2.482E-05 2.740E-05 

ST 
Average 18.00 seconds 21.3 seconds 21.2 seconds 
Std. Dev. 0.8084 seconds 0.9598 seconds 0.8322 seconds 

 
 
 
 
 
 
 

 
 

Table VI.  Results for the ZDT2 test function. 
Algorithm MOPSO-σ MOPSO-CD MOPSO-SRD 

S 
Average 1.45E-02 9.68E-03 9.76E-03 
Std. Dev. 0.01191 0.0005846 0.003096 

ER 
Average 0.02 0.018 0.017 
Std. Dev. 0.01591 0.01587 0.01266 

GD 
Average 6.56E-05 2.20E-05 5.28E-05 
Std. Dev. 5.533E-05 2.488E-05 4.524E-05 

ST 
Average 4.50 seconds 19.6 seconds 4.35 seconds 
Std. Dev. 0.9834 seconds 2.0264 seconds 0.612373137 

 
Table VII.  Results for the ZDT3 test function. 

Algorithm MOPSO-σ MOPSO-CD MOPSO-SRD 
S 

Average 3.24E-02 2.83E-02 2.82E-02 
Std. Dev. 0.002499 0.0008293 0.001162 

ER 
Average 0.197 0.264 0.165 
Std. Dev. 0.06390 0.08463 0.05950 

GD 
Average 9.64E-05 8.38E-05 4.97E-05 
Std. Dev. 4.103E-05 3.040E-05 1.948E-05 

ST 
Average 20.8 seconds 12.5 seconds 16.4 seconds 
Std. Dev. 1.3886 seconds 1.0221 seconds 0.7559 seconds 
 

Table VIII.  Results for Viennet test function. 
Algorithm MOPSO-σ MOPSO-CD MOPSO-SRD 

S 
Average 6.29E-02 7.02E-02 6.26E-02 
Std. Dev. 0.009477 0.02628 0.01147 

ER 
Average 0.150 0.175 0.101 
Std. Dev. 0.03605 0.04515 0.03442 

GD 
Average 8.83E-04 1.02E-03 5.59E-04 
Std. Dev. 0.0005250 0.0006130 0.0003132 

ST 
Average 6.91 seconds 5.84 seconds 7.53 seconds 
Std. Dev. 0.4925 seconds 0.3529 seconds 0.6109 seconds 
 

Table IX.  The summary of their overall performance. 
Algorithm 
/ Metric 

No. of winners 
MOPSO-σ MOPSO-CD MOPSO-SRD 

S 0 2 3 
ER 0 0 5 
GD 0 1 4 
ST 1 3 1 

Total 1 6 13 
 

V. CONCLUSION  
This paper has presented a new MOPSO algorithm called 

MOPSO using the square root distance (MOPSO-SRD) to 
solve multi-objective optimization problems. It makes two 
main contributions: (a) a new leader selection algorithm is 
proposed by using the square root distance (SRD) 
computation and (b) a new archive control algorithm to 
remove an archive member if the archive is full. The 
performance investigation showed MOPSO-SRD generally 
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outperforms two popular MOPSO algorithms, MOPSO-σ and 
MOPSO-CD, in terms of different performance metrics in 
different multi-objective optimization problems. Future work 
will focus on optimizing more multi-objective optimization 
problems with higher dimensions. 
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