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Abstract—It is well-established that the shapes of Pareto-
optimal fronts (POFs) can affect the performance of some
multiobjective optimization methods. The most well-known char-
acteristics on the shape of POFs are convexity and discontinuity.
In this paper, we investigate the construction of multiobjective
test problems with complicated POFs, of which its local parts
could have mixed dimensionalities. For example, in the case of 3
objectives, some parts of POFs can be 1-D curves while others
could be 2-D surfaces. We formulate eight test problems, called
CPFT1-8, with such a feature. To study the difficulties of these
test problems, we conducted some experiments with two state-of-
the-art algorithms MOEA/D and NSGA-II, and analyzed their
performances.

I. INTRODUCTION

In the research community of evolutionary multiobjective
optimization (EMO), the construction of test problems with
various difficulties has motivated the birth of many classical
EMO algorithms[1]. The well-known problem difficulties in-
clude the shapes of POFs (eg. convex, nonconvex, and dis-
connected), multimodality (i.e., many local pareto fronts) [2],
[3], complicated Pareto-optimal sets (POSs) (i.e., nonlinearity
in variable space)[4], [5], [6], [7]. Among these difficulties,
the shape of POFs has been studied over more than ten years.
However, the POF shapes of many existing test problems are
(m− 1)-D manifold (m is the number of objective functions)
in objective space according to Karush-Kuhn-Tucker condition
[8]. Such a property is called regularity. Compared with
classical multiobjective methods in mathematical program-
ming, EMO algorithms, such as SPEA2[9], NSGA-II [10],
MOEA/D [11], IBEA[12], are not sensitive to the convexity
and nonconvexity of POFs.

In [13], a set of benchmark MOPs, called ZDT test
problems, were studied and tested by several state-of-the-art
EMO algorithms. Five out of six bi-objective ZDT problems
have one-dimensional connected or disconnected POF (ZDT3)
in the objective space. However, ZDT test problems can be
easily solved by many recent EMO algorithms since their POSs
are linearly distributed in the decision space. To study the MOP
with many objectives, a set of benchmark 3-objective MOPs
were suggested in [14]. Among these test problems, the POF
of DTLZ1 is a 3-D simplex while that of DTLZ2 is part of
a sphere surface. The POFs of both test problems are two-
dimensional manifold. However, some DTLZ test problems
with degenerate POFs don’t follow the regularity property. For
example, the POFs of DTLZ5 and DTLZ6 are only a one-

dimensional curve with the dimensionality less than m−1. The
degeneracy of POFs can cause difficulties for decomposition-
based EMO algorithms, such as MOEA/D. The reason is that
the optimal solutions of subproblems in MOEA/D can not
approximate the whole POF well.

In this paper, we propose a two-step scheme based on
coordinate transformation to design a set of test problems
with complicated POFs with degeneracy, called CPFT test
problems. Unlike the existing MOPs with degenerate POFs,
our test problems could have both one-dimensional and two-
dimensional local POFs at the same time. All test problems are
designed on the basis of the toolkit for MOPs with complicated
POSs in [6], in which the objective function is the sum of a
shape function and a distance function.

The rest of this paper is organized as follows. Section II
introduces the construction toolkit for generating MOPs with
degenerated POFs. A set of eight test problems are formulated
and analyzed in Section III. In the following section, we exper-
imentally compare the performance of two EMO algorithms,
i.e., MOEA/D and NSGA-II on our new test problems. The
final section concludes the paper.

II. CONSTRUCTION TOOLKIT

In our earlier work [6], we have suggested the general
framework for constructing test problems with complicated
POSs in decision space as follows:

fi(x) = αi(x1:m−1) + βi(x1:m−1, xm:n) (1)

where x1:m−1 = (x1, . . . , xm−1)
T , xm:n = (xm, . . . , xn)

T

are two subvectors of x = (x1, . . . , xn)
T . The objec-

tive function fi(x), i = 1, . . . ,m is the sum of shape
function αi(x1:m−1) and nonnegative distance function
βi(x1:m−1, xm:n). Here, βi(x1:m−1, xm:n) = 0 only if xm:n

is the function of x1:m−1, i.e., xm:n = g(x1:m−1).

Based on above framework, we propose a toolkit for con-
structing three-objective test problems with degenerate POFs,
which could have mixed dimensionality. To achieve this goal,
we suggest a two-step scheme to design special 3-D surfaces,
of which the nondominated points could belong to either 1-D
curves or 2-D surfaces, or both. First, a 2-D curve is generated
in a v-o-u plane shown in Fig 1, and is rotated by a certain
angle plotted in Fig 2. Then, we move the origin of v-o-u plane
along a 3-D curve visualized in Fig 3. The shape function
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αi, i = 1, 2, 3 has the form:
[

αi(x1, x2)
α2(x1, x2)
α3(x1, x2)

]

=

[

Ox(x1)
Oy(x1)
Oz(x1)

]

+A

[

v(x2)
u(x1, x2)

0

]

(2)

with

• The feasible region of decision variables is Ω =
[0, 1]2×[−2, 2]n−2. Intermediate variables u and v are
the functions of x1 and x2. The relationship between
u and v determines the shape of POFs;

• (Ox, Oy, Oz) represents the origin of curve (v =
v(x2), u = u(x1, x2)). It moves in the 3-D space as
the parameter x1 changes;

• The matrix A for rotating coordinate system is

A =

[

sin π
4 cos π

4 0
− cos π

4 sin π
4 0

0 0 0

]

;
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Fig. 1. POF curves in v-o-u coordinate system
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Fig. 2. POF curves in f1-o-f2 coordinate system after rotating 45 degrees

The distance function βj , j = 1, 2, 3 can be formulated as:

βj(x1:2, x3:n) =
∑

i∈Ij

(xi − x2 sin(2x1π))2

where Ij = {i|mod(i, 3) = j − 1, i ∈ {3, 4, . . . , n}}, j =
1, 2, 3. It controls the shape of POSs, in which the relationship
between xi ∈ [−2, 2] and x1:2 of nondominated solutions can
be stated as:

Ω̄ = {x ∈ Ω|xi = x2 sin(2πx1), i = 3, . . . , n}. (3)

In the following, we give an example to explain how
to generate an instance in detail. First, the curve in v-o-u
coordinate system is defined by

u(x1, x2) = |v(x2)|w(x1)

where v(x2) = 2x2−1, and w(x1) = x1+0.5 . Therefore, the
range of v is [−1, 1], and that of w is [0.5, 1.5]. Fig 1 plots
three curves with x1 = 0, 0.5, 1 resulting in w = 0.5, 1.0, 1.5,
and Fig 2 shows the corresponding curves after being rotated
by the angle π/4 along a clockwise direction. It can be seen
that the origin O is the only nondominated point in the curve
when w(x1) ≤ 1. In contrast, a part of the curve, i.e., arc

�

AOB in Fig 2, are nondominated when w(x1) > 1. Then, the
3-D curve of moving the origin of v-o-u coordinate system is
given by:

(Ox, Oy, Oz) = (x1, x1,−(2x1 − 1)3)

The corresponding curve is shown in Fig 3.
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Fig. 3. A family of 2-D curves obtained with origins (x1, x1,−(2x1−1)3)
where x changes from 0 to 1.

Using above configurations, we obtain the test instance
CPFT3 suggested in this paper. All Pareto-optimal solutions
are located along the following surface (visualized in Fig 6):
[

α1(x1:2)
α2(x1:2)
α3(x1:2)

]

=

⎡

⎣

x1 + cos π
4 (2x2 − 1) + sin π

4 γ(x1:2)
x1 − sin π

4 (2x2 − 1) + cos π
4 γ(x1:2)

−(2x1 − 1)3

⎤

⎦ (4)

where γ(x1:2) = |2x2 − 1|x1+0.5.

III. THREE-OBJECTIVE TEST INSTANCES WITH
DEGENERATED POFS

In this section, we suggested eight test instances with
complicated POF - CPFT1-CPFT8 using above toolkit. Six
of them have degenerate POFs.

• Test Instance 1 - CPFT1:

[

α1(x1:2)
α2(x1:2)
α3(x1:2)

]

=

⎡

⎣

x1
x1 + 0.2 sin(4x1π)
−(2x1 − 1)3

⎤

⎦+A

[

2x2 − 1
γ(x1:2)

0

]

(5)
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Fig. 4. The POF of CPFT1 in objective space
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Fig. 5. The POF of CPFT2 in objective space

where

- x = (x1, . . . , xn) ∈ Ω = [0, 1]n, and

- γ(x1:2) = |2x2 − 1|0.5x1+0.5.

The POF shape of CPFT1 is a 1-D curve in 3-D objective
space shown in Fig. 4. It can be observed that the relationships
among objectives are nonlinear. The resultant shape of its POF
is a complicated curve.

• Test Instance 2 - CPFT2:

[

α1(x1:2)
α2(x1:2)
α3(x1:2)

]

=

⎡

⎣

x1
x1

−(2x1 − 1)3

⎤

⎦+A

[

2x2 − 1
γ(x1:2)

0

]

(6)

where

- x = (x1, . . . , xn) ∈ Ω = [0, 1]n, and

- γ(x1:2) = 0.5(2x1 − 1)(2x2 − 1)2
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Fig. 6. The POF of CPFT3 in objective space
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Fig. 7. The POF of CPFT4 in objective space

The POF shape of CPFT2, shown in Fig. 5, is a part of
3-D surface, which is neither convex nor concave.

• Test Instance 3 - CPFT3:

[

α1(x1:2)
α2(x1:2)
α3(x1:2)

]

=

⎡

⎣

x1
x1

−(2x1 − 1)3

⎤

⎦+A

[

2x2 − 1
γ(x1:2)

0

]

(7)

where

- x = (x1, . . . , xn) ∈ [0, 1]n and

- γ(x1:2) = |2x2 − 1|x1+0.5.

In this instance, the POF consists of two parts plotted in
Fig. 6. One of its parts is 1-D curve.

• Test Instance 4 - CPFT4:
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Fig. 8. The POF of CPFT5 in objective space
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Fig. 9. The POF of CPFT6 in objective space

[

α1(x1:2)
α2(x1:2)
α3(x1:2)

]

=

⎡

⎣

x1
x1

−(2x1 − 1)3

⎤

⎦+A

[

2x2 − 1
γ(x1:2)

0

]

(8)

where

- x = (x1, . . . , xn) ∈ [0, 1]n

- γ(x1:2) = |2x2 − 1|1.0−0.5 sin(4x1π),

In this instance, the POF consists of four parts plotted in
Fig. 7. Two are 1-D curves, and the other two parts are 2-D
surfaces. Note that all four parts are connected.

• Test Instance 5 - CPFT5:

[

f1(x)
f2(x)
f3(x)

]

=

[

2x1
2x1

γ1(x1:2)

]

+A

[

2x2 − 1
γ2(x1:2)

0

]

(9)

where

- x = (x1, . . . , xn) ∈ [0, 1]n, and
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Fig. 10. The POF of CPFT7 in objective space
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Fig. 11. The POF of CPFT8 in objective space

- γ1(x1:2) = 0.2 cos(3πs(a, b, x1)) − s(a, b, x1) with
s = a+4bx1(a = 6.217210009329× 10−2, b = 2/3).

- γ2(x1:2) = |2x2 − 1|1.0−0.5 sin(4x1π)

The POF of this instance consists of four parts shown
in Fig. 8. Two are 1-D curves, and the other two parts are
2-D surfaces. Unlike the POF of CPFT4, all four parts are
disconnected.

• Test Instance 6 - CPFT6:

[

f1(x)
f2(x)
f3(x)

]

=

⎡

⎣

x1
x1

−(2x1 − 1)3

⎤

⎦ +A

[

2kx2
γ(x1:2)

0

]

(10)

where

- x = (x1, . . . , xn) ∈ [0, 1]n

- γ(x1:2) = |2((kx2)− �(kx2)�)− 1|0.5+x1 . Here, k is
a positive integer number for controling the number
of parallel POFs. In this work, k is set to 2.

The POF of this instance has two parallel local POFs with
the same shape shown in Fig. 9.
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• Test Instance 7 - CPFT7:

[

f1(x)
f2(x)
f3(x)

]

=

⎡

⎣

x1
x1

−(2x1 − 1)3

⎤

⎦ +A

[

2kx2
γ(x1:2)

0

]

(11)

where

- x = (x1, . . . , xn) ∈ [0, 1]n

- γ(x1:2) = |2((kx2)− �(kx2)�)− 1|p(k,x1,x2)

- p(k, x1, x2) is defined as:

p(k, x1, x2) =

{

0.5 + x1 if mod(�kx2�,2)=0
1.5− x1 otherwise

The POF of this instance has two parallel local POFs
plotted in Fig. 10, where the positions of 1-D manifolds and
2-D manifolds are inverse as x1 changes from 0 to 1.

• Test Instance 8 - CPFT8:

[

f1(x)
f2(x)
f3(x)

]

=

[

2x1
2x1

γ1(x1:2)

]

+A

[

2kx2
γ2(x1:2)

0

]

(12)

where

- x = (x1, . . . , xn) ∈ [0, 1]n;

- γ1(x1:2) = 0.2 cos(3πs(a, b, x1)) − s(a, b, x1) with
s = a + 4bx1 and a = 6.217210009329 × 10−2, b =
2/3;

- γ2(x1:2) = |2((kx2)− �(kx2)�)− 1|p(k,x1,x2) with

p(k, x1, x2) =

{

1− 0.5 sin(4x1π) if mod(�kx2�,2)=0
1− 0.5 sin(4(1− x1)π) otherwise

Note that the integer k acts as the same role in CPFT7. The
POF of this instance has parallel disconnected local POFs
shown in Fig 11.

Note that the method introduced in this work can also be
extended to construct the MOPs with many objectives. One of
the simple way to do this is to combine the CPFT problems
with some existing many-objective test problems. Due to the
limitation on the pages, the details are not discussed in this
work.

IV. COMPUTATIONAL EXPERIMENTS

In this section, we mainly compare the performance of
two EMO algorithms, i.e., NSGA-II and MOEA/D, on the test
instances introduced in the previous section.

A. Experimental settings

To check the difficulties of the test instances suggested
in this paper, we consider two popular EMO algorithms
(i.e., NSGA-II and MOEA/D) in our experiments. All eight
instances CPFT1-CPFT8 have 3 objectives and 10 variables.
The population size in both algorithms is set to 300. The total
number of function evaluations is 50000 for all instances.

Since the recombination operators play very important
role in the performance of EMO algorithms, we consider
two versions of NSGA-II and MOEA/D with either simulated
binary crossover (SBX) and differential evolution (DE) oper-
ators in comparison. Therefore, four algorithms, i.e., NSGA-
II/SBX, NSGA-II/DE, MOEA/D-SBX, and MOEA/D-DE, are
considered. The details of these algorithms can be referred to
[7][10]. The scaling factor used in DE operator is set to 0.5 in
both NSGA-II/DE and MOEA/D-DE. The distribution index
used in SBX operator is 20. In all four algorithms, polynomial
mutation with the distribution index equal to 20 is used for
diversity.

To quantitatively measure the performance of MOEA/D
and NSGA-II, we use the inverted generational distance (IGD)
as the indicator in this work. It calculate the average Euclidean
distances from the solutions in a reference set to the set of
final solutions found by MOEA/D or NSGA-II. The good
approximation of Pareto front both in convergence and in
diversity will result in small IGD value.

B. Experimental results and discussions

In Table I, the mean and standard deviation of IGD values
obtained by MOEA/D-DE, MOEA/D-SBX, NSGA-II/DE, and
NSGA-II/SBX are provided. It is evident that MOEA/D-
DE performed better than other three algorithms on all test
instances in terms of IGD values. In two versions of MOEA/D,
DE operator worked better than SBX operator. However, this is
not the case in two versions of NSGA-II, where SBX operator
is better than DE operator on most of test instances. In fact,
the Pareto sets of all test instances are nonlinearly distributed
in the variable space. The DE operator will produce more
Pareto solutions only if the selected mating parents with similar
structure in variable space are close to the Pareto front.

From the results in Table I, we can observe that NSGA-
II/SBX performed better than NSGA-II/DE on most of the
instances in terms of IGD metric. However, this observation is
not consistent with some conclusions reported in the literatures
that DE operator should in principle be better than SBX
operator for MOPs with interacting variables. In fact, this is
can be explained by the poor performance of NSGA-II in
convergence. We should note that the DE operator is efficient
only if the population is close to the Pareto front. In our
experiments, we found that the populations of NSGA-II are
still far from the POFs.

To compare the convergence speed of four algorithms, the
evolution of IGD values on eight test instances in 20 runs are
plotted in Figs. 12-15. It is clear that MOEA/D-DE performed
much better than other three algorithms on all instances except
CPFT5 and CPFT8 in convergence. On CPFT5 and CPFT8,
MOEA/D-DE is slightly worse than NSGA-II/SBX. From
these results, we can also note that the IGD values found by
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TABLE I. THE MEAN AND STANDARD DEVIATION OF IGD VALUES FOUND BY MOEA/D AND NSGA-II

Instance MOEA/D-DE MOEA/D-SBX NSGA-II/DE NSGA-II/SBX
CPFT1 0.0406173 (0.0056687) 0.2801804 (0.0710155) 0.2308281 (0.0340135) 0.1881514 (0.0330668)
CPFT2 0.1202772 (0.0021441) 0.2988698 (0.0380437) 0.3615820 (0.0415087) 0.3678817 (0.0369457)
CPFT3 0.0646472 (0.0020311) 0.1320251 (0.0172157) 0.1950159 (0.0490384) 0.1584895 (0.0277822)
CPFT4 0.0607534 (0.0014359) 0.2030775 (0.0553320) 0.1890046 (0.0387380) 0.1153559 (0.0138797)
CPFT5 0.1134535 (0.0050791) 0.3022815 (0.0717879) 0.1597766 (0.0277217) 0.1145035 (0.0171510)
CPFT6 0.1089840 (0.0045082) 0.1975272 (0.0362393) 0.2157054 (0.0323819) 0.1686928 (0.0142450)
CPFT7 0.0978083 (0.0030300) 0.3157848 (0.0432048) 0.2703440 (0.0627119) 0.1758781 (0.0260858)
CPFT8 0.1414703 (0.0062645) 0.3903011 (0.0593595) 0.2712471 (0.0395323) 0.1554484 (0.0173572)
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Fig. 12. Convergence of MOEA/D and NSGA-II in terms of IGD values over the number of function evaluations on CPFT1 (left) and CPFT2 (right)
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Fig. 13. Convergence of MOEA/D and NSGA-II in terms of IGD values over the number of function evaluations on CPFT3 (left) and CPFT4 (right)
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Fig. 14. Convergence of MOEA/D and NSGA-II in terms of IGD values over the number of function evaluations on CPFT5 (left) and CPFT6 (right)
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Fig. 15. Convergence of MOEA/D and NSGA-II in terms of IGD values over the number of function evaluations on CPFT7 (left) and CPFT8 (right)

NSGA-II can get worse as the search proceeds. The reason is
that the crowding distance for density estimation in NSGA-II is
not very effective for the MOPs with more than two objectives.
In the case of 3 objectives, more nondominated solutions near
the boundary of 2-D Pareto fronts are preferred in selection.

Figs. 16-18 plot the final solutions with the minimal IGD
values in 20 runs found by MOEA/D-DE and NSGA-II/SBX
on CPFT1-CPFT3, which correspond to 1-D, 2-D, and mixed
dimensionality in the POFs. It is evident that MOEA/D-DE is
superior to NSGA-II/SBX in convergence. NSGA-II/SBX fails
to find the solutions in the centering part of POFs. For other
instances, the situations are quite similar.

From the above results, we can see that both MOEA/D
and NSGA-II have weaknesses in diversifying POFs during
the multiobjective search. The decomposition of MOPs in
MOEA/D may not be able to produce suitable weight vectors
for subproblems when the POFs are degenerated. If a set of
uniform weight vectors are used in MOEA/D, the optimal
solutions of subproblems are not evenly distributed. There-
fore, adaptive weighting strategy should be a good option in
MOEA/D for the MOPs with complicated Pareto fronts.

V. CONCLUSIONS

The degeneracy of Pareto fronts is a difficult feature for
many MOEAs. This paper mainly focuses on how to generate
multiobjective test instances with various degenerate Pareto
fronts. To verify the difficulties of these test instances, we
also conducted some experiments to study the behaviors of
two popular MOEAs, i.e., MOEA/D and NSGA-II. From the
experimental results presented in this paper, the test instances
with degenerated Pareto fronts can not be solved well both in
convergence and in diversity. To have better performance, more
efficient strategies should be used in MOEA/D and NSGA-II.
For example, adaptive weighting method is very important in
MOEA/D for these instances. This is also our future research
work.
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Fig. 16. Plots of final populations of MOEA/D and NSGA-II in the best run on CPFT1
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Fig. 17. Plots of final populations of MOEA/D and NSGA-II in the best run on CPFT2
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Fig. 18. Plots of final populations of MOEA/D and NSGA-II in the best run on CPFT3
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