
 
 

 

  

Abstract— The aim of designing a sensor scheduling scheme 
for target tracking in wireless sensor network is to improve the 
tracking accuracy, balance the network energy and prolong the 
network lifespan. It is viewed as a multi-objective optimization 
problem. A modified matrix-coded parallel genetic algorithm 
(MPGA) is proposed in which multiple subpopulations evolve 
synchronously and satify the specific constraint arised from the 
senario of multi-target tracking that a sensor can only track just 
one target. Simulation results show that MPGA , compared with 
traditional genetic algorithm, converges to the better result with 
higher speed when applied in multi-target tracking in wireless 
sensor network. And our proposed distributed sensor 
scheduling scheme based on MPGA outperforms than existed 
schemes. 

I. INTRODUCTION 
IRELESS sensor network (WSN), as one of the most 
influential technology in the 21th century, is of great 
application value in both military and civilian fields 

[1]. Target tracking is one of the typical and important 
applications in WSN [2]. With the complication of 
application environment, the demand for target tracking is 
improved from early single-target to current multi-target [3]. 

  In general terms, due to the limitation in storage, 
communication and data processing of sensor nodes in WSN, 
a sensor cannot track more than one target simultaneously. 
When a sensor is located in the detection area for multiple 
targets, which target should it be assigned to. That is the 
problem of sensor resource competition conflict [4]. To solve 
this problem, on the one hand, many researches focus on 
energy efficiency. Liu et al. [5] established a communication 
energy model from the perspective of the whole tracking 
system, which guides the allocation result into the aim of 
minimizing the total energy consumption for communication 
of the entire network. B. Krishnamachari in University of 
Southern California, with the goal of balancing the ratio of the 
remaining energy and born load of each cluster head that will 
prolong the network lifespan, researched the optimal task 
allocation strategy for cluster heads, and inducted this 
problem into a 0-1 nonlinear programming and objective 
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function optimization problem [6]. On the other hand, a great 
deal of work is carried out for the purpose of raising tracking 
accuracy. Nash [7], E. Ertin [8], and X. S. Liu [9] respectively 
apply the trace of error covariance matrix, root-mean-square 
error, and maximal information gain to construct fitness 
functions, and then combine with different optimization 
methods to fulfill task allocation for sensors. 

  In general, tracking accuracy and energy consumption are 
two conflictive indexes. To achieve high tracking accuracy, 
more sensor nodes are needed to participate in the task of 
target tracking, so energy consumption of the network will be 
increased. Additionally in terms of network lifespan, load 
balance and so remaining energy balance should be 
considered besides the energy consumption quantity to avoid 
the network disconnection, energy hole, etc. resulted from the 
premature depletion of a few nodes. 

  In this paper, we study the comprehensive performance of 
above indexes for multi-target tracking in wireless sensor 
network, which is actually a multi-objective optimization 
problem. A modified matrix- coded parallel genetic algorithm 
is proposed to solve the optimization problem by 
synchronously evolving multiple subpopulations. The 
algorithm not only has fast convergence speed and high 
search efficiency, but also especially fits the problem of 
multi-target tracking. The sensor scheduling scheme based on 
proposed matrix-coded parallel genetic algorithm can achieve 
high tracking accuracy, superior energy efficiency as well as 
long network lifespan.  

The rest of this paper is organized as follows. Tracking 
accuracy model and energy efficiency model are establised, 
and the sensor scheduling problem is formulated in Section II. 
In Section III, the modified matrix-coded parallel genetic 
algorithm is described detailedly. Simulation results are 
reported in Section IV. Finally, conclusions and future work 
are given in Section V. 

II. DISTRIBUTED SENSOR SCHEDULING FOR MULTI-TARGET 
TRACKING 

A two-target tracking scenario in WSN is shown in Fig.1. 
When several targets move in monitoring region and 
periodically broadcast their identity through wireless signal, 
the sensor nodes around the targets will be waken and some of 
them will be selected according to a specific sensor 
scheduling scheme to form tasking clusters. The number of 
clusters is equal to the number of targets, where, for each 
cluster, one of the nodes is elected as cluster head and else as 
cluster members [10]. All sensor nodes in the cluster estimate 
target state and tracking error collaboratively and then inform 
previously a part of nodes around the position where the 
target will be at the next time step. As the targets move, new 
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clusters will be formed dynamically to track them at each 
time step. 

 
A. Target State Estimation 

Due to the limitation of the power and capability of sensor 
nodes, a sensor can only track one target usually and belongs 
to one cluster. Besides, a target is always tracked by one 
cluster which has no intersection with others. Unscented 
Kalman Filtering (UKF) algorithm is employed to estimate 
the state of the target. 

Target state model is assumed as [11]: 
1k k k k kX F X G W+ = +                               (1) 

where kX is the state vector of the target at the kth time step, 

, , , ,[ , , , ]T
k c k v k c k v kX x x y y= , ,c kx and ,c ky  are x- and y- 

coordinates of the target, ,v kx and ,v ky  are the velocities of 
the target along x- and y-directions at kth time step, kW is the 
white Gaussian process noise with covariance matrix kQ , 

kF and kG are transition matrices of target state and process 
noise respectively.  

The measure model is:  
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where kZ  is a lk-dimension measurement vector, ( )H ⋅ and 

V respectively denote the vector forms of 1{ ( )} kli
ih =⋅ and 

1{ } kli
iv = , ( )ih ⋅ is the measurement function of is with the form 

of 2 2
, ,( ) ( ) ( )i i i

k k c k k c kh X x x y y= − + − , where ( i
kx , i

ky ) is 

the coordinate of is , iv  is zero-mean Gaussian measurement 
noise with variance 2

iσ . 
  So the UKF algorithm used for target state estimation is 

depicted in Fig.2  [12-15]: 
  In this paper, the trace (sum of diagonal elements) of the 

updated state error covariance , 1| 1xx k kP + +  is used to measure 
the tracking accuracy. And for Nk+1 targets, tracking accuracy 
index is defined as: 

1 1

1 1 , 1| 1
1 1

tr( )
k kN N

k k xx k kPτ τ

τ τ

+ +

+ + + +
= =

Φ = Φ =∑ ∑                  (3) 

 

B. Energy Model 
We assume that the energy consumption by is for sensing 

data of b bits is ( )s i sE s e b= and that for transmitting b bits to 

js  is ( , ) [ || ( , ) || ]t i j t d i jE s s e e s s bυ= + , where te and de are 
determined by the specifications of transmitter is , || ( , ) ||i js s  
is the Euclidean distance function and ν depends on the 
channel characteristic. The energy for receiving data of b bits 
by js is ( )r j rE s e b= [16]. 

Based on the predicted state 1|
ˆ

k kX τ
+  of the τth (τ=1,2,…, 

Nk+1) target, the set of sensor nodes around the predicted 
target position is 1,

1 1 1{ } kLi
k k iG g

ττ τ +
+ + == , (τ = 1,2,… ,Nk+1). Any 

combination of sensor nodes from this set can construct a 
candidate cluster 1' ' ,

1 1 1{ } kli
k k iC c

ττ τ +
+ + ==  to track target τ, where 

' ,
1 1
i

k kc Gτ τ
+ +∈  is a cluster node in '

1kC τ
+ . Assuming the cluster 

head is '
1kCH τ

+ , so the set of cluster members is 
1 1' ' ' ' ,

1 1 1 1 1{ } kli
k k k k iCM C CH cm

ττ τ τ τ + −
+ + + + == − = . 

The total energy consumption of tracking 1kN +  targets at 
the k+1th time step is: 

Step 1 State prediction 

1| |
ˆ ˆ

k k k k kX F X+ =  

, 1| , |
T T

xx k k k xx k k k k k kP F P F G Q G+ = +  
Step 2 Sigma points selection 
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, 1| 1| , 1|

ˆ ( ) , 1, , 2l k k k k xx k k lX X nP l n nα+ + += − = + "  

Here α is an adjusting parameter, and , 1|( )xx k k lnP + denotes 
the lth column of the matrix square root. 
Step 3 Measurement prediction 
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Here 21 1lη α= − if 0l = ; or 21 2l nη α= if 1, 2, , 2l n= " . 
Step 4 State update 
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1
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Fig. 2.  UKF algorithm for target tracking in WSN 

Fig.1 Two-target tracking scenario in WSN 
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where the details of 1( )k kE CH τ
+ , '

1 1( )k kE CH τ
+ + and '

1( )kE CM τ
+  

can be found in [11]. 
The remaining energy of kCH τ , '

1kCH τ
+  and '

1kCM τ
+  will be 

calculated as follows: 
1 1( ) ( ) ( )k k k k k kR CH R CH E CHτ τ τ

+ += −                                 (5) 
' , ' , ' ,

1 1 1 1 1( ) ( ) ( ),i i i
k k k k k kR cm R cm E cmτ τ τ

+ + + + += − 11,2, , 1ki lτ
+= −" (6) 

' ' '
1 1 1 1 1( ) ( ) ( )k k k k k kR CH R CH E CHτ τ τ

+ + + + += −                            (7) 
Energy balance degree can be measured by the standard 
deviation of remaining energy of all current and candidate 
sensor nodes involved in sensor scheduling:  
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C.  Mathematical Formulation 
Based on the given energy model and tracking accuracy 

index , the sensor scheduling problem can be formulated as a 
multi-objective optimization problem [17]. At the kth time 
step, the sensor nodes to be scheduled are determined such 
that: 
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                 (9) 

The constraint that the remaining energy must be larger or 
equal to a threshold θ  ensures the sensor nodes has enough 
remaining energy for further tasks. 

  We don’t need all the Pareto solutions of above 
multi-objective optimization problem but the one that meets 
the application requirements, so the multi-objective problem 
is transformed to a single-objective one by weighing. 

  Combining the energy consumption and remaining 
energy balance, a comprehensive index of energy efficiency 
is constructed as: 

1 1 1 1 1(1 )k k kEϕ ω ω σ+ + += − +                       (10) 
where 1 [0,1]ω ∈  is a weight parameter used for the tradeoff 
between energy consumption quantity and balance degree. 

 Then the multi-objective optimization problem can be 
transformed into a single-objective one as following: 

1 2 1 2 1(1 )k k kJ ω γϕ ω+ + += − + Φ                     (11) 
where 2 [0,1]ω ∈  is another weight parameter, and γ  is a 
matching factor that makes the value of energy efficiency and 
estimation accuracy in the same magnitude. 

In the application of target tracking, the tracking accuracy 
should be put in the first place, followed by the energy 
efficiency, and for the two sub-objectives of energy 
efficiency, their priority is almost equal. So we have 

1 0.5ω = and 2 0.5ω > . From the analysis and through the 
adjustment in extensive experiments, we have 2 0.7ω =  so 
that energy efficiency achieve optimal under the premise of 

satisfactory tracking accuracy. 

III. MODIFIED MATRIX-CODED PARALLEL GENETIC 
ALGORITHM 

Sensor scheduling is indeed to find the best tasking clusters 
for tracking the targets. The solution of this problem can be 
represented as a matrix. The common coding methods of 
Genetic Algorithm are binary coding, real coding, ordinal 
coding, etc, which have their own application fields, but fail 
to solve the problem whose best solution is a matrix. So we 
present a matrix-coded Genetic Algorithm and carry out 
genetic operations with matrixes as individuals in a 
population. 

A. Matrix Coding 
Definition 1 (Matrix Coding)  Suppose the kth generation of 

population is denoted as Pk={ A1 , A2 ,…, As }, where s is the 
number of individuals in the population, and Ai (i=1,2, …,s) is 
the ith  individual and can be represented as an m×n matrix 
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Then Ai is called matrix chromosome, and i
uva (u=1,2, …,m; 

v=1,2, …,n) is a gene in this chromosome. 
In this paper, binary coding method is employed. 

Particularly, we introduce a special code ‘×’ to denote a 
forbidden gene which means the corresponding sensor cannot 
detect the target. In initialization, a forbidden gene is assigned 
the code ‘×’ which will not change in any genetic operations, 
and deservedly it won’t be selected to tracking the 
corresponding target. 

 When 1kN +  targets move in the monitoring region at the 
k+1th time step with 1kL +  sensor nodes in their sensing area. 
A chromosome which represents 1kN +  candidate clusters is 
encoded as a matrix with 1kL + rows and 1kN +  columns. For 
example as Fig.3, the chromosome is encoded to a 6×3 matrix 
which corresponds to 3 targets (T1,T2,T3) and 6 sensor nodes 
(s1, s2, …, s6) in their sensing area. A gene ,

1kgeμ τ
+  in the µth  

row (µ=1,2,…,6) and τth column (τ=1,2,3) is interpreted as: 

τ,
1 τ

1,if is selected for T
0,if is not selected for T

,if is forbidden
k

s
ge s

s

μμ τ
μ

μ

+

⎧⎪= ⎨
×⎪⎩

 

In order to deal with the constraint that a sensor node is just 
assigned to one target, all genes in each row should follow: 

1
,
1

1
1

kN

kgeμ τ

τ

+

+
=

≤∑                                 (12) 

Note that the forbidden gene ‘×’ is considered as “0” when 
calculate the sum of a line of the chromosome. In Fig.3, s1, s2, 
s3, s4 can detect T1 but only s1 and s3 is selected to track the 
target. There are two sensor nodes, s1 and s2 detect more than 
one target, but due to the constraint in (12), each of them is 
assigned to only one target (s1 for T1, and s2 for T2). 

2015



 
 

 

 
B. Selection Operation 

With the reciprocal of the function in (11) as the fitness 
function, calculate the fitness values of all the matrix 
chromosomes in population, and use wheel selection method 
to select best individuals to generate next generation. The 
probability of each individual to be selected is equal to the 
ratio between its fitness value and the sum of all fitness 
values.  

Elitist preservation strategy is applied in our selection 
process to ensure that the obtained best individual will not be 
damaged by further genetic operation and so converge to the 
global optimal solution. After crossover and mutation, if the 
obtained best fitness value in new generation is less than the 
one in previous generation, the best individual in previous 
generation is duplicated and replaces the worst individual in 
new generation. For example, the parent generation is: 

1 2{ , , , , }i j sP A A A A A= " " "  
The new generation after crossover and mutation is: 

1 2{ , , , , }m n sQ B B B B B= " " "  
where Ai and Aj , Bm and Bn are the best and worst individual 
in parent and new generations, respectively. If  fitness(Bm) < 
fitness (Am),  we have the offspring generation as following: 

1 2{ , , , , }m i sO B B B A B= " " "  

C. Crossover Operation 
In order to ensure the offspring chromosomes always 

satisfy the constraint in (12), i.e. these offspring are sure to be 
feasible solutions of the problem, a row (column) of genes 
between two parent chromosomes are exchanged with a 
specified probability Pc. An example is shown as Fig.4.  

 
Local tournament selection is used to choose the better 

individuals between parent and offspring generations as 
following: 

1 1 1max{ ( ), ( )}itness itnessO f P f C=  

2 2 2max{ ( ), ( )}itness itnessO f P f C=  

D. Mutation 
Two random numbers µ and τ is generated in range of [1, 

Nk+1] and [1, Lk+1], respectively. The gene ,
1kgeμ τ

+  switches 
from 0 to 1 or from 1 to 0 if two conditions are both satisfied: 

(a) ,
1kgeμ τ

+  is not a forbidden gene; (b) 
1

,
1

1,

0
kN

l
k

l l

geμ

τ

+

+
= ≠

=∑ , which 

guarantees the mutated chromosome still feasible for 
problem. 

E. Migration 
Migration operation makes this Genetic algorithm 

executed parallelly.  
Every several generations, the best individual of each 

subpopulation migrates to other subpopulations in following 
topology as shown in Fig.5.  

 
In this way the excellent individuals are delivered among 

subpopulations, which also ensure the evolution mechanism 
to reach the global optimal solution rapidly and efficiently. 

IV. SIMULATION RESULTS 
In order to verify the performance of our proposed 

energy-efficient sensor scheduling scheme based on 
Matrix-coded Parallel Genetic Algorithm (EESMPGA), 100 
Monte Carlo experiments are conducted with following three 
other sensor scheduling schemes as comparison. 
· Energy-saving scheduling based on matrix-coded parallel  

genetic algorithm (ESSMPGA): to minimize the quantity 
of energy consumption, i.e. ω1 = 0 in (10). 

· Energy-efficient scheduling based on traditional genetic 
algorithm (EESBTGA): to apply traditional Genetic 
Algorithm for searching cluster nodes. 

· Energy-efficient scheduling based on Extended Kalman 
Filtering (EKF) algorithm (EESBEKF): to employ EKF for 
target state estimation [16]. 

A. Simulation Setup 
Suppose that 50 sensor nodes are disseminated in a 100×
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Fig.5 Topology for Migration 
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100 rectangle monitoring area where two targets T1 and T2 
move inside with variable speed. They move linearly in first 
20 seconds, T1 towards positive direction of x-coordinate 
while T2 towards negative, then bend in next 25 seconds, and 
finally stay stationary over rest simulation time, as shown as 
Fig.6. The initial values of target state and error covariance 
are set to: 

1
0 [2 1 4.5 1]X = ; 
2
0 [92 1 99 1]X = ; 

1 2
,0|0 ,0|0 0.01 (1 1 1 1)xx xxP P diag= = ×  

The initial energy of all sensor nodes is set to be 0.5J, 
except the 4th, 11th, 12th, 44th nodes to be 0.1J. Other 
parameters and their values are list in Table 1. 

 
B. Results and analysis 

Fig.6 shows real and estimated trajectories with 
abovementioned four schemes, and Fig.7 shows the tracking 
error. We find that the four schemes all performed well during 
linear motion stage of the targets, while during the curve 
motion stage just the estimated trajectory with EESBEKF 
diverged obviously from the real trajectory, which proves that 
the presented scheduling scheme based on UKF has better 
estimation performance in contrast to EKF-based scheduling 
scheme [16] for nonlinear random motion. 

 
The remaining energy of all sensor nodes with four 

schemes is illustrated in Fig.8. The balance level of remaining 
energy with EESMPGA and ESSMPGA is best, followed by 
EESBTGA, and worst is ESSMPGA. The 4th, 11th, 12th, 44th 
nodes that have less initial energy were rarely scheduled with 
EESMPGA and EESBEKF scheme. As a comparison, even 

though considering remaining energy balance, EESBTGA 
still selected 4th, 11th, 12th, 44th nodes sometimes due to the 
fact that traditional genetic algorithm based on binary 
string-coded cannot efficiently converge to the global optimal 
solution. 

 

 

 
Tab.2 lists some indexes about energy efficiency and 

network lifespan (time period from the beginning of tracking 
to the occurrence of first node that doesn’t have sufficient 
energy to perform tracking task). ESSMPGA consumed least 
energy but lived shortest lifespan because of not taking 
energy balance into account. And with EESBTGA, the 
energy balance degree is worse than that of rest two schemes 
because traditional genetic algorithm cannot always find the 
optimal tasking clusters to track all targets. However, the 
proposed EESMPGA not only considers remaining energy 
balance but also applies MPGA, so it takes on superior 

 
Fig. 9.  Best fitness of traditional GA and MPGA 

 
Fig. 6.  Real and estimated trajectories of two targets 

 
Fig. 8.  Remaining energy of sensor nodes 

 
Fig. 7.  Tracking errors of two targets 

TABLE I 
SIMULATION PARAMETERS 

Parameter Denotation Value 

α Adjusting parameter in UKF 0.5 
ω1 Weight in energy efficiency model  0.5
ω2 Weight in single- objective optimization 0.3 
γ Energy matching factor 10 
λ Adjusting parameter of population size 5 
Pc Crossover probability 0.8 
Pm Mutation probability 0.01 
κ Number of generations in migration 5 
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performance in every aspect above. 
  A comparison of best fitness value (reciprocal of 

objective function value) with EESMPGA and EESBTGA at 
two arbitrary time steps (16th and 36th time step) is shown in 

Fig.9. We can see that, with the same fitness function, 
EESMPGA always converged to a higher fitness value with 
faster speed than EESBTGA, which fully proves the superior 
performance of MPGA. 

 

 

V. CONCLUSIONS 
In this paper, we have presented a distributed sensor 

scheduling scheme based on matrix-coded parallel genetic 
algorithm for multi-target tracking. After establishing the 
tracking accuracy model, energy consumption model and 
energy balance model, the problem of sensor scheduling is 
formulated as a multi-objective optimization problem, whose 
best solution is found by weighing all the sub-objectives. A 
modified matrix-coded parallel genetic algorithm (MPGA) is 
developed. It allows multiple subpopulations to evolve 
independently and synchronously, and satisfies the constraint 
that a sensor can only track just one target. Simulation results 
have shown that the proposed distributed sensor scheduling 
scheme based on MPGA reduces the energy consumption and 
prolongs the network lifespan while improving the tracking 
accuracy. 

For the multi-objective optimization problem proposed in 
this paper, the method of weighing is used, which is under the 
premise that the bias introduced by weights is appropriate for 
user demand. As future work, other advanced multi-objective 
optimization algorithms will be considered to find all the 
Pareto solutions of our problem. 
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TABLE Ⅱ 
ENERGY EFFICIENCY AND NETWORK LIFESPAN 

Scheduling 
schemes 

Energy efficiency 
index Total energy consumption/J Least remaining 

energy/J 
Network lifespan / time 

steps 
EESMPGA 0.1114 4.4119 0.1000 ≥50 
ESSMPGA 0.1534 4.1107 0.0058 14 

EESBTGA 0.1193 4.4149 0.0462 ≥50 
EESBEKF 0.1124 4.4284 0.1000 ≥50 
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