
 
 

 

  

Abstract—This paper proposes to solve the dynamic 
optimization problem (DOP) by using an adaptive particle 
swarm optimization (APSO) algorithm with an variable 
relocation strategy (VRS). The VRS based APSO algorithm 
(APSO/VRS) has the following two advantages when solving 
DOP. Firstly, by using the APSO optimizing framework, the 
algorithm benefits from the fast optimization speed due to the 
adaptive parameter control. More importantly, the adaptive 
parameter and operator in APSO make the algorithm fast 
respond to the environment changes of DOP. Secondly, VRS 
was reported in the literature to help dynamic evolutionary 
algorithm (DEA) to relocate the individual position in promising 
region when environment changes. Therefore, the modified 
VRS used in APSO can collect historical information in the 
stability stage and use such information to guide the particle 
variable relocation in the change stage. We evaluated both 
APSO and APSO/VRS on several dynamic benchmark 
problems and compared with two state-of-the-art DEAs and 
DEA that also used the VRS.  The results show that both APSO 
and APSO/VRS can obtain very competitive results on these 
problems, and APSO/VRS outperforms others on most of the 
test cases. 

I. INTRODUCTION 
N many real-world optimization problems, dynamics and 
uncertainties are common characteristics due to the 
complexity of the systems. For example, the flights may be 

delayed or even canceled in the aircraft arriving 
scheduling[1], new sensors may enter the wireless sensor 
network or old sensors may die [2][3], nodes may increase or 
connects may change in the multicast routing optimization [4]. 
This is dynamic optimization problem (DOP) that has caused 
great attentions and interests in recent years for its 
significance in practical applications [5]. Different from static 
optimization problem whose decision variables, objective 
functions, and problem landscape are unchanged all the time, 
DOP dooms to be challenging since it requires that the 
algorithms can not only find the optimal solution in one time, 
but also have the ability to track the problem changes and find 
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the new optimum when environment changes [6]. 
Although being challenging, researchers find that 

evolutionary computation (EC) algorithms are promising in 
solving DOP. This may be due to that EC algorithms are 
kinds of stochastic search optimization methods inspired 
from the biological evolution and swarm intelligence 
behaviors in nature, making EC algorithms suitable for 
changing environments [6]. In the EC studies for solving 
DOP, some researchers proposed to use population 
re-initialization approach to re-initialize the individuals 
when a change occurred [7]. This is a naïve approach but may 
be not judicious because restarting the algorithm means 
throwing away all the previous search information. Therefore, 
some other researchers proposed to use a kind of memory to 
store the best individual or some good individuals for each 
change period, and put these individuals back to the new 
population in the new search environment if they still had 
promising performance. Such memory-based approach will 
be promising in cyclic dynamic environment [8]. In some 
other studies, multiple population approach was proposed 
where several subpopulations were used to track the multiple 
peaks of the landscape. Such approach may be useful when 
the global optima are changed (switched) among these 
multiple peaks. However, they are in large computational cost 
when compared with single population approach [9]. Besides, 
adaptive/self-adaptive approach was also proposed for 
solving DOP. For example, the mutation probability can be 
increased according to the environment changes so as to 
increase the population diversity for tracking the new 
optimum. This kind of approach seems to be promising for 
DOP whose landscape is with very fast but less drastic 
changes [10].  

With various DOP tackling strategies as mentioned above, 
one important issue is that some recent studies argued that the 
historical information could be used for helping EC algorithm 
to locate the new optimum when environment change occurs. 
Woldesenbet and Yen [11] pointed out that most of the 
environment changes in practical DOP applications may not 
be drastic. Therefore, re-initializing the whole population 
when a change occurs is not efficient for reusing the historical 
information to fast catch the new search environment. In this 
sense, a variable relocation strategy (VRS) was proposed for 
dynamic evolutionary algorithm (DEA) when solving DOP 
[11]. We confirmed the claims in RVDEA (VRS based DEA) 
that with the help of VRS, the relocated population was 
shown to be a better fit to the new environment. Therefore, 
extensive study of the VRS is conducted in this paper. 

Although RVDEA obtained good performance on DOP 
when compared with some state-of-the-art algorithms, it 
should be reminded that RVDEA did not use adaptive 
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parameters for better optimizing DOP. As mentioned above, 
adaptive/self-adaptive approach can dynamic adjust the 
algorithm parameters for match the search requirements of 
DOP in different evolutionary time. It should be promising if 
proper adaptive parameter and operator strategies are used for 
helping solve DOP. Inspired by the VRS idea and the 
adaptive algorithm control idea for DOP, this paper proposes 
an efficient DOP approach, based on the powerful adaptive 
particle swarm optimization (APSO) [12] and the efficient 
VRS strategy. 

PSO is a simple yet efficient EC paradigm that has been 
fast developed in recent years, mainly due to its simple 
algorithm concept, easy program implementation, and fast 
convergence speed to reasonable solution [13],. PSO has been 
extensively studied in not only the static optimization 
problem, but also in DOP in recent years [14]. Although 
promising results can be obtained by PSO in various 
static/dynamic problems, researchers still find that adaptively 
control of the algorithm parameters and operators can 
substantially improve the algorithm performance. Zhan et al. 
[12] proposed the APSO algorithm by using a machine 
learning based statistical analyze technique to discover the 
useful information behind the population distribution data 
and fitness data, so as to design an efficient adaptive 
parameter and operator control strategy for PSO to improve 
the performance in different optimization problems and 
different evolutionary states. This adaptation scheme seems 
to be much suitable for DOP for that DOP can be regarded as 
different optimization problems when the landscape changes 
during the evolutionary progress. Therefore, this paper adopts 
APSO for solving DOP. Moreover, as VRS has been proven 
to be efficient in helping EC algorithm to fast track the change 
environment in DOP, this paper further applied VRS to 
APSO, resulting in an efficient APSO/VRS algorithm for 
solving DOP. 

The rest of the paper is organized as follows. In Section II, 
the background including DOP and APSO are briefly 
described. Section III presents the APSO/VRS algorithm in 
detail. Experiments and comparisons are conducted in 
Section IV. Finally, conclusions are drawn in Section V. 

II. BACKGROUND 

A. DOP 
DOP is a kind of optimization problem whose fitness 

functions, constraints, or environmental parameters are with 
possible changes. Specifically, a DOP with maximization 
objective can be formulated as: 

Max f(X, e) = f(x1, x2, …, xD, e)                    (1) 
where X is the decision vector with D dimensions, and each 

dimension xd is with the range [xd_min, xd_max]; f is the objective 
function to be optimized, and e represents the environmental 
conditions that are change over the evolutionary time. 

B. PSO 
PSO is one of the most important swarm intelligence 

algorithms that was first introduced by Kennedy and Eberhart 
in 1995. Mimicking the swarm behaviors in birds flocking 
and fishes schooling, the PSO uses a simple mechanism that 

lets the particle search for the global optimum in the solution 
space under the influences of the its own and its companions’ 
experiences. In PSO, each particle i is associated with two 
vectors, the velocity vector Vi = [vi1, vi2, …, viD] and the 
position vector Xi = [xi1, xi2, …, xiD], where 1≤i≤N, N is the 
population size and D is the dimension number of the 
decision variables. The velocity and the position of each 
particle are initialized by random vectors as Vi(0) and Xi(0) 
within the corresponding ranges. In every generation g, the 
fitness of particle i (denoted as fi(g)) will be evaluated at its 
current position Xi(g). The best position during the run time is 
stored to be the personal historical best position Pbesti = [pi1, 
pi2, …, piD]. Among all the Pi in the whole swarm, the best 
one is denoted as the globally best position Gbest = [g1, g2, …, 
gD]. The vectors Vi and Xi are updated by Eqs. (2) and (3) 
generation by generation through the guidance of Pbesti and 
Gbest. 

vid(g) = vid(g–1) + c1r1d(pid(g–1) – xid(g–1)) 
+ c2r2d(gd(g–1) – xid(g–1)) (2) 

xid(g) = xid(g–1) + vid(g) (3) 

where ω is the inertia weight, c1 and c2 are acceleration 
coefficients, r1d and r2d are two random numbers 
independently generated within [0, 1] for the dth dimension. 
Recently, PSO has been studied for performance 
enhancement by using adaptive strategy [12], orthogonal 
learning strategy [13], aging mechanism [15], machine 
learning techniques [16], and for applications as constraint 
optimization [17], RFID network planning [18], and 
multi-objective optimization [19]. 

C. APSO 
Given its simple concept and effectiveness, PSO has 

become a popular optimizer and has been widely applied in 
practical problems. In traditional PSO, the inertia weight 
parameter ω is linearly decreasing from 0.9 and 0.4, 
respectively, while the acceleration coefficients c1 and c2 are 
set to fixed value 2.0. However, the PSO performance is 
criticized sometimes for the dependences on proper 
parameter settings. In order to adaptive control the algorithm 
parameters for release such dependence disadvantages, Zhan 
et al. [12] proposed an APSO to enhance the adaptation of 
PSO in different problems and different evolutionary states. 
Herein we briefly describe the APSO algorithm in the 
following parts. 

(1) Evolutionary State Estimation Procedure 

In APSO, the algorithm structure and flowchart are similar 
to those of traditional PSO. However, in each generation, 
before the update of particle’s velocity and position, an 
evolutionary state estimation (ESE) procedure is first carried 
out to identify the current state as exploration, exploitation, 
convergence, or jumping-out. The ESE procedure is based on 
a statistical analyze machine learning technique which can 
extract useful information from the population distribution 
data and population fitness data. For self-contain purpose, we 
briefly describe the ESE procedure as follows: Firstly, 
calculate the mean distance of each particle i to all the other 
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particles according to the Euclidian distance by: 
2

1
1,

1 ( )
1

N
D k k

i i jk
j j i

d x x
N =

= ≠

= −
− ∑ ∑                   (4) 

Then calculate the ‘evolutionary factor’ ef as defined by: 
min

max min

gd d
ef

d d
−

=
−

 ∈ [0, 1]                        (5) 

where dg is the di of the globally best particle, while dmax and 
dmin are the corresponding di of the particles with the maximal 
and minimal di values among all the particles. 

At last, classify the current evolutionary state as S1 
(exploration), S2 (exploitation), S3 (convergence), or S4 
(jumping-out) based on a fuzzy classification strategy. The 
corresponding membership functions of the four fuzzy sets 
are illustrated in Fig. 1. According to the membership 
functions, the classification works as the following three 
rules: 

 

 

Figure 1.  Fuzzy membership functions for four fuzzy evolutionary states. 

Rule 1: The unique rule. If the ef value locates in a position 
which is unique to a set, then classify the state as the 
corresponding state. For example, ef=0.1 is unique to the S3 
and ef=0.65 is unique to the S1. However, if the ef value 
belongs to two sets, then we first classify the state first based 
on Rule 2, and then Rule 3. 

Rule 2: The stability rule. This rule classifies the state to 
the same state as the last generation. For example, when 
ef=0.45, the state can be S1 or S2, in this condition, if the last 
state is S1, the current state is set to S1, if the last state is S2, the 
current state is set to S2. 

Rule 3: The neighborhood rule. When Rule 2 can not 
classify the state, for example, when ef=0.45, but the last state 
is neither S1 nor S2. In this condition, the states are classified 
based on the ideal transfer sequence as S1 ⇒ S2 ⇒ S3 ⇒ S4 ⇒ 
S1 ⇒... So, as ef=0.45 indicates the current state can be S1 or 
S2, if the last state is S3, the current state is set to S2 because is 
the neighbor of S3, if the last state is S4, the current state is set 
to S1. 
(2) Parameters Adaptation and Elitist Learning Strategy 

After the ESE procedure, the APSO parameter ω, c1, and c2 
are adaptively controlled. According to the paper [12], the 
value of the inertia weight ω is initialized to 0.9 and 
adaptively set through identifying the state of evolution by the 
sigmoid mapping as: 

[ ]2.6

1( ) 0.4, 0.9 , [0,1]
1 1.5 efef ef

e
ω − ⋅= ∈ ∀ ∈

+
           (6) 

For the acceleration coefficients c1 and c2, they are both 
initialized as 2.0 and adaptively controlled according to 
different evolutionary states by the strategies described as 
[12]: “increasing c1 and decreasing c2 in an exploration state, 

increasing c1 slightly and decreasing c2 slightly in an 
exploitation state, increasing c1 slightly and increasing c2 
slightly in a convergence state, decreasing c1 and increasing 
c2 in a jumping-out state.” Herein, the increment and 
decrement is a random generated value in range [0.05, 0.1]. 
However, if the “slightly” is used, the generated value is 
multiplied 0.5 before adds to or subtract from the last c1 and c2 
values. It should be noted that the values of c1 and c2 are 
clamped in range [1.5, 2.5] and their sum is clamped in range 
[3.0, 4.0], refer to [12] for more details. 

Besides the above parameter adaptation, APSO has an 
adaptive elitist learning strategy (ELS) which is only carried 
out in the jumping-out state for the globally best particle to 
jump out possible local optima. The ELS is to randomly 
choose one dimension of globally best particle’s historical 
best position, and then applied to it through a Gaussian 
perturbation. If the new position is with better fitness value 
than the current gBest, it will be accepted to replace the 
current gBest. Otherwise, the new position can be used to 
replace the particle with the worst fitness in the swarm. For 
more details of the ELS, please refer to [12]. 

III. PROPOSED APSO/VRS ALGORITHM 
In this section, the proposed APSO/VRS algorithm for 

solving DOP is described. Firstly, the VRS operations are 
presented, including the historical information collection in 
the stability stage and the particle variables relocation in the 
change stage. Then, the whole complete APSO/VRS 
algorithm flowchart is presented. 

A. VRS 
The VRS was proposed by Woldesenbet and Yen [11] in 

DEA to make the use of historical search information to guide 
the individuals to relocate their position when a change 
occurs. Here in this paper, when applying VRS to APSO, 
some modifications should be made to match the 
characteristics of PSO and APSO. In the following context, 
the DOP is assumed to be a maximization problem as (1). The 
VRS used in APSO is described as “historical information 
collection in the stability stage” and “particle variables 
relocation in the change stage”. 

(1) Historical Information Collection in the Stability Stage 

In every generation during the APSO process when the 
environment is static, VRS collects the progresses of each 
particle’s position and fitness during the run. The “dimension 
progress” for the dth dimension of particle i is defined as: 

( ) ( ) ( 1)id id idx g x g x gΔ = − −                       (7) 
where g=1, 2, 3,… is the current generation index. It is 
interesting to notice that the ( )idx gΔ  is actually the vid(g) in 
(3). 

Besides the “dimension progress”, the “fitness progress” 
of particle i is defined as: 

( ) ( ) ( 1)i i if g f g f gΔ = − −                         (8) 
Based on the ( )idx gΔ  and ( )if gΔ , the “average dimension 

progress” ( )idx gΔ and “average fitness progress” ( )if gΔ  of 
the gth generation along the evolutionary process are defined 
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as (9) and (10): 
( ) ( 1)
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1

id id
id

x g x g
x g

g
λ

λ
Δ + Δ −

Δ =
+

                    (9) 

( ) ( 1)
( )

1
i i

i
f g f g

f g
g
λ

λ
Δ + Δ −

Δ =
+

                     (10) 

where (0)idxΔ  and (0)ifΔ  are initialized as 0. λ is a 
parameter to control the influences of historical progress. 
When λ=1, it means the “average” is actual the arithmetic 
average of the progresses from the beginning to now. When 
λ=0, it means the “average” is just the current progress, 
without the consideration of progresses in previous 
generations. Herein we adopt λ=0.5 as recommended in [11] 
to indicate the historical information is considered but the 
influences reduce as the time goes by. 

It should be reminded that the operations (7)-(10) are 
carried out in every generation between any two changes. It is 
also interesting to remind that the result of (7) is actually the 
velocity of the current generation. 

 (2) Particle Variables Relocation in the Change Stage 

When a change occurs, the above information collected 
during the stability stage is used to guide particle variables 
relocation. The operations are described as the following 7 
steps. 

Step 1: Calculate the “average position progress” of 
particle i by considering its all dimensions. That is, using the 
information in (9) to obtain the information in (11) as: 

( )2

1

D

i id
d

X x
=

Δ = Δ∑                             (11) 

As the step is carried out only in the environment change 
time, the generation index g is not used in the following 
equations. Therefore the idxΔ  in (11) is the idxΔ  of the last 
generation just before the change occurs. Such situations are 
similar in the following equations. 

Step 2: Calculate the “average sensitivity” as the ratio of 
“average fitness progress” in the objective space to the 
“average position progress” in the decision space. That is, 
using the information in (10) and (11) to obtain the 
information in (12), as: 

iX i

i

f
S

X
Δ

=
Δ

                                  (12) 

Step 3: Calculate the “average sensitivity” of the dth 
dimension as (13) which is obtained from the information of 
(12), (9), and (11), as: 

id ix X id

i

x
s S

X
Δ

= ⋅
Δ

                               (13) 

Step 4: Obtain the actual “fitness difference” of particle i in 
the change as: 

_ _e new e old
i i if f fΔ = −                            (14) 

where _e new
if and _e old

if are the particle i’s fitness values after 
and before change respectively. 

Step 5: Obtain the relocation radius as: 

_ _

_ _
_ _

,                                ,      

min , ,     

i

i i

e new e oldi
i iX

i e new e old
e new e oldbest i i

i iX X

f
f f

S
R

f f f
f f

S S

Δ⎧− ≤⎪
⎪Δ = ⎨ ⎧ ⎫− Δ⎪ >⎨ ⎬⎪ ⎩ ⎭⎩

 (15) 

where _e new
bestf is the best fitness values in the new 

environment. 
Step 6: Obtain the relocation radius for each dimension as: 

id

i

x
i id

id iX
i

R s x
r R

XS

Δ ⋅
Δ = = Δ ⋅                        (16) 

Step 7: Relocate the position of particle i as: 
new old
id id idx x p r= + ⋅ Δ                          (17) 

where p is a random number between [0, 1]. 
For more details about the constraints of idrΔ and new

idx  
please refer to [11]. 

B. The Complete Flowchart 
The complete flowchart of APSO/VRS is shown in Fig. 2. 

It should be noted that APSO/VRS uses an archive with size 3 
to store some best particles and their fitness values. In every 
generation, if the fitness values change while the positions do 
not change, the environment is regarded as change. 

 

 
 
 

Figure 2.  The flowchart of APSO/VRS. 

IV. BENCHMARK TESTS AND COMPARISONS 

A. Experimental Settings 
In this paper, 5 typical DOPs with different characteristics 

are used to test the performance of APSO/VRS. The 5 DOPs 
are the MP1 and DF2-DF5 as detailed in [11]. In order to 
investigate the advantages of APSO, we will compare 
APSO/VRS with RVDEA proposed in [11]. Moreover, 
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APSO/VRS is also compared with APSO without using the 
VRS, to demonstrate the influences of VRS on APSO/VRS. It 
should be noted that the results of RVDEA are directly 
adopted from [11]. They were actually obtained by 
RVDEA/Mem and RVDEA/Cluster which were both 
enhanced RVDEA. In order to make fair comparisons, we use 
the same performance metric, problem parameters, and 
computational burden as in [11] to evaluate APSO and 
APSO/VRS. 

Firstly, the performance metric is the offline error variation, 
which is the average of the error between the true optimal 
fitness and the best fitness at each function evaluation (FE): 

1

1 ( )
FEs

offline true best
fe

e f f fe
FEs =

= −∑                  (18) 

Secondly, all the 5 DOP functions are with the same 
problem parameters such as the search range, default peaks 
number, dimensions, change frequency, and change severity, 
as set in [11]. One thing should be noted is that the default 
change frequency is set to 5000 FEs [11]. 

Thirdly, APSO and APSO/VRS use population with size 
20, the maximal FEs is 500000, the same in [11]. The APSO 
parameters are the same as proposed in [12]. Moreover, the 
results are the average of 50 independent runs as in [11]. 

B. Experimental Results 
For the MP1 problem, the peak number is set to be 1, 10, 20, 

30, 40, 50, 100, and 200, respectively. Table I presents the 
results of different DOP algorithms when solving MP1 with 
different peaks number. The best results are in boldface. 

TABLE I.  MEAN OFFLINE ERROR OF DOP ALGORITHMS ON MP1 
WITH DIFFERENT PEAKS NUMBER 

Peaks 
no. 

RI25/ 
Mem 

HM/ 
Mem 

RVDEA/ 
Mem 

RVDEA/ 
Cluster APSO APSO/ 

VRS 
1 9.28 11.98 1.23 1.02 17.567 0.777 
10 14.63 15.62 4.88 3.54 15.395 0.798 
20 13.87 16.02 5.68 3.87 13.460 0.777 
30 12.89 14.24 5.86 3.92 13.447 0.747 
40 12.41 13.93 5.65 3.49 13.687 0.759 
50 12.74 13.97 5.21 3.78 12.223 0.789 

100 11.20 13.81 4.98 3.37 11.847 0.736 
200 10.82 14.06 4.92 3.54 10.933 0.736 

Results of RI25/Mem, HM/Mem, RVDEA/Mem, and RVDEA/Cluster are from [11]. 
 

TABLE II.  MEAN OFFLINE ERROR OF DOP ALGORITHMS ON MP1 
WITH 10 PEAKS AND DIFFERENT CHANGE FREQUENCIES 

Cha. Freq. 
(FEs) 

RI25/ 
Mem 

HM/ 
Mem 

RVDEA/ 
Mem 

RVDEA/ 
Cluster APSO APSO/ 

VRS 
200 21.34 20.12 15.62 15.82 35.084 13.394 
500 19.13 19.15 8.59 8.89 33.707 7.031 

1000 18.78 18.84 6.51 7.21 29.615 4.087 
2500 16.70 17.10 4.93 5.35 21.722 1.530 
5000 14.63 15.62 4.01 4.88 14.957 0.759 
10000 13.79 14.23 3.62 4.12 9.590 0.417 

TABLE III.  MEAN OFFLINE ERROR OF DOP ALGORITHMS ON DF2 WITH 
DIFFERENT PEAKS NUMBER 

Peaks 
no. 

RI25/ 
Mem 

HM/ 
Mem 

RVDEA/ 
Mem 

RVDEA/ 
Cluster APSO APSO/ 

VRS 
1 9.05 10.16 1.79 0.302 2.25 0.103 
5 11.91 12.42 4.2 2.653 1.59 0.105 
10 13.22 14.37 6.36 3.871 1.72 0.098 
50 14.11 16.38 7.54 3.322 1.27 0.082 

100 17.52 17.66 8.06 3.713 1.14 0.083 
200 20.64 21.2 11.59 3.755 0.97 0.073 

TABLE IV.  MEAN OFFLINE ERROR OF DOP ALGORITHMS ON DF2 WITH 
10 PEAKS AND DIFFERENT CHANGE FREQUENCIES 

Cha. Freq. 
(FEs) 

RI25/ 
Mem 

HM/ 
Mem 

RVDEA/ 
Mem 

RVDEA/ 
Cluster APSO APSO/ 

VRS 
200 21.15 20.76 14.41 10.11 9.49 0.871 
500 17.86 19.24 8.83 7.55 7.03 0.414 
1000 15.99 16.28 6.98 4.41 5.15 0.230 
2500 14.6 15.56 6.44 4.12 2.44 0.134 
5000 13.22 14.37 6.36 3.87 1.50 0.087 

10000 11.53 12.43 5.95 3.34 0.99 0.068 

TABLE V.  MEAN OFFLINE ERROR OF DOP ALGORITHMS ON DF3-DF5 
WITH DIFFERENT PEAKS NUMBER 

Problem Peaks 
no. 

RI25/ 
Mem 

HM/ 
Mem 

RVDEA/ 
Mem 

RVDEA/ 
Cluster APSO APSO/ 

VRS 

Linear 
DF3 

1 7.8 8.32 1.517 0.081 1.072 0.541 
5 7.97 8.41 1.892 1.122 1.044 0.575 
10 8.31 8.54 2.082 1.609 1.136 0.673 
50 8.64 8.69 2.367 1.756 1.002 0.659 

100 8.73 8.82 2.688 2.186 1.143 0.668 
200 8.88 9.02 2.85 2.377 1.015 0.636 

Random 
DF4 

1 9.21 9.19 1.268 0.106 0.514 0.351 
5 9.44 9.53 1.764 1.446 1.836 1.195 
10 9.64 9.71 2.303 1.791 1.255 1.300 
50 9.67 10.03 2.675 1.862 0.999 0.712 

100 10.32 10.55 2.904 1.985 0.715 0.615 
200 10.56 10.78 3.023 2.149 0.551 0.499 

Circular 
DF5 

1 9.86 10.08 1.687 0.158 0.611 0.397 
5 10.1 10.39 2.022 0.967 0.603 0.478 
10 10.61 10.83 2.445 1.162 0.594 0.494 
50 10.7 10.9 2.664 1.368 0.581 0.467 

100 10.92 10.95 2.864 1.743 0.597 0.510 
200 11.1 11.18 3.191 2.04 0.590 0.490 

TABLE VI.  MEAN OFFLINE ERROR OF DOP ALGORITHMS ON DF3-DF5 
WITH 10 PEAKS AND DIFFERENT CHANGE FREQUENCIES 

Problem 
Cha. 
Freq. 
(FEs). 

RI25/ 
Mem 

HM/ 
Mem 

RVDEA/ 
Mem 

RVDEA/ 
Cluster APSO APSO/ 

VRS 

Linear 
DF3 

200 8.7 8.83 2.334 0.881 9.073 0.706 
500 8.42 8.69 2.125 0.755 2.222 0.599 

1000 8.31 8.54 2.083 0.609 1.084 0.669 
2500 8.17 8.38 1.781 0.483 0.732 0.574 
5000 8.08 8.22 1.622 0.299 0.623 0.565 
10000 7.9 8.11 1.413 0.177 0.692 0.584 

Random 
DF4 

200 9.93 9.88 2.752 1.026 6.205 6.874 
500 9.76 9.78 2.611 0.982 2.352 2.926 

1000 9.64 9.71 2.303 0.891 1.295 1.023 
2500 9.42 9.59 2.142 0.769 0.826 0.709 
5000 9.28 9.46 1.897 0.536 0.519 0.479 
10000 9.17 9.33 1.662 0.247 0.376 0.392 

Circular 
DF5 

200 10.9 11.05 2.989 1.583 0.786 0.572 
500 10.75 10.96 2.788 1.457 0.648 0.466 

1000 10.61 10.83 2.445 1.162 0.646 0.425 
2500 10.47 10.72 2.121 0.783 0.556 0.449 
5000 10.29 10.53 1.965 0.607 0.645 0.539 
10000 10.22 10.41 1.792 0.340 0.433 0.493 

Results of RI25/Mem, HM/Mem, RVDEA/Mem, and RVDEA/Cluster are from [11]. 

The results in Table I show that APSO/VRS obtained the 
best results on MP1 with different peaks number. The related 
good results of RVDEAs also indicate the advantages of VRS. 
However, APSO/VRS is much better than RVDEAs, 
demonstrating the advantages of combining both APSO and 
VRS. The experiments on MP1 with 10 peaks under different 
change frequencies were also conducted and the results are 
presented in Table II. The table shows that the offline error 
gets to be better and better as the change becomes less 
frequent. This may be due to that the algorithm has enough 
time to converge to the global optimum between any two 
changes. The notable observation is that our proposed 
APSO/VRS has the best performance among all the 
algorithms under different environment change frequencies, 
no matter fast or slow. 

The results on DF2 with different peaks number and the 
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results on DF2 with 10 peaks under different change 
frequencies are presented in Tables III&IV, respectively. The 
results in Table III show that with the peak number increasing, 
the performance of traditional DEAs and RVDEAs becomes 
poorer and poorer. However, things are different in APSO 
and APSO/VRS. The performance is less influenced by the 
peaks number, and is even observed to be better with a higher 
number of peaks. This is an interesting observation in APSOs 
and such advantages make the APSOs algorithm suitable for 
complex DOPs. Moreover, the results in Table IV show that 
both APSO and APSO/VRS outperform both the 
RVDEA/Mem and RVDEA/Cluster under different change 
frequencies for DF2, expect that RVDEA/Cluster is slightly 
better than APSO when the frequency between two changes is 
1000 FEs and 2000 FEs. APSO/RVS obtained the best results 
on all the test cases with its results greatly better than those of 
RVDEAs. 

DF3, DF4, and DF5 are three DOPs with the same based 
functions but with different dynamic characteristics, as 
linearly, random, and circularly varying moving, respectively. 
In Tables V&VI, the results on DF3-DF5 with different peaks 
number and problems with 10 peaks under different change 
frequencies are presented respectively. It shows that 
RVDEA/Cluster only outperforms APSO/VRS on the 
problems with 1 peak, while APSO/VRS archives much 
better results than RVDEAs and other algorithms when the 
peaks number increases. Moreover, APSO/VRS can obtain 
competitive results on the problems under different change 
frequencies. The performance of APSO/VRS is much better 
when dealing with DF5. 

V. CONCLUSION 
In this paper, we have applied the VRS to APSO to develop 

a promising algorithm for solving DOPs. The APSO 
algorithm itself is suitable for tracking the changing 
environment of DOP because it can online adaptively control 
the parameters and operator to accelerate the optimization 
speed and increase the population diversity according to 
different search requirements. Moreover, VRS can collect the 
historical information in the stability stage and use the 
information in the change stage to guide the particles to 
relocate in promising position for fast tacking the new global 
optimal solution. Experiments have been conducted on 5 
typical DOP benchmarks with different characteristics, to 
demonstrate not only the APSO promising performance but 
also the APSO/VRS outstanding performance. 
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