

Abstract—This paper proposes to solve the dynamic
optimization problem (DOP) by using an adaptive particle
swarm optimization (APSO) algorithm with an variable
relocation strategy (VRS). The VRS based APSO algorithm
(APSO/VRS) has the following two advantages when solving
DOP. Firstly, by using the APSO optimizing framework, the
algorithm benefits from the fast optimization speed due to the
adaptive parameter control. More importantly, the adaptive
parameter and operator in APSO make the algorithm fast
respond to the environment changes of DOP. Secondly, VRS
was reported in the literature to help dynamic evolutionary
algorithm (DEA) to relocate the individual position in promising
region when environment changes. Therefore, the modified
VRS used in APSO can collect historical information in the
stability stage and use such information to guide the particle
variable relocation in the change stage. We evaluated both
APSO and APSO/VRS on several dynamic benchmark
problems and compared with two state-of-the-art DEAs and
DEA that also used the VRS. The results show that both APSO
and APSO/VRS can obtain very competitive results on these
problems, and APSO/VRS outperforms others on most of the
test cases.

I. INTRODUCTION
N many real-world optimization problems, dynamics and
uncertainties are common characteristics due to the
complexity of the systems. For example, the flights may be

delayed or even canceled in the aircraft arriving
scheduling[1], new sensors may enter the wireless sensor
network or old sensors may die [2][3], nodes may increase or
connects may change in the multicast routing optimization [4].
This is dynamic optimization problem (DOP) that has caused
great attentions and interests in recent years for its
significance in practical applications [5]. Different from static
optimization problem whose decision variables, objective
functions, and problem landscape are unchanged all the time,
DOP dooms to be challenging since it requires that the
algorithms can not only find the optimal solution in one time,
but also have the ability to track the problem changes and find

Z.-H. Zhan and J. Zhang are with the Department of Computer Science,
Sun Yat-Sen University, Guangzhou, 510275, China, with the Key
Laboratory of Machine Intelligence and Advanced Computing (Sun Yat-sen
University), Ministry of Education, China, with the Engineering Research
Center of Supercomputing Engineering Software (Sun Yat-sen University),
Ministry of Education, China, and also with the Key Laboratory of Software
Technology, Education Department of Guangdong Province, China.

J.-J. Li is with the School of Computer Science, South China Normal
University, China.

This work was supported in part by the National High-Technology
Research and Development Program (863 Program) of China
No.2013AA01A212, in part by the NSFC for Distinguished Young Scholars
61125205, in part by the NSFC No. 61332002 and No.61300044. For
additional information regarding this paper please contact Jun Zhang
(corresponding author, email: issai@mail.sysu.edu.cn).

the new optimum when environment changes [6].
Although being challenging, researchers find that

evolutionary computation (EC) algorithms are promising in
solving DOP. This may be due to that EC algorithms are
kinds of stochastic search optimization methods inspired
from the biological evolution and swarm intelligence
behaviors in nature, making EC algorithms suitable for
changing environments [6]. In the EC studies for solving
DOP, some researchers proposed to use population
re-initialization approach to re-initialize the individuals
when a change occurred [7]. This is a naïve approach but may
be not judicious because restarting the algorithm means
throwing away all the previous search information. Therefore,
some other researchers proposed to use a kind of memory to
store the best individual or some good individuals for each
change period, and put these individuals back to the new
population in the new search environment if they still had
promising performance. Such memory-based approach will
be promising in cyclic dynamic environment [8]. In some
other studies, multiple population approach was proposed
where several subpopulations were used to track the multiple
peaks of the landscape. Such approach may be useful when
the global optima are changed (switched) among these
multiple peaks. However, they are in large computational cost
when compared with single population approach [9]. Besides,
adaptive/self-adaptive approach was also proposed for
solving DOP. For example, the mutation probability can be
increased according to the environment changes so as to
increase the population diversity for tracking the new
optimum. This kind of approach seems to be promising for
DOP whose landscape is with very fast but less drastic
changes [10].

With various DOP tackling strategies as mentioned above,
one important issue is that some recent studies argued that the
historical information could be used for helping EC algorithm
to locate the new optimum when environment change occurs.
Woldesenbet and Yen [11] pointed out that most of the
environment changes in practical DOP applications may not
be drastic. Therefore, re-initializing the whole population
when a change occurs is not efficient for reusing the historical
information to fast catch the new search environment. In this
sense, a variable relocation strategy (VRS) was proposed for
dynamic evolutionary algorithm (DEA) when solving DOP
[11]. We confirmed the claims in RVDEA (VRS based DEA)
that with the help of VRS, the relocated population was
shown to be a better fit to the new environment. Therefore,
extensive study of the VRS is conducted in this paper.

Although RVDEA obtained good performance on DOP
when compared with some state-of-the-art algorithms, it
should be reminded that RVDEA did not use adaptive

Adaptive Particle Swarm Optimization with Variable Relocation for
Dynamic Optimization Problems

Zhi-Hui Zhan, Member, IEEE, Jing-Jing Li, and Jun Zhang, Senior Member, IEEE

I

1565

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

parameters for better optimizing DOP. As mentioned above,
adaptive/self-adaptive approach can dynamic adjust the
algorithm parameters for match the search requirements of
DOP in different evolutionary time. It should be promising if
proper adaptive parameter and operator strategies are used for
helping solve DOP. Inspired by the VRS idea and the
adaptive algorithm control idea for DOP, this paper proposes
an efficient DOP approach, based on the powerful adaptive
particle swarm optimization (APSO) [12] and the efficient
VRS strategy.

PSO is a simple yet efficient EC paradigm that has been
fast developed in recent years, mainly due to its simple
algorithm concept, easy program implementation, and fast
convergence speed to reasonable solution [13],. PSO has been
extensively studied in not only the static optimization
problem, but also in DOP in recent years [14]. Although
promising results can be obtained by PSO in various
static/dynamic problems, researchers still find that adaptively
control of the algorithm parameters and operators can
substantially improve the algorithm performance. Zhan et al.
[12] proposed the APSO algorithm by using a machine
learning based statistical analyze technique to discover the
useful information behind the population distribution data
and fitness data, so as to design an efficient adaptive
parameter and operator control strategy for PSO to improve
the performance in different optimization problems and
different evolutionary states. This adaptation scheme seems
to be much suitable for DOP for that DOP can be regarded as
different optimization problems when the landscape changes
during the evolutionary progress. Therefore, this paper adopts
APSO for solving DOP. Moreover, as VRS has been proven
to be efficient in helping EC algorithm to fast track the change
environment in DOP, this paper further applied VRS to
APSO, resulting in an efficient APSO/VRS algorithm for
solving DOP.

The rest of the paper is organized as follows. In Section II,
the background including DOP and APSO are briefly
described. Section III presents the APSO/VRS algorithm in
detail. Experiments and comparisons are conducted in
Section IV. Finally, conclusions are drawn in Section V.

II. BACKGROUND

A. DOP
DOP is a kind of optimization problem whose fitness

functions, constraints, or environmental parameters are with
possible changes. Specifically, a DOP with maximization
objective can be formulated as:

Max f(X, e) = f(x1, x2, …, xD, e) (1)
where X is the decision vector with D dimensions, and each

dimension xd is with the range [xd_min, xd_max]; f is the objective
function to be optimized, and e represents the environmental
conditions that are change over the evolutionary time.

B. PSO
PSO is one of the most important swarm intelligence

algorithms that was first introduced by Kennedy and Eberhart
in 1995. Mimicking the swarm behaviors in birds flocking
and fishes schooling, the PSO uses a simple mechanism that

lets the particle search for the global optimum in the solution
space under the influences of the its own and its companions’
experiences. In PSO, each particle i is associated with two
vectors, the velocity vector Vi = [vi1, vi2, …, viD] and the
position vector Xi = [xi1, xi2, …, xiD], where 1≤i≤N, N is the
population size and D is the dimension number of the
decision variables. The velocity and the position of each
particle are initialized by random vectors as Vi(0) and Xi(0)
within the corresponding ranges. In every generation g, the
fitness of particle i (denoted as fi(g)) will be evaluated at its
current position Xi(g). The best position during the run time is
stored to be the personal historical best position Pbesti = [pi1,
pi2, …, piD]. Among all the Pi in the whole swarm, the best
one is denoted as the globally best position Gbest = [g1, g2, …,
gD]. The vectors Vi and Xi are updated by Eqs. (2) and (3)
generation by generation through the guidance of Pbesti and
Gbest.

vid(g) = vid(g–1) + c1r1d(pid(g–1) – xid(g–1))
+ c2r2d(gd(g–1) – xid(g–1)) (2)

xid(g) = xid(g–1) + vid(g) (3)

where ω is the inertia weight, c1 and c2 are acceleration
coefficients, r1d and r2d are two random numbers
independently generated within [0, 1] for the dth dimension.
Recently, PSO has been studied for performance
enhancement by using adaptive strategy [12], orthogonal
learning strategy [13], aging mechanism [15], machine
learning techniques [16], and for applications as constraint
optimization [17], RFID network planning [18], and
multi-objective optimization [19].

C. APSO
Given its simple concept and effectiveness, PSO has

become a popular optimizer and has been widely applied in
practical problems. In traditional PSO, the inertia weight
parameter ω is linearly decreasing from 0.9 and 0.4,
respectively, while the acceleration coefficients c1 and c2 are
set to fixed value 2.0. However, the PSO performance is
criticized sometimes for the dependences on proper
parameter settings. In order to adaptive control the algorithm
parameters for release such dependence disadvantages, Zhan
et al. [12] proposed an APSO to enhance the adaptation of
PSO in different problems and different evolutionary states.
Herein we briefly describe the APSO algorithm in the
following parts.

(1) Evolutionary State Estimation Procedure

In APSO, the algorithm structure and flowchart are similar
to those of traditional PSO. However, in each generation,
before the update of particle’s velocity and position, an
evolutionary state estimation (ESE) procedure is first carried
out to identify the current state as exploration, exploitation,
convergence, or jumping-out. The ESE procedure is based on
a statistical analyze machine learning technique which can
extract useful information from the population distribution
data and population fitness data. For self-contain purpose, we
briefly describe the ESE procedure as follows: Firstly,
calculate the mean distance of each particle i to all the other

1566

particles according to the Euclidian distance by:
2

1
1,

1 ()
1

N
D k k

i i jk
j j i

d x x
N =

= ≠

= −
− ∑ ∑ (4)

Then calculate the ‘evolutionary factor’ ef as defined by:
min

max min

gd d
ef

d d
−

=
−

 ∈ [0, 1] (5)

where dg is the di of the globally best particle, while dmax and
dmin are the corresponding di of the particles with the maximal
and minimal di values among all the particles.

At last, classify the current evolutionary state as S1
(exploration), S2 (exploitation), S3 (convergence), or S4
(jumping-out) based on a fuzzy classification strategy. The
corresponding membership functions of the four fuzzy sets
are illustrated in Fig. 1. According to the membership
functions, the classification works as the following three
rules:

Figure 1. Fuzzy membership functions for four fuzzy evolutionary states.

Rule 1: The unique rule. If the ef value locates in a position
which is unique to a set, then classify the state as the
corresponding state. For example, ef=0.1 is unique to the S3
and ef=0.65 is unique to the S1. However, if the ef value
belongs to two sets, then we first classify the state first based
on Rule 2, and then Rule 3.

Rule 2: The stability rule. This rule classifies the state to
the same state as the last generation. For example, when
ef=0.45, the state can be S1 or S2, in this condition, if the last
state is S1, the current state is set to S1, if the last state is S2, the
current state is set to S2.

Rule 3: The neighborhood rule. When Rule 2 can not
classify the state, for example, when ef=0.45, but the last state
is neither S1 nor S2. In this condition, the states are classified
based on the ideal transfer sequence as S1 ⇒ S2 ⇒ S3 ⇒ S4 ⇒
S1 ⇒... So, as ef=0.45 indicates the current state can be S1 or
S2, if the last state is S3, the current state is set to S2 because is
the neighbor of S3, if the last state is S4, the current state is set
to S1.
(2) Parameters Adaptation and Elitist Learning Strategy

After the ESE procedure, the APSO parameter ω, c1, and c2
are adaptively controlled. According to the paper [12], the
value of the inertia weight ω is initialized to 0.9 and
adaptively set through identifying the state of evolution by the
sigmoid mapping as:

[]2.6

1() 0.4, 0.9 , [0,1]
1 1.5 efef ef

e
ω − ⋅= ∈ ∀ ∈

+
 (6)

For the acceleration coefficients c1 and c2, they are both
initialized as 2.0 and adaptively controlled according to
different evolutionary states by the strategies described as
[12]: “increasing c1 and decreasing c2 in an exploration state,

increasing c1 slightly and decreasing c2 slightly in an
exploitation state, increasing c1 slightly and increasing c2
slightly in a convergence state, decreasing c1 and increasing
c2 in a jumping-out state.” Herein, the increment and
decrement is a random generated value in range [0.05, 0.1].
However, if the “slightly” is used, the generated value is
multiplied 0.5 before adds to or subtract from the last c1 and c2
values. It should be noted that the values of c1 and c2 are
clamped in range [1.5, 2.5] and their sum is clamped in range
[3.0, 4.0], refer to [12] for more details.

Besides the above parameter adaptation, APSO has an
adaptive elitist learning strategy (ELS) which is only carried
out in the jumping-out state for the globally best particle to
jump out possible local optima. The ELS is to randomly
choose one dimension of globally best particle’s historical
best position, and then applied to it through a Gaussian
perturbation. If the new position is with better fitness value
than the current gBest, it will be accepted to replace the
current gBest. Otherwise, the new position can be used to
replace the particle with the worst fitness in the swarm. For
more details of the ELS, please refer to [12].

III. PROPOSED APSO/VRS ALGORITHM
In this section, the proposed APSO/VRS algorithm for

solving DOP is described. Firstly, the VRS operations are
presented, including the historical information collection in
the stability stage and the particle variables relocation in the
change stage. Then, the whole complete APSO/VRS
algorithm flowchart is presented.

A. VRS
The VRS was proposed by Woldesenbet and Yen [11] in

DEA to make the use of historical search information to guide
the individuals to relocate their position when a change
occurs. Here in this paper, when applying VRS to APSO,
some modifications should be made to match the
characteristics of PSO and APSO. In the following context,
the DOP is assumed to be a maximization problem as (1). The
VRS used in APSO is described as “historical information
collection in the stability stage” and “particle variables
relocation in the change stage”.

(1) Historical Information Collection in the Stability Stage

In every generation during the APSO process when the
environment is static, VRS collects the progresses of each
particle’s position and fitness during the run. The “dimension
progress” for the dth dimension of particle i is defined as:

() () (1)id id idx g x g x gΔ = − − (7)
where g=1, 2, 3,… is the current generation index. It is
interesting to notice that the ()idx gΔ is actually the vid(g) in
(3).

Besides the “dimension progress”, the “fitness progress”
of particle i is defined as:

() () (1)i i if g f g f gΔ = − − (8)
Based on the ()idx gΔ and ()if gΔ , the “average dimension

progress” ()idx gΔ and “average fitness progress” ()if gΔ of
the gth generation along the evolutionary process are defined

1567

as (9) and (10):
() (1)

()
1

id id
id

x g x g
x g

g
λ

λ
Δ + Δ −

Δ =
+

 (9)

() (1)
()

1
i i

i
f g f g

f g
g
λ

λ
Δ + Δ −

Δ =
+

 (10)

where (0)idxΔ and (0)ifΔ are initialized as 0. λ is a
parameter to control the influences of historical progress.
When λ=1, it means the “average” is actual the arithmetic
average of the progresses from the beginning to now. When
λ=0, it means the “average” is just the current progress,
without the consideration of progresses in previous
generations. Herein we adopt λ=0.5 as recommended in [11]
to indicate the historical information is considered but the
influences reduce as the time goes by.

It should be reminded that the operations (7)-(10) are
carried out in every generation between any two changes. It is
also interesting to remind that the result of (7) is actually the
velocity of the current generation.

 (2) Particle Variables Relocation in the Change Stage

When a change occurs, the above information collected
during the stability stage is used to guide particle variables
relocation. The operations are described as the following 7
steps.

Step 1: Calculate the “average position progress” of
particle i by considering its all dimensions. That is, using the
information in (9) to obtain the information in (11) as:

()2

1

D

i id
d

X x
=

Δ = Δ∑ (11)

As the step is carried out only in the environment change
time, the generation index g is not used in the following
equations. Therefore the idxΔ in (11) is the idxΔ of the last
generation just before the change occurs. Such situations are
similar in the following equations.

Step 2: Calculate the “average sensitivity” as the ratio of
“average fitness progress” in the objective space to the
“average position progress” in the decision space. That is,
using the information in (10) and (11) to obtain the
information in (12), as:

iX i

i

f
S

X
Δ

=
Δ

 (12)

Step 3: Calculate the “average sensitivity” of the dth
dimension as (13) which is obtained from the information of
(12), (9), and (11), as:

id ix X id

i

x
s S

X
Δ

= ⋅
Δ

 (13)

Step 4: Obtain the actual “fitness difference” of particle i in
the change as:

_ _e new e old
i i if f fΔ = − (14)

where _e new
if and _e old

if are the particle i’s fitness values after
and before change respectively.

Step 5: Obtain the relocation radius as:

_ _

_ _
_ _

, ,

min , ,

i

i i

e new e oldi
i iX

i e new e old
e new e oldbest i i

i iX X

f
f f

S
R

f f f
f f

S S

Δ⎧− ≤⎪
⎪Δ = ⎨ ⎧ ⎫− Δ⎪ >⎨ ⎬⎪ ⎩ ⎭⎩

 (15)

where _e new
bestf is the best fitness values in the new

environment.
Step 6: Obtain the relocation radius for each dimension as:

id

i

x
i id

id iX
i

R s x
r R

XS

Δ ⋅
Δ = = Δ ⋅ (16)

Step 7: Relocate the position of particle i as:
new old
id id idx x p r= + ⋅ Δ (17)

where p is a random number between [0, 1].
For more details about the constraints of idrΔ and new

idx
please refer to [11].

B. The Complete Flowchart
The complete flowchart of APSO/VRS is shown in Fig. 2.

It should be noted that APSO/VRS uses an archive with size 3
to store some best particles and their fitness values. In every
generation, if the fitness values change while the positions do
not change, the environment is regarded as change.

Figure 2. The flowchart of APSO/VRS.

IV. BENCHMARK TESTS AND COMPARISONS

A. Experimental Settings
In this paper, 5 typical DOPs with different characteristics

are used to test the performance of APSO/VRS. The 5 DOPs
are the MP1 and DF2-DF5 as detailed in [11]. In order to
investigate the advantages of APSO, we will compare
APSO/VRS with RVDEA proposed in [11]. Moreover,

1568

APSO/VRS is also compared with APSO without using the
VRS, to demonstrate the influences of VRS on APSO/VRS. It
should be noted that the results of RVDEA are directly
adopted from [11]. They were actually obtained by
RVDEA/Mem and RVDEA/Cluster which were both
enhanced RVDEA. In order to make fair comparisons, we use
the same performance metric, problem parameters, and
computational burden as in [11] to evaluate APSO and
APSO/VRS.

Firstly, the performance metric is the offline error variation,
which is the average of the error between the true optimal
fitness and the best fitness at each function evaluation (FE):

1

1 ()
FEs

offline true best
fe

e f f fe
FEs =

= −∑ (18)

Secondly, all the 5 DOP functions are with the same
problem parameters such as the search range, default peaks
number, dimensions, change frequency, and change severity,
as set in [11]. One thing should be noted is that the default
change frequency is set to 5000 FEs [11].

Thirdly, APSO and APSO/VRS use population with size
20, the maximal FEs is 500000, the same in [11]. The APSO
parameters are the same as proposed in [12]. Moreover, the
results are the average of 50 independent runs as in [11].

B. Experimental Results
For the MP1 problem, the peak number is set to be 1, 10, 20,

30, 40, 50, 100, and 200, respectively. Table I presents the
results of different DOP algorithms when solving MP1 with
different peaks number. The best results are in boldface.

TABLE I. MEAN OFFLINE ERROR OF DOP ALGORITHMS ON MP1
WITH DIFFERENT PEAKS NUMBER

Peaks
no.

RI25/
Mem

HM/
Mem

RVDEA/
Mem

RVDEA/
Cluster APSO APSO/

VRS
1 9.28 11.98 1.23 1.02 17.567 0.777
10 14.63 15.62 4.88 3.54 15.395 0.798
20 13.87 16.02 5.68 3.87 13.460 0.777
30 12.89 14.24 5.86 3.92 13.447 0.747
40 12.41 13.93 5.65 3.49 13.687 0.759
50 12.74 13.97 5.21 3.78 12.223 0.789

100 11.20 13.81 4.98 3.37 11.847 0.736
200 10.82 14.06 4.92 3.54 10.933 0.736

Results of RI25/Mem, HM/Mem, RVDEA/Mem, and RVDEA/Cluster are from [11].

TABLE II. MEAN OFFLINE ERROR OF DOP ALGORITHMS ON MP1
WITH 10 PEAKS AND DIFFERENT CHANGE FREQUENCIES

Cha. Freq.
(FEs)

RI25/
Mem

HM/
Mem

RVDEA/
Mem

RVDEA/
Cluster APSO APSO/

VRS
200 21.34 20.12 15.62 15.82 35.084 13.394
500 19.13 19.15 8.59 8.89 33.707 7.031

1000 18.78 18.84 6.51 7.21 29.615 4.087
2500 16.70 17.10 4.93 5.35 21.722 1.530
5000 14.63 15.62 4.01 4.88 14.957 0.759
10000 13.79 14.23 3.62 4.12 9.590 0.417

TABLE III. MEAN OFFLINE ERROR OF DOP ALGORITHMS ON DF2 WITH
DIFFERENT PEAKS NUMBER

Peaks
no.

RI25/
Mem

HM/
Mem

RVDEA/
Mem

RVDEA/
Cluster APSO APSO/

VRS
1 9.05 10.16 1.79 0.302 2.25 0.103
5 11.91 12.42 4.2 2.653 1.59 0.105
10 13.22 14.37 6.36 3.871 1.72 0.098
50 14.11 16.38 7.54 3.322 1.27 0.082

100 17.52 17.66 8.06 3.713 1.14 0.083
200 20.64 21.2 11.59 3.755 0.97 0.073

TABLE IV. MEAN OFFLINE ERROR OF DOP ALGORITHMS ON DF2 WITH
10 PEAKS AND DIFFERENT CHANGE FREQUENCIES

Cha. Freq.
(FEs)

RI25/
Mem

HM/
Mem

RVDEA/
Mem

RVDEA/
Cluster APSO APSO/

VRS
200 21.15 20.76 14.41 10.11 9.49 0.871
500 17.86 19.24 8.83 7.55 7.03 0.414
1000 15.99 16.28 6.98 4.41 5.15 0.230
2500 14.6 15.56 6.44 4.12 2.44 0.134
5000 13.22 14.37 6.36 3.87 1.50 0.087

10000 11.53 12.43 5.95 3.34 0.99 0.068

TABLE V. MEAN OFFLINE ERROR OF DOP ALGORITHMS ON DF3-DF5
WITH DIFFERENT PEAKS NUMBER

Problem Peaks
no.

RI25/
Mem

HM/
Mem

RVDEA/
Mem

RVDEA/
Cluster APSO APSO/

VRS

Linear
DF3

1 7.8 8.32 1.517 0.081 1.072 0.541
5 7.97 8.41 1.892 1.122 1.044 0.575
10 8.31 8.54 2.082 1.609 1.136 0.673
50 8.64 8.69 2.367 1.756 1.002 0.659

100 8.73 8.82 2.688 2.186 1.143 0.668
200 8.88 9.02 2.85 2.377 1.015 0.636

Random
DF4

1 9.21 9.19 1.268 0.106 0.514 0.351
5 9.44 9.53 1.764 1.446 1.836 1.195
10 9.64 9.71 2.303 1.791 1.255 1.300
50 9.67 10.03 2.675 1.862 0.999 0.712

100 10.32 10.55 2.904 1.985 0.715 0.615
200 10.56 10.78 3.023 2.149 0.551 0.499

Circular
DF5

1 9.86 10.08 1.687 0.158 0.611 0.397
5 10.1 10.39 2.022 0.967 0.603 0.478
10 10.61 10.83 2.445 1.162 0.594 0.494
50 10.7 10.9 2.664 1.368 0.581 0.467

100 10.92 10.95 2.864 1.743 0.597 0.510
200 11.1 11.18 3.191 2.04 0.590 0.490

TABLE VI. MEAN OFFLINE ERROR OF DOP ALGORITHMS ON DF3-DF5
WITH 10 PEAKS AND DIFFERENT CHANGE FREQUENCIES

Problem
Cha.
Freq.
(FEs).

RI25/
Mem

HM/
Mem

RVDEA/
Mem

RVDEA/
Cluster APSO APSO/

VRS

Linear
DF3

200 8.7 8.83 2.334 0.881 9.073 0.706
500 8.42 8.69 2.125 0.755 2.222 0.599

1000 8.31 8.54 2.083 0.609 1.084 0.669
2500 8.17 8.38 1.781 0.483 0.732 0.574
5000 8.08 8.22 1.622 0.299 0.623 0.565
10000 7.9 8.11 1.413 0.177 0.692 0.584

Random
DF4

200 9.93 9.88 2.752 1.026 6.205 6.874
500 9.76 9.78 2.611 0.982 2.352 2.926

1000 9.64 9.71 2.303 0.891 1.295 1.023
2500 9.42 9.59 2.142 0.769 0.826 0.709
5000 9.28 9.46 1.897 0.536 0.519 0.479
10000 9.17 9.33 1.662 0.247 0.376 0.392

Circular
DF5

200 10.9 11.05 2.989 1.583 0.786 0.572
500 10.75 10.96 2.788 1.457 0.648 0.466

1000 10.61 10.83 2.445 1.162 0.646 0.425
2500 10.47 10.72 2.121 0.783 0.556 0.449
5000 10.29 10.53 1.965 0.607 0.645 0.539
10000 10.22 10.41 1.792 0.340 0.433 0.493

Results of RI25/Mem, HM/Mem, RVDEA/Mem, and RVDEA/Cluster are from [11].

The results in Table I show that APSO/VRS obtained the
best results on MP1 with different peaks number. The related
good results of RVDEAs also indicate the advantages of VRS.
However, APSO/VRS is much better than RVDEAs,
demonstrating the advantages of combining both APSO and
VRS. The experiments on MP1 with 10 peaks under different
change frequencies were also conducted and the results are
presented in Table II. The table shows that the offline error
gets to be better and better as the change becomes less
frequent. This may be due to that the algorithm has enough
time to converge to the global optimum between any two
changes. The notable observation is that our proposed
APSO/VRS has the best performance among all the
algorithms under different environment change frequencies,
no matter fast or slow.

The results on DF2 with different peaks number and the

1569

results on DF2 with 10 peaks under different change
frequencies are presented in Tables III&IV, respectively. The
results in Table III show that with the peak number increasing,
the performance of traditional DEAs and RVDEAs becomes
poorer and poorer. However, things are different in APSO
and APSO/VRS. The performance is less influenced by the
peaks number, and is even observed to be better with a higher
number of peaks. This is an interesting observation in APSOs
and such advantages make the APSOs algorithm suitable for
complex DOPs. Moreover, the results in Table IV show that
both APSO and APSO/VRS outperform both the
RVDEA/Mem and RVDEA/Cluster under different change
frequencies for DF2, expect that RVDEA/Cluster is slightly
better than APSO when the frequency between two changes is
1000 FEs and 2000 FEs. APSO/RVS obtained the best results
on all the test cases with its results greatly better than those of
RVDEAs.

DF3, DF4, and DF5 are three DOPs with the same based
functions but with different dynamic characteristics, as
linearly, random, and circularly varying moving, respectively.
In Tables V&VI, the results on DF3-DF5 with different peaks
number and problems with 10 peaks under different change
frequencies are presented respectively. It shows that
RVDEA/Cluster only outperforms APSO/VRS on the
problems with 1 peak, while APSO/VRS archives much
better results than RVDEAs and other algorithms when the
peaks number increases. Moreover, APSO/VRS can obtain
competitive results on the problems under different change
frequencies. The performance of APSO/VRS is much better
when dealing with DF5.

V. CONCLUSION
In this paper, we have applied the VRS to APSO to develop

a promising algorithm for solving DOPs. The APSO
algorithm itself is suitable for tracking the changing
environment of DOP because it can online adaptively control
the parameters and operator to accelerate the optimization
speed and increase the population diversity according to
different search requirements. Moreover, VRS can collect the
historical information in the stability stage and use the
information in the change stage to guide the particles to
relocate in promising position for fast tacking the new global
optimal solution. Experiments have been conducted on 5
typical DOP benchmarks with different characteristics, to
demonstrate not only the APSO promising performance but
also the APSO/VRS outstanding performance.

REFERENCES
[1] Z. H. Zhan, J. Zhang, Y. Li, O. Liu, S. K. Kwok, W. H. Ip, and O.

Kaynak, “An efficient ant colony system based on receding horizon
control for the aircraft arrival sequencing and scheduling problem,”
IEEE Trans. Intell. Transp. Syst., vol. 11, no. 2, pp. 399-412, 2010.

[2] Z. H. Zhan, J. Zhang, K. J. Du, and J. Xiao, “Extended binary particle
swarm optimization approach for disjoint set covers problem in
wireless sensor networks,” in Proc. Conf. Technologies and
Applications of Artificial Intelligence, Nov. 2012, pp. 327-331.

[3] Z. H. Zhan, J. Zhang, and Zhun Fan, “Solving the optimal coverage
problem in wireless sensor networks using evolutionary computation
algorithms,” in Proc. of the 8th Int. Conf. Simulated Evolution and
Learning, 2010, pp. 166-176.

[4] M. Shen, Z. H. Zhan, W. N. Chen, Y. J. Gong, J. Zhang, and Y. Li,
“Bi-velocity discrete particle swarm optimization and its application to
multicast routing problem in communication networks,” IEEE Trans.
Ind. Electron. In press, 2014.

[5] Y. Jin and J. Branke, “Evolutionary optimization in uncertain
environments: A survey,” IEEE Trans. Evol. Comput., vol. 9, no. 3, pp.
303–317, 2005.

[6] T. T. Nguyen, S. X. Yang, and J. Branke, “Evolutionary dynamic
optimization: A survey of the state of the art,” Swarm and Evolutionary
Computation, vol. 6, pp. 1-24, 2012.

[7] K. Krishnakumar, “Micro-genetic algorithms for stationary and
nonstationary function optimization,” in Proc. SPIE Conf. Intell.
Control and Adaptive Syst., 1989, pp. 289–296.

[8] J. Branke, “Memory enhanced evolutionary algorithms for changing
optimization problems,” in Proc. IEEE Congr. Evol. Comput., 1999,
pp. 1875–1882.

[9] T. Blackwell and J. Branke, “Multi-swarms, exclusion, and
anti-convergence in dynamic environments,” IEEE Trans. Evol.
Comput., vol. 10, no. 4, pp. 459–472, Oct. 2006.

[10] T. Nanayakkara, K. Watanabe, and K. Izumi, “Evolving in dynamic
environments through adaptive chaotic mutation,” in Proc. Int. Symp.
Artif. Life Robot., 1999, pp. 520–523.

[11] Y. G. Woldesenbet and G. G. Yen, “Dynamic evolutionary algorithm
with variable relocation,” IEEE Trans. Evol. comput., vol. 13, no. 3, pp.
500-513, Jun. 2009.

[12] Z. H. Zhan, J. Zhang, Y. Li, and H. S. H. Chung, “Adaptive particle
swarm optimization,” IEEE Trans. Syst., Man, and Cybern. B., vol. 39,
no. 6, pp. 1362-1381, Dec. 2009.

[13] Z. H. Zhan, J. Zhang, Y. Li, and Y. H. Shi, “Orthogonal learning
particle swarm optimization,” IEEE Trans. Evol. Comput., vol. 15, no.
6, pp. 832-847, Dec. 2011.

[14] S. Yang and C. Li, “A clustering particle swarm optimizer for locating
and tracking multiple optima in dynamic environments,” IEEE Trans.
Evol. Comput., vol. 14, no. 6, pp. 959-974, Dec. 2010.

[15] W.Chen, J. Zhang, Y.Lin, N.Chen, Z. Zhan, H.Chung, Y. Li, and Y. Shi,
“Particle swarm optimization with an aging leader and challengers,”
IEEE Trans. Evol. Comput., vol. 17, no. 2, pp. 241-258, 2013.

[16] J. Zhang, Z. H. Zhan, Y. Lin, N. Chen, Y. J. Gong, J. H. Zhong, H.
Chung, Y. Li, and Y. H. Shi, “Evolutionary computation meets
machine learning: A survey,” IEEE Comput. Intell. Mag., vol. 6, no. 4,
pp. 68-75, Nov. 2011.

[17] Y. J. Gong, J. Zhang, H. Chung, W. N. Chen, Z. H. Zhan, Y. Li, and Y.
Shi, “An efficient resource allocation scheme using particle swarm
optimization,” IEEE Trans. Evol. Comput., vol. 16, no. 6, pp. 801-816,
Dec. 2012.

[18] Y. J. Gong, M. Shen, J. Zhang, O. Kaynak, W. N. Chen, and Z. H.
Zhan, “Optimizing RFID network planning by using a particle swarm
optimization algorithm with redundant reader elimination,” IEEE
Trans. Ind. Informa., vol. 8, no. 4, pp. 900-912, Nov. 2012.

[19] Z. H. Zhan, J. Li, J. Cao, J. Zhang, H. Chung, and Y. H. Shi, “Multiple
populations for multiple objectives: A coevolutionary technique for
solving multiobjective optimization problems,” IEEE Trans. Cybern.,
vol. 43, no. 2, pp. 445-463, April. 2013.

1570

