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Abstract—Evolutionary algorithms (EAs), a large class of gen-
eral purpose optimization algorithms inspired from the natural
phenomena, are widely used in various industrial optimizations
and often show excellent performance. This paper presents an
attempt towards revealing their general power from a statistical
view of EAs. By summarizing a large range of EAs into the
sampling-and-learning framework, we show that the framework
directly admits a general analysis on the probable-absolute-
approximate (PAA) query complexity. We particularly focus on
the framework with the learning subroutine being restricted
as a binary classification, which results in the sampling-and-
classification (SAC) algorithms. With the help of the learning
theory, we obtain a general upper bound on the PAA query com-
plexity of SAC algorithms. We further compare SAC algorithms
with the uniform search in different situations. Under the error-
target independence condition, we show that SAC algorithms can
achieve polynomial speedup to the uniform search, but not super-
polynomial speedup. Under the one-side-error condition, we show
that super-polynomial speedup can be achieved. This work only
touches the surface of the framework. Its power under other
conditions is still open.

I. INTRODUCTION

In many practical optimization problems, the objective
functions are hidden or too complicated to be analyzed. Under
this kind of circumstances, direct optimization algorithms are
appealing, which follows the trial-and-error style with some
heuristics. Evolutionary algorithms (EAs) [3] are a large family
of such algorithms. The family includes genetic algorithms
[17], evolutionary programming [26], evolutionary strategies
[5], and also covers other nature-inspired heuristics including
particle swarm optimization [25], ant colony optimization [11],
estimation of distribution algorithms [29], etc.

Theoretical studies of EAs have been developed rapidly in
the recent decades, particularly noticeable of the blooming of
running time analysis [32], [2], [20]. With the development
of several analysis techniques (e.g. [18], [44], [9], [37]), EAs
have been theoretically investigated on problems from simple
synthetic ones (e.g. [13]) to combinatorial problems (e.g.
[35]) as well as NP-hard problems (e.g. [43]). During these
analyses, effects of EAs components have been disclosed [42],
including the crossover operators (e.g. [22], [31], [8], [33]), the
population size (e.g. [21], [36], [40], [6]), etc. Measures of the
performance also have developed to cover the approximation
complexity (e.g. [19], [16], [43], [28]), the fixed-parameter
complexity (e.g. [27], [38]), the complexity under fixed-budget
computation [23], etc. While most of these analyses studied
instances of EAs on problem cases, general performance

analysis may even be more desired, as the application of EAs
is nearly unlimited. The famous No-Free-Lunch Theorem [41]
used a quite general framework of EAs and gave a general
conclusion that any two EAs are with the same performance
(at least on discrete domains) given no prior knowledge of
the problem distribution, of which the general running time is
exponential [44]. When the complexity of a problem class is
bounded, a general convergence lower bound can be derived
for a class of EAs [15]. For more general EAs, the Black-
Box model can derive the best possible performance [12], [1],
[30], [10]. We have learned that a general performance analysis
relies on a general framework of EAs.

It has been noticed that various implementations of EAs
share a common structure that consists of a cycle of sampling
and model building [47]. In this work, we propose to study
the sampling-and-learning (SAL) framework. EAs commonly
employ some heuristic to reproduce solutions, which is cap-
tured by the sampling step of SAL; and they also distinguish
the quality of the reproduced solutions to guide the next
sampling (e.g., genetic algorithms remove a portion of the
worst solutions), which is captured by the learning step of
SAL. The SAL framework can simulate a wide range of EAs
as well as other heuristic search methods, by specifying the
sampling and the learning strategies.

We evaluate this framework by the probable-absolute-
approximate (PAA) query complexity. PAA complexity counts
the number of fitness evaluations before reaching to an ap-
proximate solution with a probability, which is close to the
intuitive evaluation of EAs in practice. We show that the
SAL framework immediately admits a general PAA upper
bound. For a specific version of SAL that uses classification
algorithms, named the SAC algorithms, we obtain a tighter
PAA upper bound by incorporating the learning theory results.
Further comparing with the uniformly random search, we
disclose that, under the error-target independence condition,
SAC algorithms can polynomially reduce the complexity of
the uniform search, but not super-polynomially; while the
one-side-error condition further allows a super-polynomial
improvement. This study shows that the classification error
is an important effecting factor, which was not noticed before.
We also notice that a good learning algorithm may not be
necessary for a good SAL algorithm.

The rest of this paper is organized as follows: Section II
introduces the SAL framework. In Section III, we compare the
SAC algorithms, a specific version of the SAL framework, with
the uniform search. Finally, Section IV concludes the paper.
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II. THE SAMPLING-AND-LEARNING FRAMEWORK

In this paper, we consider general minimization problems
f . We always denote X as the whole solution space which an
algorithm will search among. In the analysis of this paper,
we consider X ⊆ Rn is a compact set (in the Euclidean
space, the compact set is equivalent to the bounded and
closed set) and f : X → R is a continuous function. Thus
there must exist at least one solution x∗ ∈ X such that
f(x∗) = minx∈X f(x). We use D to denote sub-regions of
X and define |D| =

∫
D

1dx. For the sake of convenience
for the analysis, we assume without loss of generality that
|X| = 1 since X is a bounded and closed set. Denote
Dα = {x ∈ X|f(x) ≤ α} for any scaler α, UX as the uniform
distribution over X , T and D as the probability distributions.
Besides, by poly(· · · ), we mean the set of all polynomials
with the related variables, and by superpoly(· · · ), we mean
the set of all functions that grow faster than any function in
poly(· · · ) with the related variables.

Definition 1 (Minimization Problem) A minimization problem
consists of a continuous solution space X and a continuous
function f : X → R, where X ⊆ Rn and X is a compact set.
The goal is to find a solution x∗ ∈ X such that f(x∗) ≤ f(x)
for all x ∈ X .

Since X is a compact set and f is a continuous function,
there must exist one solution x′ ∈ X such that f(x′) =
maxx∈X f(x). Namely, f is bounded in [f(x∗), f(x′)]. There-
fore, in the rest of the paper, we assume without loss of
generality that the value of f is bounded in [0, 1], i.e., ∀x ∈ X :
f(x) ∈ [0, 1]. Given an arbitrary function g with bounded value
range over the input domain, the bound can be implemented
by a simple normalization f(x) = g(x)−g(x∗)

maxx′ g(x
′)−g(x∗) . Thus

we assume in the rest of this paper that every minimization
problem has its minimum value 0.

In real-world applications, we expect EAs to achieve some
good enough solutions with a not quite small probability,
which corresponds to approximation (e.g. [43]) and proba-
bilistic performance (e.g. [45]). Combining the two, we study
the probable-absolute-approximate (PAA) query complexity,
which is the number of fitness evaluations that an algorithm
takes before reaching an approximate quality, as defined in
Definition 2. The PAA query complexity closely reflects our
intuitive evaluation of EAs in practice.

Definition 2 (Probable-Absolute-Approximate Query Com-
plexity) Given a minimization problem f , an algorithm A, and
any 0 < δ < 1 as well as any approximation level α∗ > 0, then
the probable-absolute-approximate (PAA) query complexity is
the number of calls to f(·) such that, with probability at least
1− δ, A finds a solution x with f(x) ≤ α∗.

A. The General Framework

Most EAs share a common trial-and-error structure with
several important properties:

a) directly access the solution space, generate solutions,
and evaluate the solutions;

b) the generation of new solutions depends only on a
short history of past solutions;

c) both “global” and “local” heuristic operators are
employed to generate new solutions.

Algorithm 1 The sampling-and-learning (SAL) framework
Input:

α∗ > 0: Approximation level
T ∈ N+: Number of iterations
m0, . . . ,mT ∈ N+: Number of samples
λ ∈ [0, 1]: Balancing parameters
L: Learning algorithm
T : Distribution transformation of hypothesis

Procedure:
1: Collect S0 = {x1, . . . , xm0

} by i.i.d. sampling from the
uniform distribution over X

2: x̃ = argminx∈S0
f(x)

3: Initialize the hypothesis h0

4: T0 = ∅
5: for t = 1 to T do
6: Construct Tt = {(x1, y1), . . . , (xmt−1 , ymt−1)},

where xi ∈ St−1 and yi = f(xi)
7: ht = L(Tt, Tt−1, ht−1, t), the learning step
8: Initialize St from Tt
9: for i = 1 to mt do

10: Sample xi from
{
Tht , with probability λ
UX , with probability 1− λ

11: St = St ∪ {xi}
12: end for
13: x̃ = argminx∈St∪{x̃} f(x)
14: end for
15: return x̃

We present a sampling-and-learning (SAL) framework in Al-
gorithm 1 to capture these properties. The SAL framework
starts from a random sampling in Step 1 like all EAs. Steps 2
and 13 record the best-so-far solutions throughout the search.
SAL follows a cycle of learning and sampling stages. In Step 7,
it learns a hypothesis ht (i.e., a mapping from X to R) via the
learning algorithm L. Note that the learning algorithm allows
to take the current data set Tt, the last data set Tt−1, and the
last hypothesis ht−1 into account. Different EAs may make
different use of them. Step 8 initializes the sample set for the
next iteration. The sample set can be initialized as an empty
set, or to preserve some good solutions from the previous
iteration. In Steps 9 to 12, it samples from the distribution
transformed from the hypothesis as well as from the whole
solution space balanced by a probability. The distribution Tht
implies the potential good regions learned by ht.

It should be noted that the SAL framework is not a concrete
optimization algorithm but an abstract summary of a range
of EAs, nor does the learning stage of the framework imply
an accurate learning. We explain in the following how we
could mimic several different EAs by the SAL framework. It is
noticeable that the explanation is not a rigorous proof, but an
intuitive illustration that the SAL framework can correspond
to various implementations.

The genetic algorithms (GAs) [17] deal with discrete
solution spaces consisting of solutions represented as a vector
of vocabulary. The element-wise mutation operator changes
every element of a solution to a randomly selected word from
the vocabulary with a probability. Converting this operation
probability to the probability of generating a certain solution,
let Pm(x′|x) be the probability of generating the solution
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x′ from x via the element-wise mutation, thus Pm(x′|x) =
( p
|V |−1 )‖x

′−x‖H (1 − p)n−‖x
′−x‖H , where n is the length of

the solution, |V | is the vocabulary size, ‖ ·‖H is the Hamming
distance, and p is the probability of changing the element
that is commonly 1

n . It is easy to calculate that Pm(x′|x)
is 1

poly(n) only when ‖x′ − x‖H is a constant (and other-
wise Pm(x′|x) = 1

superpoly(n) ). Given any set of solutions
S = {x1, x2, . . . , xm}, we divide the search space into two
sets that Xpoly(S) = {x ∈ X | ∃x′ ∈ S : ‖x− x′‖H = O(1)}
and Xsuper(S) = X − Spoly(S). SAL can simulate the
GA as that, for every population S of the GA, SAL learns
the hypothesis h that circles the area Xpoly(S), and uses
Th as Th(x) =

∑
x∈S Pm(x′|x)∑

x′′∈Xpoly(S)

∑
x∈S Pm(x′′|x) for solutions

in Xpoly(S). And for the area Xsuper(S), SAL uses the
uniform distribution to approximate the sampling with super-
polynomially small probability. In this way, SAL can mimic
the behavior of the GA. We have discussed a simplified GA.
Most GAs also employ the crossover operators, which is a kind
of local search operator and thus the resulting distribution can
be compiled into the local distribution. Many GAs also employ
a probabilistic selection, which can be simulated by selecting
the initial solution set St in the same way.

It has been argued that model-based search algorithms
including the estimation of distribution algorithms (EDAs)
[29], the ant colony optimization algorithms (ACOs) [11], the
cross-entropy method [34] can be unified in the sampling and
model building framework [47], which respectively correspond
to the sampling and learning steps in the SAL framework.
The particle swarm optimization algorithms (PSOs) [25] is
particularly interesting since the simulation is perhaps the most
sophisticated. A PSO algorithm maintains a set of “flying”
particles each with a location (representing a solution) and a
velocity vector. The location of a particle in the next iteration
is determined by its current location and current velocity, and
the velocity is updated by the current velocity and the locations
of the “globally” and “personally” best particles. To simulate
a PSO, a SAL algorithm needs to use the initial hypothesis
resulting the same sampling distribution as that from the initial
velocity. Let St be an ordered set to contain the globally best
particle and the personally best particles in Step 8. The learning
algorithm in the SAL algorithm can be set to utilize the current
data set and the last data set to recover the velocity, and
utilize the last hypothesis and the globally and personally best
particles recorded through St to generate the new hypothesis
that simulates the movement of particles in the PSO.

Overall, the SAL framework captures the trial-and-error
structure as well as the global–local search balance, while
leaving the details of the local sampling distribution being
implemented by different heuristics.

The SAL framework directly admits a general upper bound
of the PAA query complexity, as stated in Theorem 1.

Theorem 1 For any minimization problem f and any approx-
imation level α∗ > 0, with probability at least 1 − δ, a SAL
algorithm will output a solution x with f(x) ≤ α∗ using mΣ

number of queried samples bounded from above by

O

(
m0+max

{ 1

(1− λ)Pru + λPrh
ln

1

δ
,
∑T

t=1
mPrht

})
,

where Pru =
∫
Dα∗
UX(x) dx is the success probability of

uniform sampling,

Prh =

∑T
t=1mt ·Prht∑T

t=1mt

=

∑T
t=1mt ·

∫
Dα∗
Tht(x) dx∑T

t=1mt

is the average success probability of sampling from the learnt
hypothesis, mPrht

is the required sample size realizing Prht ,
and Dα∗ = {x ∈ X|f(x) ≤ α∗}.
Proof. m0 is the initial sample size. In every iteration, we
need mPrht

samples to realize the probability Prht (generally
the higher the probability the larger the sample size, but it
depends on the concrete implement of the algorithm), thus∑T
t=1mPrht

number of samples is naturally required. We
prove the rest of the bound.

Let’s consider the probability that after T iterations, the
SAL algorithm outputs a bad solution x such that f(x) > α∗.
Since the x is the best solution among all sampled examples,
the probability is the intersection of events that every step of
the sampling does not generate such a good solution.
1. For the sampling from uniform distribution over the whole
solution space X , the probability of failure is 1−Pru.
2. For the sampling from the learnt hypothesis ht according
to the distribution Tht , the probability of failure is denoted as
1−Prht .
Since every sampling is independent, we can expand the
probability of overall failures, i.e., for any solution x belongs
to the all sampled examples,

Pr(f(x) > α∗)

= (1−Pru)m0 ·
T∏
t=1

mt∑
i=0

(
mt

i

)
(1− λ)iλmt−i(1−Pru)i(1−Prht)

mt−i

= (1−Pru)m0

∏T

t=1
(1− (1− λ)Pru − λPrht)

mt

≤ e−Pru·m0

∏T

t=1
e−((1−λ)Prumt+λPrhtmt)

= e−(Pru·m0+(1−λ)
∑T
t=1 Prumt+λ

∑T
t=1 Prhtmt)

≤ e−((1−λ)
∑T
t=1 Prumt+λ

∑T
t=1 Prhtmt)

= e−((1−λ)Pru+λPrh)
∑T
t=1mt ,

where the first inequality is by (1− x) ≤ e−x for x ∈ [0, 1].

In order that Pr(f(x) > α∗) < δ, we let
e−((1−λ)Pru+λPrh)

∑T
t=1mt < δ, which solves that∑T

t=1mt = O
(

1
(1−λ)Pru+λPrh

ln 1
δ

)
.

B. The Sampling-and-Classification Algorithms

To further unfold the unknown term Prh in Theorem 1,
we focus on a simplified version of the SAL framework that
employs a classification algorithm in the learning stage. We
call this type of algorithms as the sampling-and-classification
(SAC) algorithms. In the learning stage of a SAC algorithm,
as described in Algorithm 2, the learning algorithm first uses
a threshold to transform the data set into a binary labeled data
set, and then invokes the classification algorithm to learn from
the binary data set. sign[·] is defined as sign[v] = +1 if v ≥
0 and −1 if v < 0. Note that SAC algorithms use the current
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Algorithm 2 Learning sub-procedure for the sampling-and-
classification (SAC) algorithms
Input:

T, T ′, h′, t: The input variables
α1 > . . . > αt: Preset threshold parameters
C: Classification algorithm

Procedure:
1: Construct B = {(x1, z1), . . . , (x|T |, z|T |)} from that,

for all i and all (xi, yi) ∈ T , zi = sign[αt − yi]
2: h = C(B)
3: return h

data set T in the learning algorithm, but not the last data set
T ′ and the last hypothesis h′. Putting Algorithm 2 into the
framework of Algorithm 1, we always set St = ∅ for SAC,
and Th will be some distribution over the positive area of h.

By these specifications, we can have a general PAA per-
formance for SAC algorithms. According to Theorem 1, we
need to estimate a lower bound of Prh, i.e., how likely
the distribution Tht will lead to a good solution. Recall
Dα = {x ∈ X|f(x) ≤ α} for any scaler 0 < α < 1.
Denote Dh = {x ∈ X|h(x) = +1} for any hypothesis h,
UDh as the uniform distribution over Dh, and DKL as the
Kullback-Leibler (KL) divergence. KL-divergence measures
how difference one distribution departs from another one. For
probability distributions P and Q of two continuous random
variables, DKL(P ||Q) =

∫ +∞
−∞ ln

(
p(x)
q(x)

)
p(x)dx, where p(x)

and q(x) are the probability densities of P and Q. Let ∆ denote
the symmetric difference operator of two sets. We have a lower
bound of the success probability as in Lemma 1.

Lemma 1 For any minimization problem f , any approximation
level α∗ > 0, any hypothesis h, the probability that a solution
sampled from an arbitrary distribution Th defined on Dh will
lead to a solution in Dα∗ is lower bounded as

Prh ≥
|Dα∗ ∩Dh|
|Dh|

− |Dα∗ ∩Dh|
√

1

2
DKL(Th‖UDh)

Proof. Let I[·] denote the indicator function, namely,
I[true] = 1 and I[false] = 0. The proof starts from the
definition of the probability,

Prh =

∫
Dh

Th(x) · I[x ∈ Dα∗ ]dx

=

∫
Dh

(Th(x)− UDh(x) + UDh(x)) · I[x ∈ Dα∗ ]dx

=
|Dα∗ ∩Dh|
|Dh|

+

∫
Dh

(Th(x)− UDh(x)) · I[x ∈ Dα∗ ]dx

≥ |Dα∗ ∩Dh|
|Dh|

−
∫
Dh

sup
x′
|Th(x′)−UDh(x′)|·I[x∈Dα∗ ]dx

≥ |Dα∗ ∩Dh|
|Dh|

−
√

1

2
DKL(Th‖UDh)

∫
Dh

I[x ∈ Dα∗ ]dx

=
|Dα∗ ∩Dh|
|Dh|

− |Dα∗ ∩Dh|
√

1

2
DKL(Th‖UDh),

where the last inequality is by Pinsker’s inequality.

We cannot pre-determine Dh, but we know that h is derived
by a binary classification algorithm from a data set which is
labeled according to the threshold parameter α. For the binary
classification, we know that the generalization error, which is
the expected misclassification rate, can be bounded above by
the training error, which is the misclassification rate in the
seen examples, as well as the generalization gap involving the
complexity of the hypothesis space [24], as in Lemma 2. The
V C(H) is the VC-dimension measuring the complexity of H.

Lemma 2 ([24]) Let H = {h : X → {−1,+1}} be the
hypothesis space containing a family of binary classification
functions and V C(H) = d, if there exist m samples i.i.d.
from X according to some fixed unknown distribution D, then,
∀ h ∈ H and ∀ 0 < η < 1, the following upper bound holds
true with probability at least 1− η:

εD ≤ ε̂D +
√

8m−1
(
d log (2emd−1) + log (4η−1)

)
where εD is the expected error rate of h over D and ε̂D is the
error rate in the sampled examples from D, and when ε̂D = 0,

εD ≤ 2m−1
(
d log (2emd−1) + log (2η−1)

)
.

Again by Pinsker’s inequality, we know that the error εD
under the distribution D can be converted to the error εU under
the uniform distribution, as

εU ≤
εD

1−
√

1
2DKL(D‖U)

≤
ε̂D +

√
8m−1

(
d log (2emd−1) + log (4η−1)

)
1−

√
1
2DKL(D‖U)

,

where we only take the event that the generalization inequality
holds with probability 1 − η into account. For simplicity, we
denote the right-hand part as Ψm,η

ε̂D,d,DKL(D‖U), which decreases
with m and η, and increases with ε̂D, d, and DKL(D‖U).

We can use this inequality to eliminate the Dh in Lemma
1. In every iteration of SAC algorithms, there are mt samples
collected, which make the error of ht bounded.

Theorem 2 For any minimization problem f , any constant 0 <
η < 1, and any approximation level α∗ > 0, the average success
probability of sampling from the learnt hypothesis of any SAC
algorithm is lower bounded as

Prh ≥
1− η∑T
t=1mt

T∑
t=1

mt

(
|Dα∗ | − 2Ψmt,η

ε̂Dt ,d,DKL(Dt‖UX)

|Dαt |+ Ψmt,η
ε̂Dt ,d,DKL(Dt‖UX)

−|Dα∗ |
√

1

2
DKL(Tht‖UDht )

)
,

where Dt = λTht + (1 − λ)UX is the sampling distribution
at iteration t, ε̂Dt is the training error rate of ht, d is the VC-
dimension of the learning algorithm.

Proof. By set operators,

|Dα∗ ∩Dht | = |Dα∗ ∪Dht | − |Dα∗∆Dht |
≥ |Dα∗ ∪Dht | − |Dα∗∆Dαt | − |Dαt∆Dht |
= |Dα∗ ∪Dht | − |Dα∗∆Dαt | − εUX ,t
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= |Dα∗ ∪Dht |+ |Dα∗ | − |Dαt | − εUX ,t,

where ∆ is the symmetric difference operator of two sets and
εUX ,t is the expected error rate of ht under UX . The first
inequality is by the triangle inequality, and the last equation
is by that Dα∗ is contained in Dαt .

Since
∣∣|Dht | − |Dαt |

∣∣ ≤ |Dht∆Dαt | = εUX ,t, we can
bound |Dht | as |Dαt |+ εUX ,t ≥ |Dht | ≥ |Dαt | − εUX ,t.

Now, we can apply Lemma 1, and the success probability
of sampling from Dht is lower bounded as

Prht ≥
|Dα∗ ∩Dht |
|Dht |

− |Dα∗ ∩Dht |
√

1

2
DKL(Tht‖UDht )

≥ 1

|Dht |
· (|Dα∗ ∪Dht |+ |Dα∗ | − |Dαt | − εUX ,t)

− |Dα∗ | ·
√

1

2
DKL(Tht‖UDht )

≥ 1

|Dht |
· (|Dht |+ |Dα∗ | − |Dαt | − εUX ,t)

− |Dα∗ | ·
√

1

2
DKL(Tht‖UDht )

≥ |Dα∗ | − 2εUX ,t
|Dαt |+ εUX ,t

− |Dα∗ |
√

1

2
DKL(Tht‖UDht ).

Substituting this lower bound and the probability 1− η of the
generalization bound into Prh obtains the theorem.

Combining Theorem 1 and Theorem 2 results an upper
bound on the sampling complexity of SAC algorithms. Al-
though the expression looks sophisticated, it can still reveal
relative variables that generally effect the complexity. One
could design various distributions for Th to sample poten-
tial solutions, however, without any a priori knowledge, the
uniform sampling is the best in terms of the worst case
performance. Meanwhile, without any a priori knowledge, a
small training error at each stage from a learning algorithm
with a small VC-dimension can also improve the performance.

III. SAC ALGORITHMS V.S. UNIFORM SEARCH

When EAs are applied, we usually expect that they can
achieve a better performance than some baselines. The uniform
search can serve as a baseline, which searches the solution
space always by sampling solutions uniformly at random. In
other words, the uniform search is the SAL algorithm with
λ = 0. In this section, we study the performance of SAC
algorithms relative to the uniform search.

SAC algorithms will degenerate to uniform search if
λ = 0. Thus, it is easy to know that the PAA query complexity
of uniform search is

Θ

(
1

Pru
· ln 1

δ

)
.

Contrasting this with Theorem 1, we can find that how much a
SAC algorithm improves from the uniform search depends on
the average success probability Prh that relies on the learnt
hypothesis. A SAC algorithm is not always better than the
uniform search. Without any restriction, Prh can be zero and
thus the SAC algorithm is worse. We are then interested in

investigating the conditions under which SAC algorithms can
accelerate from the uniform search.

A. A Polynomial Acceleration Condition

Condition 1 (Error-Target Independence) In SAC algorithms,
for any t and any approximation level α∗ > 0, when sampling
a solution x from UX , the event x ∈ Dht∆Dαt and the event
x ∈ Dα∗ are independent.

We call SAC algorithms that are under the error-target
independence condition as SACI algorithms. The condition is
defined using the independence of random variables. From the
set perspective, it is equivalent with

|Dα∗ ∩ (Dαt∆Dht)| = |Dα∗ | · |(Dαt∆Dht)|.

Under the condition, we can bound from below the probability
of sampling a good solution, as stated in Lemma 3.

Lemma 3 For SACI algorithms, it holds for all t that

|Dα∗ ∩Dht |
|Dht |

≥ |Dα∗ |(1− εUX ,t)
|Dαt |+ εUX ,t

,

where εUX ,t is the expected error rate of ht under UX .

Proof. For the numerator,

|Dα∗ ∩Dht | = |Dα∗ | − |Dα∗ ∩ (Dαt∆Dht)|
= |Dα∗ | − |Dα∗ | · |Dαt∆Dht |
≥ |Dα∗ |(1− εUX ,t),

where the first equation is by Dα∗ ⊆ Dαt , and the second
equality is by the error-target independence condition.

For the denominator, we consider the worst case that all
errors are out of Dht and thus |Dht | ≤ |Dαt |+ εUX ,t.

Similar to Theorem 2, we can bound from below the
average success probability of sampling from the positive area
of the learnt hypothesis,

Prh ≥
1− η∑T
t=1mt

∑T

t=1
mt

( |Dα∗ |(1− εUX ,t)
|Dαt |+ εUX ,t

− |Dα∗ |
√

1

2
DKL(Tht‖UDht )

)
.

We compare the uniform search with the SACI algorithms
using uniform sampling within Dht , i.e., DKL(Tht‖UDht ) =
0, which is an optimistic situation. Then by Lemma 3,

Prh ≥
1− η∑T
t=1mt

∑T

t=1
mt

( |Dα∗ |(1− εUX ,t)
|Dαt |+ εUX ,t

)
.

By plugging εUX ,t ≤
εDt

1−
√

1
2DKL(Dt‖UX)

= Q · εDt , where εDt
is the expected error rate of ht under the distribution Dt =

λUDht + (1− λ)UX and Q = (1−
√

1
2DKL(Dt‖UX))−1,

Prh ≥
1− η∑T
t=1mt

∑T

t=1
mt

( |Dα∗ |(1−Q · εDt)
|Dαt |+Q · εDt

)
. (1)

Note from Lemma 2 that, the convergence rate of the error
is Õ( 1

m ) ignoring other variables and logarithmic terms from
Lemma 2. We assume that SACI uses learning algorithms
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with convergence rate Θ̃( 1
m ). We then find that such SACI

algorithms cannot exponentially improve the uniform search
in the worst case, as Proposition 1.

Proposition 1 Using learning algorithms with convergence rate
Θ̃( 1

m ), ∀f, α∗ > 0 and 0 < δ < 1, with probability at
least 1 − δ, if the query complexity of the uniform search is
superpoly( 1

α∗ , n,
1
δ ), the query complexity of SACI algo-

rithms is also superpoly( 1
α∗ , n,

1
δ ) in the worst case.

Proof. The query complexity of the uniform search being
superpoly( 1

α∗ , n,
1
δ ) implies that

1

Pru
=

1

|Dα∗ |
= superpoly(

1

α∗
, n,

1

δ
).

For the SACI algorithms, if we ask the learning algorithm
to produce a classifier with error rate 1

superpoly( 1
α∗ ,n,

1
δ )

, it will
require superpoly( 1

α∗ , n,
1
δ ) number of samples in the worst

case, so that the proposition holds. To avoid this, we can only
expect the error rate to be 1

poly( 1
α∗ ,n,

1
δ )

in order to keep the
query complexity at each iteration small.

Meanwhile, we can only have T = poly( 1
α∗ , n,

1
δ ) it-

erations otherwise we will have super-polynomial number of
samples.

Following the optimistic case of Eq.(1), since Q ≥ 1, we
consider one more optimistic situation that Q = 1. Let η = 0.5.
Even though, in the worst case that |Dht | = |Dαt | + QεDt ,
we can have that

Prh =
1

2
∑T
t=1mt

∑T

t=1
mt

( |Dα∗ |(1− εDt)
|Dαt |+ εDt

)
=

1

poly( 1
α∗ , n,

1
δ )
poly(

1

α∗
, n,

1

δ
)

1
superpoly( 1

α∗ ,n,
1
δ )

1
poly( 1

α∗ ,n,
1
δ )

=
1

superpoly( 1
α∗ , n,

1
δ )
,

where it is noted that as long as εDt = poly( 1
α∗ , n,

1
δ )

the value of |Dαt | cannot affect the result. Then substitut-
ing Prh into Theorem 1 obtains the total samples mΣ =
superpoly( 1

α∗ , n,
1
δ ) that proves the proposition.

The proposition implies that the SACI algorithms can face
the same barrier as that of the uniform search. Nevertheless, the
SACI algorithms can still improve the uniform search within
a polynomial factor. We show this by case studies.

On Sphere Function Class:
Given the solution space Xn = {(x1, . . . , xn) | ∀i =
1, . . . , n : xi ∈ [0, 1]}, the Sphere Function class is F n

sphere =

{fx
∗,n

sphere|∀x∗ ∈ Xn} where

fx
∗,n

sphere(x) =
1

n
‖x− x∗‖22 =

1

n

n∑
i=1

(xi − x∗i )2.

Obviously, |Xn| = 1, fx
∗,n

sphere ∈ [0, 1] is convex, and the
optimal value is 0. It is important to notice that the volume of a
n-dimensional hyper-sphere with radius r is π

n
2

Γ(n2 +1)r
n, where

Γ(s) =
∫∞

0
ts−1e−t dt, so that |Dα| = π

n
2

Γ(n2 +1) (nα)n/2 =

Cn(α)n/2 for any α > 0, where Cn = Θ
(
(2πe)

n
2 /
√
πn
)
,

since the radius leading to fx
∗,n

sphere(x) = 1
n ‖x− x

∗‖22 ≤ α is√
nα.

Note that Pru = |Dα∗ | = Cn(α∗)n/2 > (α∗)n/2. It
is straightforward to obtain that, minimizing any function in
F n
sphere using the uniform search, the PAA query complexity

with approximation level α∗ > 0 is, with probability at least
1− δ,

O

(
(

1

α∗
)
n
2 ln

1

δ

)
.

We assume Lsphere is a learning algorithm that searches in
the hypothesis space Hn consisting of all the hyper-spheres in
Rn to find a sphere that is consistent with the training data, and
meanwhile the sphere satisfies the error-target independence
condition. Then a SAC algorithm using Lsphere is a SACI
algorithm. We simply assume that the search of the consistent
sphere is feasible. Note that V C(Hn) = n+ 1.

Lemma 4 For any ht, denote εUX as the error rate of ht under
the uniform distribution over X and εDt as the error rate of ht
under the distribution Dt = λUDht + (1− λ)UX , then it holds
that

εUX ≤
1

1− λ
εDt ,

where λ ∈ [0, 1] and UDht is the uniform distribution over Dht .

Proof. Let I[·] be the indicator function and D6= be the area
where ht makes mistakes. We split D6= into D+

6= = D 6= ∩Dht

and D−6= = D6= \D+
6= . We can calculate the probability density

that Dt(x) = λ 1
|Dht |

+ (1 − λ)
|Dht |
|X|

1
|Dht |

for any x ∈ D+
6= ,

and Dt(x) = (1 − λ)
|X\Dht |
|X|

1
|X\Dht |

= (1 − λ) 1
|X| for any

x ∈ D−6= . Thus,

εDt =

∫
X

Dt(x)I[ht makes mistake on x]dx

=

∫
D6=

Dt(x)dx =

∫
D+
6=

Dt(x)dx+

∫
D−6=

Dt(x)dx

≥
∫
D+
6=

(1− λ)
1

|X|
dx+

∫
D−6=

(1− λ)
1

|X|
dx

= (1− λ)εUX ,

which proves the lemma.

We then obtain the PAA complexity as in Proposition 2.

Proposition 2 For any function in F n
sphere and any approxima-

tion level α∗ > 0, SACI algorithms can achieve the PAA query
complexity, for any n ≥ 2,

O

(
(

1

α∗
)
n−1
2 log

1√
α∗

(ln
1

δ
+ n log

1√
α∗

)

)
with probability at least 1− δ.

Proof. We choose αt = 1
2t for all t, and use the number of

iterations T to approach |DαT | =
√
|Dα∗ |, for the approxi-

mation level α∗. Solving this equation with the sphere volume

results in T = log (Cn)
1
n√

α∗
. We let the SACI algorithm run

T = log 1√
α∗

number of iterations. We assume log 1√
α∗

is an
integer for simplicity, which does not affect the generality.
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In iteration t, using Lsphere, we want the error of the
hypothesis ht, εDt , to be 1

2t . Since the Lsphere produces a
hypothesis with zero training error, from

εDt =
1

2t
≤ 2m−1

(
d log (2emd−1) + log (2η−1)

)
,

we can solve the required sample size with η being a constant,

mt ≤ mT = O(nT2T ) = O

(
n√
α∗

log
1√
α∗

)
using the inequality log x ≤ cx−(log c+1) for any x > 0 and
any c > 0. We thus obtain

∑T
t=1mt = O

(
n√
α∗

(log 1√
α∗

)2
)

.

We then follow Eq.(1). We use uniform sampling within
Dht , then Q = 1

1−λ . Letting the SACI algorithms use mT

number of samples in every iteration, λ = 0.5 and η = 0.5,
we have

Prh ≥
1

2 log 1√
α∗

∑log 1√
α∗

t=1

( |Dα∗ |(1−QεDt)
|Dαt |+QεDt

)
≥ Cn(α∗)

n
2

2 log 1√
α∗

∑log 1√
α∗

t=1

1− 2 1
2t

Cn( 1
2t )

n
2 + 2 1

2t

≥ Cn(α∗)
n
2

2 log 1√
α∗

1

2(Cn + 2)

∑log 1√
α∗

t=2
2t

=
Cn(α∗)

n
2

2 log 1√
α∗

( 1√
α∗
− 2)

(Cn + 2)
= Ω

( (α∗)
n−1
2

log 1√
α∗

)
.

So we obtain the query complexity from Theorem 1

O

(
m0 + max

{
(

1

α∗
)
n−1
2 log

1√
α∗

ln
1

δ
,
n√
α∗

(log
1√
α∗

)2
})

which is O
(

( 1
α∗ )

n−1
2 log 1√

α∗
(ln 1

δ + n log 1√
α∗

)
)

using a
constant m0 and the max is upper bounded by plus.

We can see that the SACI algorithms can accelerate the
uniform search by a factor near 1√

α∗
/ log 1√

α∗
. The closer the

approximation, the more the acceleration.

On Spike Function Class
As modeling EAs, SAL algorithms should be expected to be
applied on the complex problems, while the Sphere Function
class only consists of convex functions. Inherited from EAs,
SAL algorithms can handle problems with some local optima.
We show this by comparing SACI with the uniform search on
the Spike Function class defined below.

Define regions A1,k = [ 3k
20 ,

3k+2
20 ] where 0 ≤ k ∈ N ≤ 6

and A2,k = ( 3k−1
20 , 3k

20 ) where 1 ≤ k ∈ N ≤ 6, and define
g(x) over [0, 1] that

g(x) =

{
x− k

10 , x ∈ A1,k

−x+ k
5 , x ∈ A2,k

Let Xn = [− 1
2 ,

1
2 ]n be the n-dimensional solution space.

The Spike Function class is Fnspike = {fx
∗,n

spike|∀x∗ ∈ Xn},
where, for all x ∈ Xn

fx
∗,n

spike(x) = g(
1√
n
‖x− x∗‖2).

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

x

f(
x)

Fig. 1. The landscape of function f0,1
spike(x) in [−1, 1].

It is easy to know minx∈Xn f(x) = 0 and maxx∈Xn f(x) ≤ 1
for any f ∈ Fnspike. For any α > 0, we can bound the area
|Dα| ∈ [Cnα

n, Cn(3α)n], where Cn = Θ
(
(2πe)

n
2 /
√
πn
)
.

The Spike functions are non-convex and non-differentiable
with some local optima, as depicted in Figure 1.

Minimizing any function in Fnspike using the uniform
search, the PAA query complexity with approximation level
α∗ > 0 is, with probability at least 1− δ,

O

(
(

1

α∗
)n ln

1

δ

)
.

We configure the SACI algorithm to use the learning
algorithm Lspike that searches the smallest sphere covering all
the samples labeled as positive, of which the VC-dimension is
n+ 1. Note that since the function is non-convex, the Lspike
may output a sphere that also covers some negative examples,
and thus with some training error. Using this SACI algorithm to
minimize any member in the function class Fnspike, we obtain
the PAA query complexity as in Proposition 3.

Proposition 3 For any function in Fnspike and any approxima-
tion level α∗ > 0, SACI algorithms can achieve the PAA query
complexity

O

(
(

1

α∗
)n−

1
2 log

1√
α∗

(
ln

1

δ
+ n log

1√
α∗

))
,

with probability at least 1− δ.

Proof. For any function in Fnspike, we note that the function is
convex in Dα when α is smaller than 0.05. We set αt = 1

2t , so
that when t ≥ 5, the SACI algorithm with Lspike will deal with
a convex function and thus the training error is zero. We use
the number of iterations T to achieve |DαT | =

√
|Dα∗ |. Since

|Dα| ∈ [Cnα
n, Cn(3α)n], we can obtain T ≥ log 3(Cn)

1
2n√

α∗
. We

let the SACI algorithm run T = log 1√
α∗

number of iterations
and assume that log 1√

α∗
is an integer.

In iteration t ≥ 5, we want the error of the hypothesis ht,
εDt , to be 1

2t . Since the training error can be zero, we can solve
the required sample size mt ≤ mT = O

(
n√
α∗

log 1√
α∗

)
. We

thus obtain
∑T
t=1mt = O

(
n√
α∗

(log 1√
α∗

)2
)

.

We then follow Eq.(1). We use uniform sampling within
Dht , then Q = 1

1−λ . Letting the SACI algorithm use mT

number of samples in every iteration, λ = 0.5 and η = 0.5,
we have

Prh ≥
1

2 log 1√
α∗

∑log 1√
α∗

t=5

( |Dα∗ |(1−QεDt)
|Dαt |+QεDt

)
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≥ Cn(α∗)n

2 log 1√
α∗

∑log 1√
α∗

t=5

1− 2 1
2t

Cn( 3
2t )

n + 2 1
2t

≥ Cn(α∗)n

2 log 1√
α∗

15
16

3Cn + 2

∑log 1√
α∗

t=5
2t

=
15

32

Cn(α∗)n

log 1√
α∗

2√
α∗
− 25

3Cn + 2
= Ω

( (α∗)n−
1
2

log 1√
α∗

)
.

So we obtain the query complexity from Theorem 1

O

(
(

1

α∗
)n−

1
2 log

1√
α∗

(
ln

1

δ
+ n log

1√
α∗

))
as the max is upper bounded by plus.

We observe from the proof that the non-convexity can result
in non-zero training error for the learning algorithms in SACI
algorithms, and thus the search process is interfered. But as
long as the non-convexity is not quite severe, like the Spike
Functions, SACI algorithms are not significantly affected, and
can still be better than the uniform search by a factor near

1√
α∗
/ log 1√

α∗
.

B. A Super-Polynomial Acceleration Condition

We have shown in Proposition 1 that SACI algorithms using
common classification algorithms cannot super-polynomially
improve from the uniform search in the worst case. An
interesting question is therefore raised that when the super-
polynomial improvement is possible.

Learned from the proof of Proposition 1, a straightforward
way is to use a powerful classification algorithm with exponen-
tially improved sample complexity, i.e., Õ(ln 1

ε ), so that only a
polynomial number of samples is required to achieve a super-
polynomially small error. Several active learning algorithms
can do this in some circumstances (e.g. [7], [39]). Applying
active learning algorithms needs a small modification of SACI.
In iteration t, instead of sampling from the uniform distribution
in Dht , the sampling is guided by the classifier. Nevertheless,
the achieved error is still evaluated under the original (uni-
form) distribution. Using such learning algorithms denoted as
Lln
sphere, we achieve Proposition 4 showing a super-polynomial

acceleration from the uniform search on Sphere Functions.

Proposition 4 For any function in F n
sphere and any approxima-

tion level α∗ > 0, SACI algorithms using Lln
sphere can achieve

the PAA query complexity, for any n ≥ 2,

O

(
log

1

α∗
(ln

1

δ
+ n log

1

α∗
)

)
with probability at least 1− δ.

Proof. We choose αt = 1
2t for all t, and use the number of

iterations T to approach |DαT | = |Dα∗ |, for the approximation
level α∗. Solving this equation with the sphere volume results

in T = log (Cn)
1
n

α∗ . We let the SACI algorithm run T = log 1
α∗

number of iterations. We assume log 1
α∗ is an integer for

simplicity, which does not affect the generality.

In iteration t, using Lln
sphere, we want the error of the

hypothesis ht, εDt , to be 1
2tn/2

. Since the Lln
sphere has the

sample complexity O(ln 1
ε ), we ask for a hypothesis with zero

training error, which requires the sample size mt = O(tn) =
O(n log 1

α∗ ) with η being a constant.

We thus obtain
∑T
t=1mt = O

(
n
(

log 1
α∗

)2)
.

Following Eq.(1), we use uniform sampling within Dht ,
then Q = 1

1−λ . Letting the SACI algorithms use mT number
of samples in every iteration, λ = 0.5 and η = 0.5, we have

Prh ≥
1

2 log 1
α∗

∑log 1
α∗

t=1

( |Dα∗ |(1−QεDt)
|Dαt |+QεDt

)
≥ Cn(α∗)

n
2

2 log 1
α∗

∑log 1
α∗

t=1

1− 2( 1
2t )

n
2

Cn( 1
2t )

n
2 + 2( 1

2t )
n
2

≥ Cn(α∗)
n
2

2 log 1
α∗

1

2(Cn + 2)

∑log 1
α∗

t=2

1

( 1
2t )

n
2

≥ Cn(α∗)
n
2

2 log 1
α∗

( 1
α∗ )

n
2

(
1− (2α∗)

n
2

)
2(Cn + 2)

= Ω
( 1

log 1
α∗

)
.

So we obtain the query complexity from Theorem 1, letting
m0 be a constant,

O

(
max

{
log

1

α∗
ln

1

δ
, n(log

1

α∗
)2
})

which is O
(
log 1

α∗ (ln 1
δ + n log 1

α∗ )
)
.

Meanwhile, we are more interested in exploring conditions
under which the super-polynomial improvement is possible
without requiring such powerful learning algorithms. For this
purpose, we find the one-side-error condition.

Condition 2 (One-Side-Error) In SAC algorithms, for any t and
any x ∈ X , if x ∈ Dht∆Dαt , it must hold that x ∈ Dαt .

The condition implies that ht can only make false-negative
errors, i.e., wrongly classifies positive samples (inside Dαt )
as negative, but no false-positive errors. One practical way to
approach this condition is through the cost-sensitive classifiers
[14], [46] with a very large mis-classification cost for negative
samples. We call SACI algorithms that are further under this
condition as SACII algorithms.

Lemma 5 For SACII algorithms, it holds for all t that

|Dht | ≤ |Dαt |.

Proof. Note that for training ht we label the samples from
Dαt as positive and label the rest as negative. Since ht only
makes false-negative errors, i.e., every error is in Dαt , we have
Dht ⊆ Dαt , which implies the lemma.

Lemma 5 shows that the one-side-error condition controls
the size |Dht | to be bounded by |Dαt |. Thus we can refine
Lemma 3 as Lemma 6.

Lemma 6 For SACII algorithms, it holds for all t that

|Dα∗ ∩Dht |
|Dht |

≥ |Dα∗ |(1− εUX ,t)
|Dαt |

,

where εUX ,t is the expected error rate of ht under UX .

Proof. Since the SACII algorithm is also a SACI algorithm,
incorporating Lemma 5 into Lemma 3 proves the lemma.

We assume that L+
sphere is a learning algorithm that not

only behaviors like Lsphere but also results a hypothesis
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satisfying the one-side-error condition. Then a SACI algorithm
using L+

sphere is a SACII algorithm. We again assume that
L+
sphere is feasible, of which V C(Hn) = n+ 1. We then use

this SACII algorithm on the Sphere Function class, on which
SACI algorithms bear a super-polynomial PAA complexity, and
obtain Proposition 5.

Proposition 5 For any function in F n
sphere and any approxima-

tion level α∗ > 0, SACII algorithms can achieve the PAA query
complexity

O

(
log

1

α∗
(ln

1

δ
+ n)

)
,

with probability at least 1− δ.

Proof. By Lemma 6,

|Dα∗ ∩Dht |
|Dht |

≥ |Dα∗ |(1−QεDt)
|Dαt |

,

where εDt is the error of ht under its original distribution Dt,
and Q is the resulting factor of changing the distribution.

Let αt = 1
2t for all t, and use the number of iterations

T to achieve |DαT | = |Dα∗ |, for the approximation level α∗.
Solving this equation with the sphere volume results in T =

log (Cn)
1
n

α∗ . We let the SACII algorithm run T = log 1
α∗ number

of iterations. We assume log 1
α∗ is an integer for simplicity,

which does not affect the generality.

In iteration t, using L+
sphere, we want the error of the

hypothesis ht, εDt , to be a constant 1
2 . Since L+

sphere produces
a hypothesis with zero training error, to achieve εDt ≤ 1

2
it requires the number of samples in O(n). We thus obtain∑T
t=1mt = O

(
n log 1

α∗

)
.

We then follow Eq.(1). We use uniform sampling within
Dht , then Q = 1

1−λ . Letting the SACII algorithm use mT

number of samples in every iteration, λ = 1
3 and η = 0.5, we

have

Prh ≥
1

2 log 1
α∗

∑log 1
α∗

t=1

( |Dα∗ |(1−QεDt)
|Dαt |

)
≥ 1

2 log 1
α∗

∑log 1
α∗

t=1

( 1
4 |Dα∗ |
|Dαt |

)
=
Cn(α∗)

n
2

8 log 1
α∗

∑log 1
α∗

t=1

1

Cn( 1
2t )

n
2

≥ Cn(α∗)
n
2

8 log 1
α∗

(
( 1
α∗ )

n
2 − 1

)
Cn

= Ω
( 1

log 1
α∗

)
.

So we obtain from Theorem 1 the query complexity of the
SACII algorithm, letting m0 be a constant,

O

(
max

{
log

1

α∗
ln

1

δ
, n log

1

α∗

})
,

which is O
(
log 1

α∗ (ln 1
δ + n)

)
.

Proposition 5 shows a super-polynomial improvement from
the complexity of the uniform search. It is interesting to note
that we only ask for a random guess classification (i.e., error
rate 1

2 ) in the proof of Proposition 5.

IV. DISCUSSIONS AND CONCLUSIONS

This paper describes the sampling-and-learning (SAL)
framework which is an abstract summary of a range of EAs.
The SAL framework allows us to investigate the general
performance of EAs from a statistical view. We show that
the SAL framework directly admits a general upper bound
on the PAA query complexity, which is the number of fitness
evaluations before an approximate solution is found with a
probability.

Focusing on SAC algorithms, which are SAL algorithms
using classification learning algorithms, we give a more spe-
cific performance upper bound, and compare with uniform
random search. We find two conditions that drastically effect
the performance of SAC algorithms. Under the error-target
independence condition, which assumes that the error of the
learned classifier in each iteration is independent with the
target approximation area, the SAC algorithms can obtain a
polynomial improvement over the uniform search, but not a
super-polynomial improvement. We demonstrate the improve-
ment using the Sphere Function class consisting of convex
functions as well as the Spike Function class consisting of
non-convex functions. Further incorporating the one-side-error
condition, which assumes that the classification only makes
false-negative errors, the SAC algorithms can obtain a super-
polynomial improvement over the uniform search.

On the one hand, our results show that the property of
classification error in SAC algorithms greatly impacts the
performance, which was never touched in previous studies,
as far as we know. We expect the work could guide the design
of novel search algorithms. On the other hand, how to satisfy
the conditions is a non-trivial practical issue.

In the case study on the Sphere Function class, we find
that a learning error rate no more than the random guess is
sufficient to achieve a super-polynomial improvement under
the conditions. This implies that an accurate learning algo-
rithm may not be necessary for a good SAC algorithm. It is
interesting that a recent work [4] also noticed that a learnable
concept is not necessary for the trial-and-error search with a
computation oracle.

In this paper, the SAC algorithms are analyzed in contin-
uous domains, while the main body of theoretical studies of
evolutionary algorithms focuses on the discrete domains. Thus
understanding the performance of SAC algorithms in discrete
domains is our future work. Moreover, in the SAC algorithms
analyzed in this paper, the learning algorithm does not utilize
the last hypothesis or the last data set. It would be interesting to
investigate whether considering them will bring any significant
difference.
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