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Abstract—Memetic algorithms (MAs) have been 
recognized as an effective algorithm framework for solving 
optimization problems. However, the exiting work mainly 
focused on the improvement for search operators. Local 
Search Depth (LSD) is a crucial parameter in MAs, which 
controls the computing resources assigned for local search. 
In this paper, an Adaptive Local Search Depth (ALSD) 
strategy is proposed to arrange the computing resources for 
local search according to its performance dynamically. A 
Memetic Algorithm with ALSD (MA-ALSD) is presented, its 
performance and the effectiveness of ALSD are testified via 
experiments on the LSGO test suite issued in CEC’2012.  

Keywords—Memetic algorithms; Local Search Depth; 
Differential Search Algorithm; Solis and Wets’ Algorithm  

I. INTRODUCTION  
    Many real-life problems from different fields can be 
formulated as continuous optimization problems. These 
problems have been tackled using Evolutionary 
Algorithms (EAs) [1]-[4]. Unfortunately, most of the 
available evolutionary algorithms suffer from “the curse 
of dimensionality” [5], their performance deteriorates 
quickly with the grown of dimensionality [6]. Therefore, 
it’s important to study the way to improve the ability of 
solving Large Scale Global Optimization (LSGO) 
problems for modern Evolutionary Algorithms. 

Memetic Algorithms (MAs) are a kind of population-
based stochastic heuristics composed of an evolutionary 
framework accompanied with a set of problem-specific 
Local Search (LS) operators [7]. The earliest formal 
definition has been presented in [8]. In recent decades, 
MAs have been used to solve various optimization 
problems and shown good performances, therefore have 
been becoming a popular idea for various engineering 
optimization tasks. [9]-[12]. 

In MAs, the population-based EAs are the fundamental 
framework which is mainly responsible for the global 
search. Various effective EAs have been designed and 
adopted in MAs to guarantee its effectiveness. Local 
search is also an indispensable component in MAs. 
Therefore, various novel LS methods have presented or 
adopted in recent years. In [13], an adaptive MA (AMA) 
is presented which utilizes the composite benefits of 
differential evolution (DE) for global search and Q-

learning for local refinement. In AMA, four variants of 
DE, including the state-of-the-art self-adaptive DE 
algorithm, are selected to enhance the global search. Q-
learning is treated as an effective LS method when 
embedded into the outstanding variants of DE. To solve 
multi-objective optimization problems, a new LS strategy, 
the Hill Climber with Sidestep (HCS), is proposed for 
multi-objective memetic algorithm (MOEA) in [14]. The 
HCS is a novel iterative search procedure, which has the 
ability to move toward and along the (local) Pareto set 
utilizing the geometry of the directional cones of the 
optimization problems. In [15], the opposition-based 
learning (OBL) strategy is proposed as the LS method to 
form MAs with Differential Evolution. It is observed that 
the above works on MAs pay more attention to the 
refinement among EA and LS methods. Few works is on 
arranging the computing resources of EA and LSs in MA 
to improve the performance of MAs.  

The concept of Local Search Depth (LSD) was first 
proposed by Hart [17], when studied the parameterization 
of MAs. LSD means the available computing resources 
for LS during each generation cycle. In this paper, the 
parameter of LSD is used to arrange the computing 
resources between Global Search (GS) and Local Search 
(LS). Most MAs use fixed value of LSD. However, for 
different problems and search stages, the values of LSD 
need to be changed to fit different landscapes. Obviously, 
fixed value of LSD is not a good choice and the value of 
LSD is often hard to adjust manually. In this paper, an 
Adaptive Local Search Depth (ALSD) strategy is 
proposed to adjust the value of LSD automatically 
according to the performance of GS and LS on various 
fitness landscapes. The performances of GS and LS are 
measured by the Average Fitness Increment (AFI) [16] in 
each iteration. According to the comparison of AFI, the 
value of LSD is adjusted so as to achieve an appropriate 
distribution of computing resources for GS and LS. In this 
paper, LSD is measured by the number of Fitness 
Evaluations (FEs). If the AFI of LS outperforms that of 
GS, the FEs for LS will be increased in next search cycle, 
otherwise decreased. In MA-ALSD, the Differential 
Search Algorithm (DSA) [21], [22] is adopted as the 
Global Search operator, and Solis and Wets’ algorithm 
(SW), a randomized hill-climber algorithm with self-
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adapted search size [26], as the Local Search operator. To 
testify the performance of MA-ALSD for LSGO problems, 
it has been applied to the LSGO test suite issued in 
CEC’2012 [18] and obtained superior performance 
compared with the state-of-the-art algorithms  [19], [20], 
[27]. 

The rest of this paper is organized as follows: In section 
II, the algorithm MA-ALSD, including the proposed 
Adaptive Local Search Depth strategy, is described. 
Experimental results and analysis are shown in section III. 
Finally, the paper is concluded in section IV. 

II. MEMETIC ALGORITHM WITH ADAPTIVE 
LOCAL SEARCH DEAPTH  

In this section, the ALSD strategy is proposed and is 
embedded into MA to form MA-ALSD for LSGO 
problems. According to AFI, ALSD is able to distribute 
the computing resources for LS dynamically, so as to 
obtain a good balance between global and local search. In 
the framework of MA-ALSD, Differential Search 
Algorithm (DSA) [21], [22] is selected as the global 
search, and Solis and Wets’ (SW) as the local search. 

A. The Framework of MAs  
MAs attempt to combine EAs and LS, so as to make 

full use of the exploration ability of EAs and the 
exploitation ability of LS. So far, various MAs have been 
proposed to solve optimization problems from various 
application domains. In the framework of MAs, the 
tradeoff between global and local search is the pressing 
problem. Distributing computing resources dynamically 
between GS and LS in each iteration is a promising way to 
solve this problem [23], [24], [29], [30]. In this paper, 
ALSD is proposed to achieve the goal. 

B. Differential Search Algorithm  
Differential Search Algorithm (DSA) [21] is a new and 

effective evolutionary algorithm for solving real-valued 
numerical optimization problems, which is inspired by the 
Brownian-like random-walk movement and the migration 
of organisms.  

DSA is a population-based algorithm and the initial 
population )0(pop  is randomly generated by using (1). 
       )(),(pop )0( lbubDNPrandlb −∗+=            (1) 
In (1), function ),( DNPrand returns a matrix with 
random value between 0 and 1, NP and D stand for 
population size and the dimensionality of the problem 
respectively, lb and ub denote the lower and upper 
bounds of the candidate solutions in each dimensionality. 

For population )(pop G , a new population )(stopover G  is 
achieved by mutation operator, which is defined as 
follows: 
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In (2), )(Gdirection is obtained by randomly changing 
the permutation of individuals in )(pop G . Map is a 
randomly generated {0, 1} matrix of NP×D for selecting 
the dimensions of each individual for mutation. R denotes 
the step size of each mutation, whose value is produced by 
a gamma-random number generator. 

The selection operation in DSA is to choose the better 
individuals between )(stopover G  and )(pop G  greedily so 

as to form the new population )1(pop +G , just like 
Differential Evolution (DE) [25].  

C. Solis and Wets’ Algorithm  
Solis and Wets’ algorithm (SW) [26] is selected as the 

Local search, whose performance has been verified in 
many large scale optimization algorithm [27], [28].The 
classic SW is a randomized hill-climber with an adaptive 
and scalable step size. SW starts with a single point x  and 
a deviation d is generated from a normal distribution, 
whose standard deviation is given by a parameter σ  and 
expectation is 0. If either dx +  or dx −  is better,  x  is 
replaced by the better point and a record of success is 
made. Otherwise x  remains the same and a record of 
failure is made. When the record of success exceeds the 
threshold (MaxSuccesses), σ is increased to obtain a 
larger step size and reset the record of success. Similarly, 
when the record of failure exceeds the threshold 
(MaxFailures), σ  is decreased to obtain a smaller step 
size and reset the record of failure. 

D. Adaptive Local Search Depth and MA-ALSD  
As we know, local search is the vital component in the 

framework of MAs. The concept of Local Search Depth 
(LSD) was proposed with the question “How long should 
the local search be run?” in [17]. It is defined as the 
running time of LS in each iteration of MAs framework. 
In this paper, LSD is measured by the number of Fitness 
Evaluations (FEs) and it’s used to arrange computing 
resources in MAs framework. According to empirical 
experience, one tend to achieve better results by adjusting 
the value of LSD according to the fitness landscape of 
task undergoing. For different problems and search stages, 
MAs needs different LSD to balance the ability of 
exploration and exploitation. Obviously, it’s impossible to 
adjust LSD manually during the run of algorithm. 
Therefore, an Adaptive Local Search Depth (ALSD) 
strategy is needed. To adaptively adjust LSD, we need a 
method to evaluate the performance of GS and LS. The 
AFI (Average Fitness Increment) is adopted as the 
evaluation method, whose definition of AFI is as follow: 

FEs
Fitness
Δ

Δ=AFI                               (3) 

In (3), FitnessΔ  is the fitness increment after 
conducting GS or LS during each search cycle, and 

FEsΔ  is the consumption of the number of FEs. 
After each search cycle, a comparison will be made 

between GS and LS on AFI. If the AFI of LS outperforms 
that of GS, the number of FEs for LS will be increased in 
next search cycle, otherwise the number of FEs for LS 
will be decreased. The adjustment of FEs is completed by 
adding or subtracting a predetermined value. In each 
search cycle, the best individual is selected for LS 
operation. The ALSD strategy is embedded into MA 
framework together with DSA and SW to form our 
algorithm MA-ALSD, whose pseudo code is shown in 
Fig .1.  
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The pseudo code of MA-ALSD 
Initialize the population pop(G) with NP individuals and evaluate the 

fitness  
  Set up parameters for DSA and SW 
  Initialize the ALSD: Max_FEs_SW=400 
while FEs< = Max_FEs-NP 

     Apply DSA as the global search 
         Generate the matrix of map and step size R= 1/gamrnd(1,0.5) 
         Perform mutation operator to generate )(stopover G  
         Select the better individuals greedily from pop and stopover to 

form the new population )1(pop +G  
         Return the best individual gbest  
     Apply SW to gbest  
         while FEs_SW <= Max_FEs_SW-2 
               Update gbest with Solis and Wets’ Algorithm 
               Adjust Success, Failures and deviation 
          end while 

Adjust Max_FEs_SW 
Calculate AFI_L and AFI_G 

if AFI_L>AFI_G 
    Increase Max_FEs_SW by k 

else 
    Decrease Max_FEs_SW by k 

end if  
end while     
Save gbest 

 
Fig. 1. Pseudo code of MA-ALSD 

III. EXPERIMENTAL STUDIES A 
To examine the performance of MA-ALSD, the 

specific test-suite is selected, proposed in the special 
session on Large Scale Continuous Global Optimization at 
CEC’2012. The test-suit with twenty benchmark functions 
can be classified to five types of functions as follows: 

1. Separable Functions (3) 
(a)  F1: Shifted Elliptic Function 
(b)  F2: Shifted Rastrigin’s Function 
(c)  F3: Shifted Ackley’s Function 

2. Single-group m-nonseparable Functions (5) 
(a)  F4: Single-group Shifted and m-rotated Elliptic 

Function 
(b)  F5: Single-group Shifted and m-rotated 

Rastrigin’s Function 
(c)  F6: Single-group Shifted and m-rotated 

Ackley’s Function 
(d)  F7: Single-group Shifted m-dimensional 

Schwefel’s Problem 1.2 
(e)  F8: Single-group Shifted m-dimensional 

Rosenbrock’s Function 
3.  

m2
D group m-nonseparable Functions (5) 

(a)  F9: 
m2
D -group Shifted and m-rotated Elliptic 

Function 
(b)  F10: 

m2
D -group Shifted and m-rotated 

Rastrigin’s Function 
(c)  F11: 

m2
D -group Shifted and m-rotated Ackley’s 

Function 
(d)  F12: 

m2
D -group Shifted m-dimensional 

Schwefel’s Problem 1.2 
(e)  F13: 

m2
D -group Shifted m-dimensional 

Rosenbrock’s Function 

4.  
m
D -group m-nonseparable Functions (5) 

(a)  F14: 
m2
D -group Shifted and m-rotated Elliptic 

Function 
(b)  F15: 

m2
D -group Shifted and m-rotated 

Rastrigin’s Function 
(c)  F16: 

m2
D -group Shifted and m-rotated Ackley’s 

Function 
(d)  F17: 

m2
D -group Shifted m-dimensional 

Schwefel’s Problem 1.2 
(e)  F18: 

m2
D -group Shifted m-dimensional 

Rosenbrock’s Function 
5.  Fully-nonseparable Functions (2) 

(a)  F19: Shifted Schwefel’s Problem 1.2 
(b)  F20: Shifted Rosenbrock’s Function 

A. Comparison with Fixed LSD 
To testify the effectiveness of the ALSD strategy, a 

performance comparison is made between Adaptive LSD 
(ALSD) and fixed LSD (FLSD).  The depth value of 
FLSD is set 400, which also works as the initial value of 
ALSD. The results of MA-ALSD with FEs=3·106 and 
dimension=1000 are compared with MA-FLSD, as is 
presented in Table I. For all separable and fully-
nonseparable functions, MA-ALSD outperforms MA-
FLSD. On most of single-group m-nonseparable and D/m-
group m-nonseparable functions, MA-ALSD achieves 
better results. On F5, F10, F11, the results of MA-ALSD 
are similar to those of MA-FLSD. As to F1, F7, F12, F17, 
MA-ALSD has obvious advantage than MA-FLSD. All 
above show the effectiveness of ALSD. 

B. Results of MA-ALSD 
The algorithm runs 25 times on each test function 

independently and the best, worst, median, mean and 
standard derivation of MA-ALSD are computed. The 
dimension of each function is 1000 and the values are 
recorded with FEs=1.2·105, 6·105, and 3·106 ，as shown 
in Table II. According to the results, we can make the 
following conclusions: 

   For most of the functions, the differences 
between mean and median value are very small, 
which shows that our algorithm has strong 
robustness.   

    As to F1, F6, F7, F9, F12, F13, F14, and F17, 
the performance of MA-ALSD achieves 
obvious improvement, with the increase of FEs. 
Therefore, if these functions have more 
computing resource, they will obtain better 
performance. 

    For nonseparable functions F6, F7, F12, and 
F17,    MA-ALSD achieves pretty good results. 

C. Comparison with Other Algorithms 
The results of MA-ALSD with FEs=3·106 are compared 

with the reference LSGO algorithms DECC-G, MLCC 
and MA-SW-Chains, which are shown in Table III and 
Table IV. According to the two tables, we can obtain the 
following characteristics:   
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    MA-ALSD achieves the best results among 
nonseparable functions except F11, F16, and 
F18. DECC-G is so suitable for solving F11 
and F16 that no other algorithms have achieved 
better solutions on these two functions. 

    As to F6, F7, F12, and F17, MA-ALSD has the 
significant advantage compared with DECC-G 
and MLCC. 

    For all functions of single-group m-
nonseparable and fully-nonseparable, MA-
ALSD obtains the best results, which implies 
that our algorithm is fit to solve this category of 
functions. 

    For non-separable problems, MA-ALSD 
obtains the similar performance compared with 
MA-SW-Chains, which also uses MA 
framework.  

IV. CONCLUSION 
In this paper, an Adaptive Local Search Depth strategy 

is proposed to adjust the Local Search Depth dynamically 
during the optimization process according to the 
comparison of Average Fitness Increment between Local 
Search and Global Search. Then a Memetic Algorithm 
with ALSD, MA-ALSD, is presented. In MA-ALSD, 
DSA is mainly responsible for global search, and Solis 
and Wets’ Algorithm is selected for local search. The 
effectiveness of ALSD and MA-ALSD are testified via 
experiments on the LSGO test suite issued in CEC’2012. 
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TABLE I 
COMPARISON WITH MA-FLSD, FEs=3.0e6, LSD=400 

  F1 F2 F3 F4 F5 F6 F7 
 Best 6.46e+05 3.49e+03 1.04e+01 5.78e+11 7.47e+07 1.75e+01 6.34e+05 
 Median 7.99e+05 3.96e+03 1.19e+01 7.75e+11 1.30e+08 1.79e+01 9.10e+05 

MA-FLSD Worst 1.40e+06 4.24e+03 1.33e+01 9.94e+11 2.48e+08 1.88e+01 1.25e+06 
 Mean 8.97e+05 3.93e+03 1.19e+01 7.80e+11 1.43e+08 1.80e+01 9.20e+05 
 Std 2.30e+05 1.98e+02 8.16e-01 1.20e+10 4.96e+07 3.32e-01 1.56e+05 
 Best 5.26e-15 4.26e+02 1.08e+00 5.02e+10 7.56e+07 1.47e+00   3.79e-02 
 Median 1.85e-12 5.00e+02 1.84e+00 5.49e+11 1.93e+08 1.77e+00   6.73e-01 

MA-ALSD Worst 3.86e-05 6.50e+02 1.64e+01 6.67e+11 2.59e+08 2.26e+00 4.69e+01 
 Mean 3.01e-06 5.06e+02 2.50e+00 5.01e+11 1.82e+08 1.79e+00 8.76e+00 
 Std 8.81e-06 4.80e+01 2.98e+00 1.71e+11 5.85e+07 1.76e-01 1.51e+01 
  F8 F9 F10 F11 F12 F13 F14 
 Best 1.52e+07 8.43e+07 4.73e+03 1.99e+02 2.10e+01 7.00e+02 1.13e+08 
 Median 3.46e+07 1.19e+08 5.70e+03 2.02e+02 2.17e+01 4.98e+03 1.31e+08 

MA- FLSD Worst 1.36e+08 1.41e+08 6.93e+03 2.19e+02 2.26e+01 3.76e+04 1.47e+08 
 Mean 4.83e+07 1.18e+08 5.75e+03 2.06e+02 2.17e+01 7.88e+03 1.29e+08 
 Std 3.32e+07 1.31e+07 5.64e+02 7.44e+00 6.12e-01 8.08e+03 1.09e+07 
 Best 3.23e+00 3.59e+07 4.35e+03 2.18e+02 2.95e-07 2.96e+02 4.54e+07 
 Median 2.80e+07 5.56e+07 6.22e+03 2.18e+02 1.73e-06 8.30e+02 5.72e+07 

MA-ALSD Worst 9.36e+07 6.80e+07 1.19e+04 2.19e+02 3.01e-06 1.96e+03 6.71e+07 
 Mean 3.19e+07 5.49e+07 6.53e+03 2.18e+02 1.71e-06 8.47e+02 5.68e+07 
 Std 2.57e+07 6.78e+06 1.74e+03 1.92e-01 6.13e-07 3.93e+02 5.84e+06 
  F15 F16 F17 F18 F19 F20  
 Best 6.92e+03 3.96e+02 4.98e+02 2.74e+03 3.13e+05 1.04e+03  
 Median 7.67e+03 3.97e+02 5.48e+02 2.53e+04 3.54e+05 1.19e+03  

MA-FLSD Worst 1.42e+04 3.97e+02 5.63e+02 4.58e+04 5.25e+05 1.82e+03  
 Mean 7.90e+03 3.97e+02 5.32e+02 2.46e+04 3.59e+05 1.26e+03  
 Std 1.36e+03 2.88e-01 2.88e+01 1.50e+04 4.46e+04 1.89e+02  
 Best 6.81e+03 3.96e+02 5.29e-02 1.33e+03 1.06e+05 1.00e+03  
 Median 7.56e+03 3.97e+02 7.56e-02 1.61e+04 1.27e+05 1.07e+03  

MA-ALSD Worst 1.49e+04 3.97e+02 9.93e-02 5.60e+04 1.57e+05 1.68e+03  
 Mean 8.92e+03 3.97e+02 7.62e-02 1.86e+04 1.26e+05 1.12e+03  
 Std 2.75e+03 2.54e-01 1.26e-02 1.39e+04 1.08e+04 1.61e+02  

 
 

TABLE IV. 
COMPARISON WITH MA-SW-CHAINS, FEs=3.0e6 

  F1 F2 F3 F4 F5 F6 F7 
 Best 3.18e-15 7.04e+02 3.34e-13 3.04e+11 2.89e+07 8.13e-07 3.35e-03 
 Median 1.50e-14 7.90e+02 6.11e-13 3.54e+11 2.31e+08 1.60e+00 9.04e+01 

MA-SW-Chains Worst 8.15e-14 9.37e+02 1.58e-12 3.97e+11 2.90e+08 1.16e+06 2.68e+02 
 Mean 2.10e-14 8.10e+02 7.28e-13 3.53e+11 1.68e+08 8.14e+04 1.03e+02 
 Std 1.99e-14 5.88e+01 3.40e-13 3.12e+10 1.04e+08 2.84e+05 8.70e+01 
 Best 5.26e-15 4.26e+02 1.08e+00 5.02e+10 7.56e+07 1.47e+00 3.79e-02 
 Median 1.85e-12 5.00e+02 1.84e+00 5.49e+11 1.93e+08 1.77e+00 6.73e-01 

MA-ALSD Worst 3.86e-05 6.50e+02 1.64e+01 6.67e+11 2.59e+08 2.26e+00 4.69e+01 
 Mean 3.01e-06 5.06e+02 2.50e+00 5.01e+11 1.82e+08 1.79e+00 8.76e+00 
 Std 8.81e-06 4.80e+01 2.98e+00 1.71e+11 5.85e+07 1.76e-01 1.51e+01 
  F8 F9 F10 F11 F12 F13 F14 
 Best 1.54e+06 1.19e+07 1.81e+03 2.74e+01 2.65e-06 3.86e+02 2.79e+07 
 Median 3.43e+06 1.40e+07 2.07e+03 3.75e+01 3.50e-06 1.07e+03 3.09e+07 

MA-SW-Chains Worst 1.80e+08 1.62e+07 2.28e+03 5.11e+01 4.98e-06 2.92e+03 3.67e+07 
 Mean 1.41e+07 1.41e+07 2.07e+03 3.80e+01 3.62e-06 1.25e+03 3.11e+07 
 Std 3.68e+07 1.15e+06 1.44e+02 7.35e+00 5.92e-07 5.72e+02 1.93e+06 
 Best 3.23e+00 3.59e+07 4.35e+03 2.18e+02 2.95e-07 2.96e+02 4.54e+07 
 Median 2.80e+07 5.56e+07 6.22e+03 2.18e+02 1.73e-06 8.30e+02 5.72e+07 

MA-ALSD Worst 9.36e+07 6.80e+07 1.19e+04 2.19e+02 3.01e-06 1.96e+03 6.71e+07 
 Mean 3.19e+07 5.49e+07 6.53e+03 2.18e+02 1.71e-06 8.47e+02 5.68e+07 
 Std 2.57e+07 6.78e+06 1.74e+03 1.92e-01 6.13e-07 3.93e+02 5.84e+06 
  F15 F16 F17 F18 F19 F20  
 Best 2.56e+03 8.51e+01 1.04e+00 7.83e+02 2.49e+05 9.25e+02  
 Median 2.72e+03 9.44e+01 1.26e+00 1.19e+03 2.85e+05 1.06e+03  

MA-SW-Chains Worst 2.96e+03 1.24e+02 1.63e+00 2.55e+03 3.32e+05 1.21e+03  
 Mean 2.74e+03 9.98e+01 1.24e+00 1.30e+03 2.85e+05 1.07e+03  
 Std 1.22e+02 1.40e+00 1.25e-01 4.36e+02 1.78e+04 7.29e+01  
 Best 6.81e+03 3.96e+02 5.29e-02 1.33e+03 1.06e+05 1.00e+03  
 Median 7.56e+03 3.97e+02 7.56e-02 1.61e+04 1.27e+05 1.07e+03  

MA-ALSD Worst 1.49e+04 3.97e+02 9.93e-02 5.60e+04 1.57e+05 1.68e+03  
 Mean 8.92e+03 3.97e+02 7.62e-02 1.86e+04 1.26e+05 1.12e+03  
 Std 2.75e+03 2.54e-01 1.26e-02 1.39e+04 1.08e+04 1.61e+02  
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TABLE II. 
EXPERIMENTAL RESULTS WITH MA-ALSD 

  F1 F2 F3 F4 F5 F6 F7 
 Best 4.28e+08 7.21e+03 1.66e+01 1.36e+12 1.61e+08 3.89e+01 3.55e+06 
 Median 5.43e+08 7.79e+03 1.97e+01 2.83e+12 4.60e+08 1.96e+07 4.99e+06 

FEs=1.2e5 Worst 8.42e+08 8.41e+03 1.99e+01 6.81e+12 6.02e+08 1.98e+07 1.09e+07 
 Mean 5.48e+08 7.78e+03 1.95e+01 3.03e+12 4.13e+08 1.39e+07 5.08e+06 
 Std 9.82e+07 2.73e+02 1.01e+00 1.09e+12 1.54e+08 8.30e+06 1.34e+06 
 Best 8.81e+04 1.45e+03 5.84e+00 7.34e+11 1.02e+08 7.56e+00 2.12e+04 
 Median 7.68e+07 1.64e+03 1.99e+01 1.03e+12 1.68e+08 1.19e+01 1.03e+05 

FEs=6.0e5 Worst 1.02e+08 1.89e+03 1.99e+01 1.53e+12 4.09e+08 2.86e+06 2.87e+06 
 Mean 4.80e+07 1.66e+03 1.68e+01 1.05e+12 1.94e+08 1.23e+05 4.35e+05 
 Std 4.34e+07 9.79e+01 5.50e+00 1.73e+11 8.53e+07 5.71e+05 7.12e+05 
 Best 5.26e-15 4.26e+02 1.08e+00 5.02e+10 7.56e+07 1.47e+00   3.79e-02 
 Median 1.85e-12 5.00e+02 1.84e+00 5.49e+11 1.93e+08 1.77e+00   6.73e-01 

FEs=3.0e6 Worst 3.86e-05 6.50e+02 1.64e+01 6.67e+11 2.59e+08 2.26e+00 4.69e+01 
 Mean 3.01e-06 5.06e+02 2.50e+00 5.01e+11 1.82e+08 1.79e+00 8.76e+00 
 Std 8.81e-06 4.80e+01 2.98e+00 1.71e+11 5.85e+07 1.76e-01 1.51e+01 
  F8 F9 F10 F11 F12 F13 F14 
 Best 4.32e+07 1.04e+09 1.35e+04 2.19e+02 1.62e+05 1.14e+06 1.35e+09 
 Median 4.74e+07 1.42e+09 1.47e+04 2.20e+02 2.16e+05 1.66e+06 1.60e+09 

FEs=1.2e5 Worst 6.84e+09 1.63e+09 1.52e+04 2.20e+02 2.68e+05 6.70e+06 2.04e+09 
 Mean 4.73e+08 1.36e+09 1.46e+04 2.20e+02 2.18e+05 2.14e+06 1.61e+09 
 Std 1.37e+09 1.49e+08 4.62e+02 2.24e-01 2.60e+04 1.19e+06 1.45e+08 
 Best 1.71e+07 2.21e+08 5.73e+03 2.18e+02 6.13e+02 3.67e+03 2.98e+08 
 Median 4.43e+07 3.04e+08 1.43e+04 2.18e+02 8.25e+02 1.18e+04 3.25e+08 

FEs=6.0e5 Worst 7.77e+08 3.71e+08 1.50e+04 2.19e+02 1.14e+03 3.14e+06 3.96e+08 
 Mean 1.28e+08 3.00e+08 1.25e+04 2.18e+02 8.40e+02 2.98e+05 3.33e+08 
 Std 1.92e+08 3.67e+07 3.50e+03 2.72e-01 1.44e+02 6.98e+05 2.89e+07 
 Best 3.23e+00 3.59e+07 4.35e+03 2.18e+02 2.95e-07 2.96e+02 4.54e+07 
 Median 2.80e+07 5.56e+07 6.22e+03 2.18e+02 1.73e-06 8.30e+02 5.72e+07 

FEs=3.0e6 Worst 9.36e+07 6.80e+07 1.19e+04 2.19e+02 3.01e-06 1.96e+03 6.71e+07 
 Mean 3.19e+07 5.49e+07 6.53e+03 2.18e+02 1.71e-06 8.47e+02 5.68e+07 
 Std 2.57e+07 6.78e+06 1.74e+03 1.92e-01 6.13e-07 3.93e+02 5.84e+06 
  F15 F16 F17 F18 F19 F20  
 Best 1.40e+04 3.97e+02 9.03e+05 1.98e+05 3.48e+06 2.47e+03  
 Median 1.48e+04 3.97e+02 1.10e+06 8.21e+05 4.12e+06 5.00e+03  

FEs=1.2e5 Worst 1.52e+04 3.97e+02 1.27e+06 2.08e+06 5.29e+06 6.36e+04  
 Mean 1.48e+04 3.97e+02 1.11e+06 9.39e+05 4.12e+06 8.27e+03  
 Std 2.65e+02 2.27e-01 1.14e+05 5.01e+05 4.44e+05 1.19e+04  
 Best 1.40e+04 3.96e+02 3.21e+04 1.12e+04 1.21e+06 1.03e+03  
 Median 1.47e+04 3.97e+02 4.04e+04 4.68e+04 1.43e+06 1.30e+03  

FEs=6.0e5 Worst 1.55e+04 3.97e+02 4.93e+04 7.88e+04 1.96e+06 4.94e+03  
 Mean 1.47e+04 3.97e+02 4.00e+04 4.41e+04 1.47e+06 1.74e+03  
 Std 3.63e+02 2.73e-01 4.53e+03 1.73e+04 1.69e+05 1.08e+03  
 Best 6.81e+03 3.96e+02 5.29e-02 1.33e+03 1.06e+05 1.00e+03  
 Median 7.56e+03 3.97e+02 7.56e-02 1.61e+04 1.27e+05 1.07e+03  

FEs=3.0e6 Worst 1.49e+04 3.97e+02 9.93e-02 5.60e+04 1.57e+05 1.68e+03  
 Mean 8.92e+03 3.97e+02 7.62e-02 1.86e+04 1.26e+05 1.12e+03  
 Std 2.75e+03 2.54e-01 1.26e-02 1.39e+04 1.08e+04 1.61e+02  
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TABLE III. 
COMPARISON WITH DECC-G AND MLCC, FEs=3.0e6 

  F1 F2 F3 F4 F5 F6 F7 
 Best 1.63e-07 1.25e+03 1.20e+00 7.78e+12 1.50e+08 3.89e+06 4.26e+07 
 Median 2.86e-07 1.31e+03 1.39e+00 1.51e+13 2.38e+08 4.80e+06 1.07e+08 

DECC-G Worst 4.84e-07 1.40e+03 1.68e+00 2.65e+13 4.12e+08 7.73e+06 6.23e+08 
 Mean 2.93e-07 1.31e+03 1.39e+00 1.70e+13 2.63e+08 4.96e+06 1.63e+08 
 Std 8.62e-08 3.26e+01 9.73e-02 5.37e+12 8.44e+07 8.02e+05 1.37e+08 
 Best 0.00e+00 1.73e-11 1.28e-13 4.27e+12 2.15e+08 5.85e+06 4.16e+04 
 Median 0.00e+00 6.43e-11 1.46e-13 1.03e+13 3.92e+08 1.95e+07 5.15e+05 

MLCC Worst 3.83e-26 1.09e+01 1.86e-11 1.62e+13 4.87e+08 1.98e+07 2.78e+06 
 Mean 1.53e-27 5.57e-01 9.88e-13 9.61e+12 3.84e+08 1.62e+07 6.89e+05 
 Std 7.66e-27 2.21e+00 3.70e-12 3.43e+12 6.93e+07 4.97e+06 7.37e+05 
 Best 5.26e-15 4.26e+02 1.08e+00 5.02e+10 7.56e+07 1.47e+00   3.79e-02 
 Median 1.85e-12 5.00e+02 1.84e+00 5.49e+11 1.93e+08 1.77e+00   6.73e-01 

MA-ALSD Worst 3.86e-05 6.50e+02 1.64e+01 6.67e+11 2.59e+08 2.26e+00 4.69e+01 
 Mean 3.01e-06 5.06e+02 2.50e+00 5.01e+11 1.82e+08 1.79e+00 8.76e+00 
 Std 8.81e-06 4.80e+01 2.98e+00 1.71e+11 5.85e+07 1.76e-01 1.51e+01 
  F8 F9 F10 F11 F12 F13 F14 
 Best 6.37e+06 2.66e+08 1.03e+04 2.06e+01 7.78e+04 1.78e+03 6.96e+08 
 Median 6.70e+07 3.18e+08 1.07e+04 2.33e+01 8.87e+04 3.00e+03 8.07e+08 

DECC-G Worst 9.22e+07 3.87e+08 1.17e+04 2.79e+01 1.07e+05 1.66e+04 9.06e+08 
 Mean 6.44e+07 3.21e+08 1.06e+04 2.34e+01 8.93e+04 5.12e+03 8.08e+08 
 Std 2.89e+07 3.38e+07 2.95e+02 1.78e+00 6.87e+03 3.95e+03 6.07e+07 
 Best 4.51e+04 8.96e+07 2.52e+03 1.96e+02 2.42e+04 1.01e+03 2.62e+08 
 Median 4.67e+07 1.24e+08 3.16e+03 1.98e+02 3.47e+04 1.91e+03 3.16e+08 

MLCC Worst 9.06e+07 1.46e+08 5.90e+03 1.98e+02 4.25e+04 3.47e+03 3.77e+08 
 Mean 4.38e+07 1.23e+08 3.43e+03 1.98e+02 3.49e+04 2.08e+03 3.16e+08 
 Std 3.45e+07 1.33e+07 8.72e+02 6.98e-01 4.92e+03 7.27e+02 2.77e+07 
 Best 3.23e+00 3.59e+07 4.35e+03 2.18e+02 2.95e-07 2.96e+02 4.54e+07 
 Median 2.80e+07 5.56e+07 6.22e+03 2.18e+02 1.73e-06 8.30e+02 5.72e+07 

MA-ALSD Worst 9.36e+07 6.80e+07 1.19e+04 2.19e+02 3.01e-06 1.96e+03 6.71e+07 
 Mean 3.19e+07 5.49e+07 6.53e+03 2.18e+02 1.71e-06 8.47e+02 5.68e+07 
 Std 2.57e+07 6.78e+06 1.74e+03 1.92e-01 6.13e-07 3.93e+02 5.84e+06 
  F15 F16 F17 F18 F19 F20  
 Best 1.09e+04 5.97e+01 2.50e+05 5.61e+03 1.02e+06 3.59e+03  
 Median 1.18e+04 7.51e+01 2.89e+05 2.30e+04 1.11e+06 3.98e+03  

DECC-G Worst 1.39e+04 9.24e+01 3.26e+05 4.71e+04 1.20e+06 5.32e+03  
 Mean 1.22e+04 7.66e+01 2.87e+05 2.46e+04 1.11e+06 4.06e+03  
 Std 8.97e+02 8.14e+00 1.98e+04 1.05e+04 5.15e+04 3.66e+02  
 Best 5.30e+03 2.08e+02 1.38e+05 2.51e+03 1.21e+06 1.70e+03  
 Median 6.89e+03 3.95e+02 1.59e+05 4.17e+03 1.36e+06 2.04e+03  

MLCC Worst 1.04e+04 3.97e+02 1.86e+05 1.62e+04 1.54e+06 2.34e+03  
 Mean 7.11e+03 3.76e+02 1.59e+05 7.09e+03 1.36e+06 2.05e+03  
 Std 1.34e+03 4.71e+01 1.43e+04 4.77e+03 7.35e+04 1.80e+02  
 Best 6.81e+03 3.96e+02 5.29e-02 1.33e+03 1.06e+05 1.00e+03  
 Median 7.56e+03 3.97e+02 7.56e-02 1.61e+04 1.27e+05 1.07e+03  

MA-ALSD Worst 1.49e+04 3.97e+02 9.93e-02 5.60e+04 1.57e+05 1.68e+03  
 Mean 8.92e+03 3.97e+02 7.62e-02 1.86e+04 1.26e+05 1.12e+03  
 Std 2.75e+03 2.54e-01 1.26e-02 1.39e+04 1.08e+04 1.61e+02  
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