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Abstract—Accuracy-based XCS classifier system has been
shown to evolve classifiers with accurate and maximally general
characteristics. XCS generally represents its classifiers with
binary conditions encoded in a ternary alphabet, i.e., {0, 1,#},
where # is a “don’t care” symbol, which can match with 0 and
1 in inputs. This provides one of the foundations to make XCS
evolve an optimal population of classifiers, where each classifier
has the possibility to cover a set of perceptions. However, when
performing XCS to solve the multi-step problems, i.e., maze
control problems, the classifiers only allow the agent to perceive
its surrounding environments without the direction information,
which are contrary to our human perception. This paper develops
an extension of XCS by introducing cyclic conditions to represent
the classifiers. The proposed system, named generalized XCS
classifier system (GXCS), is dedicated to modify the forms of
the classifiers from chains to cycles, which allows them to match
with more adjacent environments perceived by the agent from
different directions. Accordingly, a more compact population of
classifiers can be evolved to perform the generalization feature
of GXCS. As a first step of this research, GXCS has been tested
on the benchmark maze control problems in which the agent can
perceive its 8 surrounding cells. It is confirmed that GXCS can
evolve the classifiers with cyclic conditions to successfully solve
the problems as XCS, but with much smaller population size.

I. INTRODUCTION

Accuracy-based XCS classifier system [1], [2], [3], [4] has
been shown to evolve classifiers with accurate and maximally
general characteristics. Different from strength-based learning
classifier systems (LCSs) [5], [6] whose shortcomings appear
due to the definition of classifier fitness via its estimated payoff
which sometimes does not distinguish between accurate and
over-general classifiers, XCS escapes the dilemma by devel-
oping an accuracy-based fitness scheme to adapt the evolution
pressure towards accurate generalized classifiers based on
reinforcement learning (RL) [7] concept. A number of machine
learning problems, i.e., single-step classification problems [8],
[9], [10], function approximation [11], [12] and multi-step RL
problems [13], [14], have been successfully solved by XCS.
In these problems, XCS is capable of achieving the optimal
performance with a minimal representation of the optimal
solutions evolved.

Despite many other extensions to improve the expression
ability of the classifiers [15], [16], [17], [18], in order to
perform its generalization ability, XCS follows the other
LCSs [5], [6], [9], [10] to represent its classifiers with binary
conditions encoded in a ternary alphabet, i.e., {0, 1,#}, where
# is a wildcard representing “don’t care”, which can match
with 0 and 1 in inputs. This provides one of the foundations to

make XCS evolve the optimal population of classifiers, where
each classifier has the possibility to cover a set of perceptions.

However, when applying XCS to solve the multi-step prob-
lems, i.e., maze control problems (the details of the maze
problems are described in section IV), the ternary conditions of
the classifiers are generally matched with the real perceived
environments in a form of chains. For example, in a maze
problem that the agent can judge its 8 adjacent cells as the
perceived environments, if an environment 𝑒1, 𝑒2, ..., 𝑒8 is
perceived, a classifier with condition 𝑐1, 𝑐2, ..., 𝑐8 is considered
to match with the environment only if each specific attribute
matches with the corresponding cell, i.e., 𝑐1 = 𝑒1 (north
cell), 𝑐2 = 𝑒2 (northeast cell), and so on. In other words, the
condition of each classifier is treated as a chain. However, this
form of configurations is contrary to our human perception,
since it does not consider the direction of the agent.

With the directional information, the classifiers do not need
to match with the perceived environment using the one-to-one
correspondence of each cell/attribute. Instead, each classifier
is capable of matching with more environments based on dif-
ferent directions of the agent. This would potentially increase
the generalization ability comparing with standard XCS only
performing with the ternary alphabet, since the population size
of the system can be reduced.

Based on this concept, this paper proposes an extension
of XCS by introducing cyclic conditions to represent the
classifiers, named generalized XCS classifier system (GXCS).
To consider the directional information, GXCS modifies the
forms of the classifiers from chains to cycles, which allows
them to match with more adjacent environments perceived by
the agent from different directions. Accordingly, with a single
classifier of GXCS, higher expression ability is guaranteed
comparing with standard XCS.

The rest of the paper is organized as follows: In the
next section, XCS is briefly described. Section III describes
the implementation of GXCS in details. In section IV, the
experimental study is presented under several benchmark maze
problems. Finally, the conclusions are presented.

II. XCS IN BRIEF

Formally, XCS treats the classifiers as the individuals of
genetic algorithm (GA), where each classifier is interpreted as
a decision-making rule as

condition︷ ︸︸ ︷
𝐶1 𝐶2 ... 𝐶𝐿 →

action︷︸︸︷
𝐴 . (1)
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ℂ = [𝐶1 𝐶2 ... 𝐶𝐿] is the condition with a set of 𝐿 attributes
specified by a given problem. Each attribute 𝐶𝑖’s value 𝑐𝑖 is
selected from the ternary alphabet {0, 1,#}. The action 𝐴 is
denoted by a numeric value 𝑎 from the action space 𝔸, which
is the recommended consequence based on the condition.

XCS maintains a population of classifiers, denoted by [𝑃 ],
to represent the solution. 4 main parameters are associated
with each classifier 𝑐𝑙:

∙ Prediction 𝑐𝑙.𝑝: the estimated payoff when 𝑐𝑙 is used.
∙ Prediction error 𝑐𝑙.𝜀: the estimated error of 𝑐𝑙.𝑝.
∙ Fitness 𝑐𝑙.𝐹 : the fitness of 𝑐𝑙.
∙ Numerosity 𝑐𝑙.𝑛𝑢𝑚: the number of copies of 𝑐𝑙 in [𝑃 ].

XCS mainly consists of three components for decision
making: (1) performance; (2) reinforcement; (3) discovery.

A. Performance Component

XCS interacts with the environment as a RL agent. At each
step 𝑡, the system perceives the current environment, denoted
by the current state 𝑠𝑡. With the perceived environment, XCS
forms match set [𝑀 ] that consists of a set of classifiers whose
conditions completely match with 𝑠𝑡. If some possible actions
are not presented in [𝑀 ], covering mechanism takes place
to generate classifiers with conditions matching with 𝑠𝑡 and
the missing possible actions. In the covering classifier, each
attribute in its condition has probability 𝑃# to be set to #.
Covering mechanism ensures the evolution of XCS towards a
complete mapping in any state to predict the effect of every
possible action.

After determining the match set [𝑀 ], XCS computes the
system prediction 𝑃 (𝑎) for each possible action 𝑎 by the
fitness-weighted average over all classifiers whose action is
𝑎. Let [𝑀 ]𝑎 be a subset of [𝑀 ] that contains classifiers
advocating action 𝑎. 𝑃 (𝑎) can be calculated by:

𝑃 (𝑎) =

∑
𝑐𝑙∈[𝑀 ]𝑎

𝑐𝑙.𝑝× 𝑐𝑙.𝐹
∑

𝑐𝑙∈[𝑀 ]𝑎

𝑐𝑙.𝐹
. (2)

For all possible actions 𝔸, {𝑃 (𝑎)∣𝑎 ∈ 𝔸} form a prediction
array.

Based on the prediction array, XCS selects an action
𝑎∗ to perform using some strategies, i.e., greedy selection
(𝑎∗ = argmax𝑎∈𝔸 𝑃 (𝑎)), roulette-wheel selection (𝑎∗ = 𝑎
with probability 𝑃 (𝑎)/

∑
𝑎′∈𝔸 𝑃 (𝑎

′)) or 𝜖-greedy policy (with
probability 𝜖 to select a random action and probability 1 − 𝜖
to select the greedy action).

The selected action 𝑎∗ is performed in the environment and
possibly a reward 𝑟 can be obtained. The classifiers in [𝑀 ]
that advocate 𝑎∗ form the action set [𝐴].

After one cycle of the above performance component, the
step is incremented, that is, 𝑡 = 𝑡+ 1.

B. Reinforcement Component

After one step 𝑡, the prediction array is sent back to the
action set [𝐴]𝑡−1 of one step before, i.e., 𝑡− 1. An estimated

payoff 𝑃 of step 𝑡− 1 is calculated as follows:

𝑃 = 𝑟𝑡−1 + 𝛾max
𝑎∈𝔸

𝑃 (𝑎), (3)

where 𝑟𝑡−1 is the reward obtained by action set [𝐴]𝑡−1, 𝛾 is
the discount factor, and 𝑃 (𝑎) is the prediction array of step 𝑡.

Afterwards, three parameters 𝑐𝑙.𝑝, 𝑐𝑙.𝜀, and 𝑐𝑙.𝐹 of classi-
fiers 𝑐𝑙 ∈ [𝐴]𝑡−1 are updated. For the classifier prediction, it
is updated by:

𝑐𝑙.𝑝← 𝑐𝑙.𝑝+ 𝛽 (𝑃 − 𝑐𝑙.𝑝) , (4)

where 𝛽 is the learning rate. The prediction error 𝑐𝑙.𝜀 is
updated by:

𝑐𝑙.𝜀← 𝑐𝑙.𝜀+ 𝛽 (∣𝑃 − 𝑐𝑙.𝑝∣ − 𝑐𝑙.𝜀) . (5)

The fitness 𝑐𝑙.𝐹 is calculated in a relatively complicated
way. First, the classifier accuracy 𝑐𝑙.𝜅 is calculated by:

𝑐𝑙.𝜅 =

{
𝛼
(

𝑐𝑙.𝜀
𝜀0

)−𝜈
if 𝑐𝑙.𝜀 > 𝜀0,

1 otherwise,
(6)

where 𝜀0 are the threshold of acceptable prediction error; 𝛼
and 𝜈 are the decline parameters of 𝜅 when 𝑐𝑙.𝜀 > 𝜀0. The
relative accuracy 𝑐𝑙.𝜅′ is then assigned with respect to [𝐴]𝑡−1:

𝑐𝑙.𝜅′ =
𝑐𝑙.𝜅∑

𝑐𝑙′∈[𝐴]𝑡−1

𝑐𝑙′.𝜅
. (7)

Finally, the classifier fitness 𝑐𝑙.𝐹 is updated towards its 𝑐𝑙.𝜅′:

𝑐𝑙.𝐹 ← 𝑐𝑙.𝐹 + 𝛽(𝑐𝑙.𝜅′ − 𝑐𝑙.𝐹 ). (8)

The basic concept of the reinforcement component is de-
rived from RL [7], where the 𝑄-Learning like method is
applied to update the three learning parameters.

C. Discovery Component

Niche GA is applied to evolve the action set [𝐴] when
its classifiers, i.e., 𝑐𝑙 ∈ [𝐴], have averagely remained in the
population with more than 𝜃𝐺𝐴 learning instances since last
GA performs on each of them. In other words, only after the
classifiers in [𝐴] have been sufficiently learned by RL, GA
will be activated to evolve them.

GA selects two classifiers as the parents with probability
proportional to their fitness. Two offspring are generated by
crossover and mutation. Different from canonical GA which
replaces parents by offspring in the new population, XCS
allows the parents to stay in the population competing with
their offspring.

D. Summary of XCS

Besides the above three main components, 2 additional
techniques contribute to the performance of XCS, including
macroclassifier and classifier deletion.

In XCS, if a newly generated classifier is found to be
identical to an existing classifier 𝑐𝑙 in population [𝑃 ], it is not
inserted into [𝑃 ]. Instead, the numerosity parameter 𝑐𝑙.𝑛𝑢𝑚 of
𝑐𝑙 is incremented by one, that is, 𝑐𝑙.𝑛𝑢𝑚 = 𝑐𝑙.𝑛𝑢𝑚+1. This
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Fig. 1: Perception and matching of XCS in the maze problems

technique, called macroclassifier, is used to speed up process-
ing and provide a more perspicuous view of XCS to evolve
accurate, and maximally general classifiers. The summation of
𝑐𝑙.𝑛𝑢𝑚 for all classifiers is equal to the population size 𝑁 .

When GA or covering mechanism is performed, the pop-
ulation [𝑃 ] may exceed threshold 𝑁 . Classifier deletion is
carried out to delete excess classifiers. The basic concept of
classifier deletion is to delete one classifier if it is sufficiently
learned by RL and its fitness is significantly lower than the
average fitness of [𝑃 ]. Actually, when a classifier 𝑐𝑙 is selected
to be deleted, its numerosity is decremented by one, i.e.,
𝑐𝑙.𝑛𝑢𝑚 = 𝑐𝑙.𝑛𝑢𝑚 − 1, where it is deleted from [𝑃 ] only
if its 𝑐𝑙.𝑛𝑢𝑚 = 0.

III. GENERALIZED XCS CLASSIFIER SYSTEM (GXCS)

A. Problem Description

When applying XCS to solve the multi-step problems, i.e.,
maze control problems, each attribute generally denotes a
sensory function for the agent to perceive a specific location of
its surrounding environments. More precisely, the conditions
of the XCS classifiers are represented by 8 attributes in
association to its 8 adjacent cells in the grid worlds of maze,
where the first attribute 𝐶1 denotes the north cell, and the
others are named clockwise. It is notable that when applying
XCS to solve this problem, the classifiers are matched with
the perceived environments in an one-to-one correspondence
way. For instance, if the current perceived environment is
𝑒1, 𝑒2, ..., 𝑒8, a classifier with condition 𝑐1, 𝑐2, ..., 𝑐8 is con-
sidered to match with the environment only if each specific
attribute matches with the corresponding cell, i.e., 𝑐1 = 𝑒1,
𝑐2 = 𝑒2, and so on, as an example shown in Fig. 1.

However, this form implies that the direction of the agent is
not considered when performing the matching procedure. It is
contrary to our human perception, as well as many real-world
applications, that the agent perceives the partial environments
with directional information. In other words, the knowledge
of the agent, represented as classifiers in XCS, should be
more realistically designed to have higher expression ability
to reflect the environments.

If we consider the directional information, the classifiers do
not need to match with the perceived environment using the
one-to-one correspondence of each cell/attribute. But instead,
each classifier can match with more environments based on
different directions of the agent. As an example shown in
Fig. 2, we suppose that there is an XCS classifier denoted

Fig. 2: Perception and matching with and without directions

as 1 1 0 0 0 0 0 1 → 𝑎 1, where 0 denotes that the
cell is empty and 1 represents that the cell has obstacle.
Originally, XCS can only allow this classifier to match with the
perceived environment (a) in Fig. 2, since only environment
(a) can match with the condition of this classifier in a one-to-
one correspondence way. However, we can easily understand
that if we consider the direction of the agent, actually the
classifier should also match with environment (b), (c) and (d).
This is consistent with our human cognition. Therefore, if we
consider the directional information, the required population
size of the classifiers could be significantly reduced, which will
potentially benefit the generalization of XCS. If 4 directions
are considered, i.e., north, east, south and west, the upper
bound of the population size could be reduced by 4 times
comparing with standard XCS.

This inspires the work of our paper to introduce an extension
of XCS that evolves classifiers with directional information,
named generalized XCS classifier system (GXCS).

B. Outline of GXCS

GXCS works basically as standard XCS. The most impor-
tant difference arises from the knowledge representation of
GXCS, i.e., the structure of the classifiers, where each classi-
fier is encoded with a cyclic condition, which can efficiently
adapt to the environments with different directions.

On the other hand, in order to efficiently learn and evolve the
classifiers, some modifications and extensions of standard XCS
are proposed in GXCS, which mainly include the matching
procedure, reinforcement component, genetic operation and
direction subsumption. The details will be described in the
following parts of this section.

C. Knowledge Representation

Differing from standard XCS with chain conditions (as
shown in Fig. 1), GXCS encodes the classifiers with cyclic
conditions. The cyclic conditions, as shown in Fig. 3, can
efficiently suit the agent considering the directional informa-
tion (refer to the details in the next section about matching
procedure).

When performing the classifiers with a specific direction,
the actions should also be slightly modified in order to

1It is a simplified example of the simulated maze problem for better
understanding, where in fact each cell is encoded with 2 or 3 bits rather
than 1 bit.
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Fig. 3: GXCS classifier with cyclic conditions

Fig. 4: Relation between the classifiers of XCS and GXCS

match with the performed direction. The reason is obvious
that the classifier should be identical in different directions.
Accordingly, each classifier of GXCS has 4 directional actions
corresponding to the 4 directions, as shown in Fig. 3. However,
we actually only need to store the action for the north
direction, i.e., 𝑎1 in Fig. 3, where the hereafter directional
actions can be computed by just rotating 2 cells. We suppose
𝑖 is the direction, and 𝑖 = 1, 2, 3 and 4 for the north, east, south
and west direction, respectively. Let 𝑎𝑖 denote the specific
action of direction 𝑖, we have

𝑎𝑖 =
[
𝑎1 + 2(𝑖− 1)

]
%8, (9)

where 𝑎1 is the action for the north direction.
It is explicit that with the cyclic conditions and directional

actions, 1 single GXCS classifier is equivalent to 4 XCS
classifiers, as an example shown in Fig. 4. Accordingly,
GXCS has potential to evolve a more compact population
of classifiers comparing with standard XCS, where a smaller
number of population size can be expected.

D. Matching Procedure

Comparing with the one-to-one correspondence matching of
XCS, GXCS employs a slightly different matching procedure.
If an environment 𝑒1, 𝑒2, ..., 𝑒8 is perceived, each GXCS
classifier is matched with the environment 4 times based on the
perception of 4 different directions. In other words, the GXCS
classifiers have more chance to match with the environment
comparing with the XCS classifiers.

However, with the cyclic conditions, the direction-based
matching can be carried out quite efficiently, where we only
need to specify the first attribute to be compared with the
perceived environment 𝑒1, 𝑒2, ..., 𝑒8 in a clockwise way. After

Fig. 5: Perceptual aliasing problem of GXCS classifiers

the matching of one direction is finished, the cyclic conditions
are just rotated 2 attributes to define a new first attribute for the
next direction. For example, the first attribute is set at 𝑐1 when
matching with the environment in the north direction, while it
is modified to 𝑐3 when matching with the east direction.

E. Reinforcement Component

Since each classifier can match with the environment with 4
directions, it might be possible that a classifier can match with
the environment using more than one direction for a perceived
environment. More importantly, when matching with different
directions, the performance of the classifier could be different,
where it can provide an accurate action in one direction, but
tends to be inaccurate in another direction. As an example
shown in Fig. 5, a classifier can match with environment 1
in both north and east directions, and with environment 2 in
both east and south directions. However, it is only accurate in
environment 1 in north direction, but tends to be inaccurate in
the other two directions. This circumstance can be explained
by the perceptual aliasing problem [19] in non-Markovian
situations, where the different environments can be perceived
as the same by the GXCS classifiers.

In order to solve this problem, we modify the standard XCS
by giving the specific prediction 𝑝, prediction error 𝜀 and
fitness 𝐹 to each direction of each classifier. In other words,
associated with each GXCS classifier, there are 4 groups of
learning parameters corresponding to each direction, rather
than a single group in the XCS classifier (as shown in Fig.
5). Accordingly, RL is capable of automatically determining
which directional matching should be preferred for a particular
environment, which will be directly shown up in the three
learning parameters. From this point of view, the directions in
the directional action, i.e., 1 (north), 2 (east), 3 (south) and 4
(west) shown in Fig. 4, work in a similar way as the internal
memory register which was proposed in XCS with internal
memory (XCSM) [19], [20].

The learning procedure of GXCS to update these parameters
is the same as XCS.

F. Genetic Operation

As standard XCS, GXCS applies niche GA in its action set
[𝐴] to generate new offspring. Two classifiers, i.e., 𝑐𝑙1 and 𝑐𝑙2,
are selected as the parents with the probability proportional to
their fitness. However, since each classifier has 4 fitness values
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corresponding to different directions, we use the particular
directional fitness in which it is performed in the action set.
That is, for a particular classifier 𝑐𝑙, if it matches with the
current environment from the north direction in [𝐴], its fitness
𝑐𝑙.𝐹1 corresponding to the north direction is used for selection.
𝑐𝑙1 and 𝑐𝑙2 are crossed with crossover rate 𝜒, and mutation
with rate 𝜇 is applied to the two generated crossover offspring,
denoted by 𝑐𝑙

′

1 and 𝑐𝑙
′

2.
However, differing from XCS which assigns the average

𝑝, 𝜀 and 𝐹 of the two parents to the two generated offspring,
GXCS prepares the initial 𝑝, 𝜀 and 𝐹 of the offspring based on
the similarity between them and their parents. The Hamming
distance between offspring 𝑐𝑙

′

1 and the two parents 𝑐𝑙1 and 𝑐𝑙2
are first computed, denoted as 𝐷1 and 𝐷2, respectively. After
that, its initial prediction 𝑐𝑙

′

1.𝑝 is assigned by

𝑐𝑙
′

1.𝑝 =
𝐷2

𝐷1 +𝐷2
𝑐𝑙1.𝑝+

𝐷1

𝐷1 +𝐷2
𝑐𝑙2.𝑝. (10)

The initial 𝜀 and 𝐹 are computed similarly,

𝑐𝑙
′

1.𝜀 =
𝐷2

𝐷1 +𝐷2
𝑐𝑙1.𝜀+

𝐷1

𝐷1 +𝐷2
𝑐𝑙2.𝜀. (11)

𝑐𝑙
′

1.𝐹 =
𝐷2

𝐷1 +𝐷2
𝑐𝑙1.𝐹 +

𝐷1

𝐷1 +𝐷2
𝑐𝑙2.𝐹. (12)

Based on the empirical studies, it is found that the
similarity-based parameter assignment can provide slightly
faster convergence speed than the original average assignment
of XCS in the GXCS scenario.

G. Direction Subsumption

In standard XCS, two classifiers are considered to be
identical if and only if both of them have the same conditions
and the same action. If two identical classifiers are found in
XCS population, only one copy is remained, but its numerosity
𝑛𝑢𝑚 is incremented by 1. On the other hand, GXCS is capable
of representing the classifiers with directional information.
Therefore, two classifiers are compared in a different way with
more chance to be identical to each other. That is, two classi-
fiers are compared with each other from 4 different directions.
Accordingly, GXCS classifiers have 4 times higher possibility
to find the identical classifiers than XCS. If two classifiers are
found to be identical, even with different directions, still only
one copy remains in the population and the numerosity 𝑛𝑢𝑚
is incremented by 1. This procedure, which is called direction
subsumption, allows GXCS to potentially generate compact
population with a smaller number of classifiers.

IV. EXPERIMENTAL STUDY

In order to testify the performance, GXCS is applied to the
benchmark maze control problems [1], [13].

A. Maze Problems

In maze problems, the artificial animal (named animat) is
located in a grid world with cells. The animat is designed with
8 sensor attributes to recognize its 8 surrounding adjacent cells,
and can select 8 actions to move to each of its adjacent cells.

Fig. 6: Woods1 world

In the grid world, each cell can be occupied with obstacles,
floors or a goal. The animat can be randomly placed in the
grid world, and it must learn to find the optimal route to reach
the goal cell. The target of the classifier systems to solve
this problem is to evolve and learn the optimal population
of classifiers that can control the animat to reach the goal
cell with the fewest number of steps no matter where it is
initially placed. Therefore, the performance of this problem
can be represented by the number of steps to reach the goal
cell (steps to goal).

B. Experimental Configurations

When performing each experimental run, exploration and
exploitation strategies are used. That is, the system interac-
tively carries out the exploration instance and exploitation
instance. In the exploration instance, the animat is randomly
placed in the maze world, where the system applies the
population [𝑃 ] of classifiers to control the movement of the
animat where the action is selected to be executed by 𝜖-
greedy policy with the probability of 𝜖 = 0.3 at each step.
Reinforcement component and GA are activated to learn and
evolve [𝑃 ]. An exploration instance is finished if the animat
reaches the goal cell or a predefined maximal steps, i.e., 2000
in this paper, are reached. After one exploration instance, the
exploitation instance is executed. In the exploitation instance,
the animat is re-placed in a random start cell, but learning and
evolution are blocked, where the population [𝑃 ] is applied to
control the animat using the greedy selection for the action
determination.

The exploitation instances are dedicated to evaluate the
performance of the classifier systems, where the results shown
in this paper is the moving average of the number of steps to
the goal cell in the last 50 exploitation instances.

In order to evaluate the performance of GXCS, 3 benchmark
maze worlds are considered in this paper: Woods1, Woods2
and Maze5, which have been widely studied in the previous
XCS research [1], [6], [13], [21]. The evaluation for more
complex worlds and systems, i.e., Tileworld testbed [22], [23]
remains as our future work.

The comparison between GXCS and standard XCS are
presented. All the experimental results presented in this paper
are averaged over 30 independent runs in order to remove the
random bias of the evolution.

C. Woods1 World

Woods1 world is a fairly simple problem that consists of
5×5 grid of cells as shown in Fig. 6. Woods1 does not consist
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Fig. 7: Performance of XCS and GXCS in Woods1 world

of boundary, and therefore, when the animat is positioned
in the edge cells, it perceives its surrounding environment
by adding the cells from the opposite edge as its adjacent
cells, like re-entering the world from the opposite edge. It is
observed that the optimal steps to find the goal cell is 1.7 steps
in this problem.

In Woods1, each cell is encoded with 2 bits, where “00”
denotes empty cell, “01” represents obstacle cell and “11”
is goal cell. Therefore, the length of the conditions in each
classifier is 2× 8 = 16.

The parameter settings are carried out based on the sug-
gestions of the previous studies [4], [24], [25]. That is, the
maximum population size 𝑁 = 800 classifiers (summation
of numerosity of each classifier); the learning rate 𝛽 = 0.2;
the discount factor 𝛾 = 0.7; the error threshold 𝜀0 = 10; the
decline parameters of the classifier accuracy 𝛼 = 0.1, 𝜈 = 5;
𝑃# = 0.6 in covering mechanism; the crossover rate 𝜒 = 0.8
and the mutation rate 𝜇 = 0.04; the GA threshold 𝜃𝐺𝐴 = 25.
All these parameters of XCS and GXCS are the same when
performing the experiments. Each experimental run is finished
when 5000 exploitation instances are executed.

The performance of XCS and GXCS is reported in Fig. 7.
Since this world is very simple, both of XCS and GXCS can
easily find the optimal performance around 1.7 steps. However,
it is found that XCS is actually slightly faster than GXCS.
The reason is that GXCS actually requires to maintain more
learning parameters than XCS, since each GXCS classifier
includes 4 groups of 𝑝, 𝜀 and 𝐹 corresponding to 4 different
directions. Therefore, a larger number of learning instances
are required to achieve the convergence. Even though, the
experimental results confirm that GXCS can converge fast
to the optimal performance by learning and evolving the
classifiers with cyclic conditions and directional actions.

However, when comparing the population size, i.e., the
number of unique classifiers in the population [𝑃 ], it is found
that GXCS can significantly reduce the population size when
comparing with XCS, as shown in Fig. 8. The results confirm
that GXCS classifiers can ensure higher expression ability to

Fig. 8: Population size of XCS and GXCS in Woods1 world

Fig. 9: Woods2 world

match with more environments using the cyclic conditions and
directional actions which make the population [𝑃 ] not require
too much classifiers. As discussed previously, the theoretical
upper bound of the population size could be reduced by 4 times
in GXCS comparing with XCS, since each GXCS classifier is
equivalent to 4 different unique XCS classifiers. Though this
upper bound will not be achieved practically, we do find that
GXCS requires only around half population size than XCS in
Woods1 to achieve the optimal performance.

D. Woods2 World

Woods2 world is an extended version of Woods1, which
consists of 15 × 30 grid of cells as shown in Fig. 9. It
was originally proposed in Wilson’s paper [1] to evaluate the
performance of XCS. Different from Woods1, Woods2 has
two kinds of goal cells and two kinds of obstacles, comparing
with only a single kind of goal cell and obstacle cell in
Woods1. The two kinds of goal cells are denoted as “G”
and “F”, respectively, which are encoded with 3 bits “110”
and “111”. The two kinds of obstacles are represented by
black cells and blue cells, with encoding “010” and “011”,
respectively. The empty cells have bits “000”. Accordingly,
the length of the conditions in each classifier is 3× 8 = 24.
Woods2 is considered to be more challenging than

Woods1 since the search space of the classifiers is larger
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Fig. 10: Performance of XCS and GXCS in Woods2 world

Fig. 11: Population size of XCS and GXCS in Woods2 world

in Woods2. However, if we look back to the relatively large
world, Woods2 is still quite simple, since there are many goal
cells located inside the world. Therefore, similar to Woods1,
the optimal steps to find one of the two kinds of goal cells in
Woods2 is 1.7.

The parameter settings remain the same as the previous
studies [4], [24], [25]. That is, 𝑁 = 800; 𝛽 = 0.2; 𝛾 = 0.7;
𝜀0 = 10; 𝛼 = 0.1; 𝜈 = 5; 𝑃# = 0.5; 𝜒 = 0.8 and 𝜇 = 0.01;
𝜃𝐺𝐴 = 25. Each experimental run is finished when 20000
exploitation instances are executed.

The performance of XCS and GXCS is reported in Fig.
10. Similarly to the results of Woods1, both of XCS and
GXCS can easily find the optimal performance around 1.7
steps. Moreover, XCS is also slightly faster than GXCS in this
problem. GXCS can converge fast to the optimal performance
by learning and evolving the classifiers with cyclic conditions
and directional actions.

As for the population size, it is found that GXCS can also
reduce the population size when comparing with XCS, as
shown in Fig. 11. The reduction of the population size in
Woods2 is relatively smaller than that in Woods1.

Fig. 12: Maze5 world

Fig. 13: Performance of XCS and GXCS in Maze5 world

E. Maze5 World

Maze5 world is a much more difficult problem for XCS
since much less generalizations are possible [3], [13]. It has 9×
9 grid of cells as shown in Fig. 12. Different from Woods1 and
Woods2 whose left and right edges are connected, as are the
top and bottom, Maze5 fills the 4 edges with obstacles, which
results in much more complex scenarios. In this problem, the
optimal steps to find the goal cell is 4.6 steps.

The parameter settings are as follows: 𝑁 = 3000; 𝛽 = 0.2;
𝛾 = 0.7; 𝜀0 = 5; 𝛼 = 0.1; 𝜈 = 5; 𝑃# = 0.3; 𝜒 = 0.8 and
𝜇 = 0.01; 𝜃𝐺𝐴 = 25. Each experimental run is finished when
5000 exploitation instances are executed.

The performance plotted in Fig. 13 shows that GXCS is
capable of finding the optimal performance for Maze5. Simi-
larly to the previous two experiments, GXCS requires slightly
larger number of learning instances to converge comparing
with XCS. However, GXCS can find the optimal population
with much smaller number of classifiers than that of XCS, as
shown in Fig. 14.

F. Discussions

Considering these 3 experiments as a whole, it is confirmed
that GXCS can successfully learn and evolve a population
of classifiers with cyclic conditions and directional actions.
Though each GXCS classifier is required to maintain more
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Fig. 14: Population size of XCS and GXCS in Maze5 world

learning parameters than the XCS classifier, the experimental
studies confirm that such kind of representation can have
higher expression ability to adapt to more environments. As a
consequence, GXCS can achieve the optimal performance as
XCS, but with much smaller population size.

However, one of the remaining issues which is not covered
here is the computational cost. Since each GXCS classifier
should adapt to the environments from different directions,
the computational cost for the matching procedure is more
than that of XCS. Therefore, one of the future work of this
paper is to accelerate the matching procedure of GXCS, as
the ones done in XCS [26]. Another issue in the future is to
extend this work to more complex problems, especially the
real-world scenarios like robotics [27], [28], [29]. In this case,
the directional information is rather richer by considering not
only the north, east, south and west directions, but also the
directions at any angle.

V. CONCLUSIONS

This paper develops an extension of XCS by introducing
cyclic conditions and directional actions to represent the classi-
fiers. The proposed system, named generalized XCS classifier
system (GXCS), is dedicated to modify the forms of the
classifiers from chains to cycles, which allows them to match
with more adjacent environments perceived by the agent from
different directions. Accordingly, a more compact population
of classifiers can be evolved to perform the generalization fea-
ture of GXCS. Three well-known maze problems are testified
in this paper, where the results confirm that GXCS is capable
of finding the optimal performance as standard XCS, but with
much smaller population sizes.
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