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Abstract—Large scale constrained problems are complex 
problems due to their dimensionality, structure, in addition to 
their constraints. The performance of EAs decreases when the 
problem dimension increases. Decomposition-based EAs can 
overcome this drawback, but their performance would be 
affected if the interdependent variables were optimized in 
different subproblems. The use of EAs with variables interaction 
identification technique handles this issue by identifying better 
arrangements for decomposing a large problem into 
subproblems in a way that minimizes the interdependencies 
between them. The only technique in the literature that has been 
developed to identify the variables interdependency in 
constrained problems is the Variable Interaction Identification 
for Constrained problems (VIIC). This technique is tested in this 
paper on a real-world problem at three large dimensions which 
are large scale constrained optimization problems. The 
performance of the decomposition-based EA that uses VIIC is 
compared to Random Grouping approach for decomposition, for 
5-Units, 10-Units, and 30-Units DED problems. 

Keywords—Evolutionary Algorithms; Deffirential Evolution; 
large scale constrained problems; constrained problem 
decomposition; variables interacntion identificatio; and dynamic 
economic dispatch problems. 

I.  INTRODUCTION 
EAs were used successfully to solve the constrained 

optimization problems. However, the performance of EAs 
decreases when the dimensionality of the problem increases. 
The complexity to model large dimension real-world 
problems, the noise of their objective function, and the 
complexity of their constraints are three factors which add to 
the difficulty of the real-world constrained optimization 
problems [1]. Decomposing the large scale problems into 
smaller scale subproblems, and then optimizing them, 
overcomes this drawback of EA. This decomposition will 
not be effective unless the interdependent variables of the 
optimization problem were optimized in common 
subproblems. Therefore, a dependency identification 
technique is required to group the interdependent variables 
into common subproblems. 

 This paper presents the implementation of a newly 
proposed Variable Interaction Identification technique for 
Constrained problems (VIIC) on Dynamic Economic 
Dispatch problem (DED) at three different dimensions. This 
technique has been previously successfully tested on 18 
problems of varying complexity on three different large 
scales of 100, 500, and 1000.  The problems tested in this 
paper are DED of 5-Units, 10-Units, and 30-Units. DED 

problems are challenging problems in the industry of power 
generating which are large scale and complex problems. 
There was no single attempt in the literature to solve these 
problems using the decomposition approach with variable 
interaction identification. These problems were optimized in 
the literature in form of unconstrained problem, where the 
constraints were represented as part of the objective 
function, without considering any constraint violation 
information. Therefore, the found solutions may not be 
feasible. Moreover, representing DED problem in this way, 
which is large scale problem, and optimizing it without 
decomposition would be complex in comparison to the 
decomposition approach. 

This paper is organized as follows:  Section II is the 
literature review of the decomposition approaches. Section 
III discusses the tested problems. The used models are 
reviewed in section IV. Experiment and results are presented 
in sections V. Sections VI to VIII discuss the analysis of the 
results and convergence graphs. Finally, the conclusion and 
future work in section IX. 

II. LITERATURE REVIEW 
Cooperative coevolutionary (CC) [2] is the first approach 

that was developed to decompose a large scale problem into 
smaller scale subproblems. One of the techniques 
decomposes the large scale problem of ܰ dimension into ܰ 
one-dimension subproblems. Other techniques divide the 
large problem into two equal size subproblems or into more 
than two subproblems of equal or different size [3-6]. Most 
of the decomposition techniques for the constrained 
problems were developed for problems of specific structure. 
In 1960, Dantzig and Wolfe developed a decomposition 
technique for the linear constraints problems that have 
block-triangular structure [7]. Two years later Benders 
developed a decomposition approach for mixed-variable 
optimization problems [8]. Last decade Ryoo, and Hajela 
proposed a decomposition technique and migration strategy 
among subproblems [9]. Recently, Elfeky decomposed the 
large scale problem, that have block-triangular structure, into 
common problem that contains the objective function and a 
set of constraints, and subproblems that contain only a 
subset of constraints, such that no constraint exists in more 
than one subproblem. Although the decomposition 
overcome the dimensionality problem, the performance of 
the decomposition-based EAs decreases when there is 
interdependency between the subproblems [3]. This 
interdependency between subproblems should be minimized 
[4, 10]. This requires using decomposition technique which 
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is able to detect and group the dependent variables into 
common subproblems before optimizing them. 

In the last decades, some decomposition techniques were 
developed for the unconstrained problems. Random 
Grouping (RG) [6] groups the variables randomly into 
subproblems and it achieved good performance in the 
literature [6, 11]. One of these techniques is correlation 
based Adaptive Variable Partitioning [12] which is 
computationally expensive and is not able to detect 
nonlinear dependencies of variables. Delta Grouping 
technique which is a successful technique in identifying 
dependencies of large scale problems, but it is not very 
efficient when the problem has more than one nonseparable 
group [13]. Variable Interactive Learning technique (VIL) 
[14] starts initially with ܰ subproblems which is not suitable 
for large scale problems specially if it was nonseparable 
problem. Dependency Identification (DI) create variant 
groups of the variables and select, between the most recent 
grouping and the previously best known grouping, the one 
that achieves the least fitness difference [15, 16]. The most 
recent technique is Statistical variable interdependence 
Learning (SL) checks the change that every pair of the 
decision variables has on each other to quantify the degree 
of interdependencies among variables [17]. There is only 
one technique that was developed for decomposing 
constrained problems based on dependency identification in 
literature which is VIIC. VIIC is able to find better 
arrangements of the variables into subproblems that have 
minimum interdependencies. Although RG does not have a 
systematic way to detect the dependencies among the 
variables, it can be implemented directly to the constrained 
problems. It is tested in this paper against VIIC on DED 
problems to show the performance of decomposition-based 
EAs on real-world large scale problems when the 
interdependencies variables are grouped in common 
subproblems. 

DED gets the cost of generating power from generating 
units in a given period of time. The demand in DED changes 
dynamically every hour over a period of 24 hours. DED is a 
multimodal problem, with nonseparable variables and 
additional constraints [18]. Although DED is known to be 
large scale optimization problems, the optimization models 
which were developed using EAs did not use any 
decomposition-based technique. Sample of the EAs which 
were used to optimize DED problems are Genetic 
Algorithms (GA) [19, 20], Evolutionary Programming (EP) 
[21, 22], and Differential Evolution (DE) [23-26]. Because 
of the multimodality and nonseparability of DED, it is a 
good study case to show the ability of decomposition-based 
EAs that use variables interdependency identification over 
those that do not. Three DED problems are tested in this 
paper, 5-Units, 10-Units, and 30-Units. The dimensions of 
these three problems are 120, 240, and 720 and the number 
of constraints is 75, 80, and 100 respectively. 

III. DED PROBLEM 
DED problem is one of the challenging industrial large 

scale constrained optimization problems. Its objective is to 
minimize the total cost of the power generated from 
generating units while satisfying the power demand, which 
varies each hour, and all other constraints. This problem has 

multimodal search space and its dimension is 24 times larger 
than the static Economic Load Dispatch problems (ELD), 
and it has more constraints. The objective function of DED 
is quadratic function of active power outputs from 
generating units. Additionally, in the large power plants, 
where the turbines have steam admission valves, the cost of 
the valve point effect is added to the objective function [27]. 
Therefore, the objective function of large scale DED 
problem is multimodal function when valve point effect is 
considered and its search space has more local optima [20, 
22, 23, 28]. This is the problem that is experimented in this 
paper, and its objective function is defined as follows: ݉݅݊ ௖ܨ = ෍ ෍ ௜௧ ሺܨ ௜ܲ௧ሻே ಸ

௜ୀଵ
்

௧ୀଵ                                 ሺ1ሻ ܨ௜௧ ሺ ௜ܲ௧ሻ is the cost function of the ݅ generating unit at time ݐ , ௜௧ ሺܨ ௜ܲ௧ሻ = ܽ௜ ௜ܲ௧ଶ ൅ ܾ௜ ௜ܲ௧ ൅ ܿ௜ ൅ ቚ݁௜ ݊݅ݏ  ቀ ௜݂௧൫ ௜ܲ௧௠௜௡ െܲ݅ܩܰ ,… ,1,2,3=݅  ,ݐ, and ܽ݅, ܾ݅, and ܿ݅ are cost coefficients, ௜ܲ௧  is the power output of generating unit ݅ at time ݐ. ݁௜ and ௜݂ are the cost functions of the valve point loading effect. ீܰ 
is the number of dispatched generating units (which is 5, 10, 
30 in this paper), and ܶ is the total time period of dispatch 
which is 24.  

DED is subject to the following three constraints: 

1- Power balance constraint: ෍ ௜ܲ௧ െ ஽ܲ௧ேಸ
௜ୀଵ െ ௅ܲ௧ = 0                                     ሺ2ሻ 

஽ܲ௧  is the total power demand at time ݐ , and ௅ܲ௧  is the 
transmission power loss at time t in MW and is calculated as 
follows: 

௅ܲ௧ = ෍ ෍ ௜ܲ௧ ߚ௜௝ ௝ܲ௧ ே ಸ
௝ୀଵ

ே ಸ
௜ୀଵ                                    ሺ3ሻ 

where ߚ is the loss coefficients matrix. DED problem has ܶ 
constraints of this first constraint. The transmission loss 
coefficients for the 5-Units problem are: 

ߚ = ێێێۏ
0.000049ۍ 0.000014 0.000015 0.000015 0.0000200.000014 0.000045 0.000016 0.000020 0.0000180.000015 0.000016 0.000039 0.000010 0.0000120.000015 0.000020 0.000010 0.000040 0.0000140.000020 0.000018 0.000012 0.000014 ۑۑۑے0.000035

ې  MW. 
The transmission loss PL୲ is neglected for the 10, and 30 

units in this paper, as the problem in [27]. 

2- Capacity limit constraint: 
Capacity limit constraints define the range of the power 

generated from each unit i. 
௜ܲ ௠௜௡ ൑ ௜ܲ ൑ ௜ܲ ௠௔௫   ݅ = 1, … ,  ܰீ                ሺ4ሻ ௜ܲ ௠௜௡  and ௜ܲ ௠௔௫  are the minimum and maximum power 

outputs of the ݅ generating unit, respectively. DED has  ܰீ 
Capacity limit constraints. 

3- Ramp rate limits constraint: 
The constraints that keep the thermal gradients inside the 

turbine with in ramp rate limits increase the life of the units. 
Pounding the generated power restricts the operating range 
of all the units NG to operate only between two limits, the 
upper ramp rate limit UR୧ and the down ramp rate limit DR୧. 
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௜ܲ௧ െ  ܲ௜ሺ௧ିଵሻ ൑ ܷܴ௜    ݅ = 1, … , ீܰ, ݐ = 1, … , ܶ         ሺ5ሻ   ܲ௜ሺ௧ିଵሻ െ  ௜ܲ௧ ൑ ݅    ௜ܴܦ = 1, … , ீܰ, ݐ = 1, … , ܶ         ሺ6ሻ   
where ௜ܲ௧  is the power generated from generating unit ݅ at 
the time t and ܲ௜ሺ௧ିଵሻ is the power generated from the same 
uniti at the previous time ݐ െ 1. Each unit in the DED has its 
own range of power generating. The number of Ramp rate 
limits constraint in DED problem is 2 ൈ ሺܶ െ 1ሻ. 

The experiments in the following section use three 
different problems where ீܰ is 5, 10, or 30 units. The used 
data for the 5-Units and the 10-Units are the same as in [21, 
25, 29]. The data 5-Units problem is shown in Table 1 and 
the load demand for 24 hours is shown in Table 2.  

The data for the 10-Units problem without loss 
coefficient are shown in Table 3 and the load demand is 
presented in Table 4. The data for the 30-Units is three folds 
of the 10-Units as in Table 3 as the data in [30, 31], and the 
Load demand for the 30-Units is triple the load demand of 
the 10-Units in Table 4. The dimensions ܰ  of the DED 
problems are 120, 240, 720 variables, for 5-Units, 10-Units, 
and 30-Units problems. The number of constraints also 
increases to 75, 80, and 100 for the three problems 
respectively. The following section presents a review for 
DEVIIC and DERGC. 

Table 1: Data for 5-Units problem 

 1 2 3 4 5 ௜ܲ ௠௔௫(MW) 75 125 175 250 300 ௜ܲ ௠௜௡(MW) 10 20 30 40 50 ܽ௜($/h) 25 60 100 120 40 ܾ௜($/MWh) 2.0 1.8 2.1 2.0 1.8 ܿ௜ሺܹܯଶ݄ሻ 0.0080 0.003 0.0012 0.0010 0.0015 ݁௜ሺ$/݄ሻ 100 140 160 180 200 ௜݂ሺܹܯ/݀ܽݎሻ 0.042 0.040 0.038 0.037 0.035 ܷܴ௜(MW) 30 30 40 50 50 ܴܦ௜(MW) 30 30 40 50 50 

Table 2: Load demand for 24 hours for 5-Units 

Hour 1 2 3 4 5 6 7 8 
Demand (MW) 410 435 475 530 558 608 626 654 
Hour 9 10 11 12 13 14 15 16 
Demand (MW) 690 704 720 740 704 690 654 580 
Hour 17 18 19 20 21 22 23 24 
Demand (MW) 558 608 654 704 680 605 527 463 

Table 3: data for 10-Units problem 

Unit 1 2 3 4 5 ௜ܲ ௠௔௫(MW) 470 460 340 300 243 ௜ܲ ௠௜௡(MW) 150 135 73 60 73 ܽ௜($/h) 958.2 1313.6 604.97 471.6 480.29 ܾ௜($/MWh) 21.6 21.05 20.81 23.9 21.62 ܿ௜ሺܹܯଶ݄ሻ 0.00043 0.00063 0.00039 0.0007 0.00079 ݁௜ሺ$/݄ሻ 450 600 320 260 280 ௜݂ሺܹܯ/݀ܽݎሻ 0.041 0.036 0.028 0.052 0.063 ܷܴ௜(MW) 80 80 80 50 50 ܴܦ௜(MW) 80 80 80 50 50 
Unit 6 7 8 9 10 ௜ܲ ௠௔௫(MW) 160 130 120 80 55 ௜ܲ ௠௜௡(MW) 57 20 47 20 55 ܽ௜($/h) 601.75 502.7 639.4 455.6 692.4 ܾ௜($/MWh) 17.87 16.51 23.23 19.58 22.45 ܿ௜ሺܹܯଶ݄ሻ 0.00056 0.00211 0.0048 0.10908 0.00951 ݁௜ሺ$/݄ሻ 310 300 340 270 380 ௜݂ሺܹܯ/݀ܽݎሻ 0.048 0.086 0.082 0.098 0.094 ܷܴ௜(MW) 50 30 30 30 30 ܴܦ௜(MW) 50 30 30 30 30 

Table 4: Load demand for 24 hours for 10-Units problem 

Hour 1 2 3 4 5 6 7 8 
Demand(MW) 1036 1110 1258 1406 1480 1628 1702 1776 
Hour 9 10 11 12 13 14 15 16 
Demand(MW) 1924 2072 2146 2220 2072 1924 1776 1554 
Hour 17 18 19 20 21 22 23 24 
Demand(MW) 1480 1628 1776 2072 1924 1628 1332 1184 

IV. DEVIIC AND DERGC 
The optimization models which are used in this paper to 

optimize the three DED problems are DEVIIC, and 
DERGC. Both of them use DE for subproblems 
optimization. DEVIIC uses VIIC for decomposing the large 
scale problem into smaller subproblems, while DERGC uses 
RG for decomposition. 

A. DEVIIC 
DEVIIC is presented in Table 5. DEVIIC initialize a 

population of ܰܲ  individuals at generation ݊݁ܩ = 0 , and 
each individual has ܰ variables. ௚ܵis the initial arrangement 
of variables, which represent the variables in a sequential 
arrangement. The number of different arrangements which 
are generated is ݉ܽ݌ݎ݃ݔ௜௧௘௥ . Each subproblem is optimized 
for number of iterations (݅ݎ݁ݐ). The maximum number of 
fitness evaluations (݉ܽݏܧܨ_ݔ) is predefined before starting 
the optimization. DEVIIC uses VIIC for decomposition. 

Table 5: Basic steps in DEVIIC 

STEP 1 Initialisation: in generation Gen = 0:  
- generate an initial random population that has ܰܲ 

individuals and where each individual has ܰ  variables. 
The variable in each individual of the population must be 
generated within its range by: ݔ௜,௝ = ௝ܮ  ൅ ݀݊ܽݎ  ൈ ቀ ௝ܷ െ ௝ቁܮ , ݆ א ሾ1, ܰሿ, ݅ א ሾ1, ܰܲሿ 
where ܮ௝  and ௝ܷ  are the lower and upper bounds of the 
variable ݔ௝  in the individual ݆ , and rand  is a uniform 
random number, rand א ሾ0,1ሿ. 

- identify the number of subproblems, ݉, the subproblem 
size, ܸ, ݉ܽݏܧܨ_ݔ 

STEP 2: While ݏܧܨ ൏   ݏܧܨ_ݔܽ݉ 
STEP 2.1: If (Gen < 25) or ((Gen%50) = 0 && (Gen < ݉ܽ2/ ݏܧܨ_ݔ)) 
or (((Gen%100) = 0 && (Gen > ݉ܽ2/ ݏܧܨ_ݔ))); then  

- call VIIC 
- find the best arrangement of the N variables (ܵே) 
- save ܵே into ݈݋݋ܲ_݌ݎܩ 

Else 
- select ܵே randomly from ݈݋݋ܲ_݌ݎܩ 

STEP 2.2: Problem decomposition 
use ܵே to group the variables into ݉ subproblems of size ܸ. Each k subproblem contains the number of variables, ܸ, 
where  ܰ = ݉ ൈ ܸ. 

STEP 2.3: Subproblems optimization 
use EA to optimize each subproblem ݇, for number of 
iterations iter. 

STEP 2.3: Information Exchange –  
- update the values of subproblem k  into the complete 

solution vector, ܵே = ൛ݔଵ, … , ,௥భݔ … , ,௥మݔ … , ேൟݔ . So that 
any ݔ௝ that is interdependent among more than one 
subproblems, where  ݆ א  ݇ ת ሾ݉ െ ݇ሿ , is updated to the 
latest optimized ݔ௝ . 

STEP 3: END While 
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VIIC uses initial arrangement ௚ܵ  for objective function 
and each constraint to produce the final variables 
arrangement vector ܵே . ܵே  is then used to group variables 
into subproblems that achieve the minimum subproblems 
interdependency, and maximum variables interdependency. 
A new ܵே  is generated every generation for the first 25 
generations (݊݁ܩ ൑ 25), every 50 generations (Gen%50) in 
the first half of the ݏܧܨ , and every 500 generations 
(Gen%500) in the second half of the ݈݋݋݌_݌ݎܩ .ݏܧܨ is the 
repository which contains all the generated ܵே. The detailed 
steps for VIIC are in Table 6. ݉ܽݎݐݏ݊݋ܿ_ݔ is the maximum number of constraints, and ݉ܽ݌ݎ݃ݔ௜௧௘௥  is the times of generating new arrangement. ݊ܿ 
is the number of the objective function and constraints which 
need finding a variable arrangement for, then adding it to the 
Frequency Matrix (FM). These ݊ܿ  arrangements can be 
found using the following calculations as in steps 2.2, 2.3 
and 2.4. 

Table 6: Basic steps of VIIC 

STEP 1 Initialisation:  
- set ݉ܽݎݐݏ݊݋ܿ_ݔ =  ݊ܿ  if no feasible solution has been 

found or ݉ܽݎݐݏ݊݋ܿ_ݔ =  ݊ܿ ൅ 1  otherwise, ݉ܽ݌ݎ݃ݔ௜௧௘௥ = ݉ ൈ 10ସ , ܸ  is the subproblem size of ݉ 
subproblems, ܿ_݊݉ݑ = 0, ܵே =  ׎

STEP 2: While  ܿ_݊݉ݑ ൏  ݎݐݏ݊݋ܿ_ݔܽ݉
STEP 2.1: initialize the starting variables vector ௚ܵ, generate two 

random values, ܥଵ ൐ 0  and ܥଶ ൐ 0 
STEP 2.2: calculate ݂݅ݐ௔௟௟಴భ಴మ  for the fitness function for the 

subproblems in the arrangement ௚ܵ  and calculate ݂݅ݐ௚௥௣಴భ಴మୀ௞ for all the ݇ subproblems. 
STEP 2.3: calculate ݃ݏ݌ݎௗ௜௙௙ for the starting arrangement,  ௚ܵ 
STEP 2.4: If ݃ݏ݌ݎௗ௜௙௙  ് 0 and ݃݌ݎ௜௧௘௥ ൏  ௜௧௘௥ ; then݌ݎ݃ݔܽ݉

1. generate a new random arrangement of variables ௚ܵത = ൛ݔ௥భ, ,௥మݔ … , ௥ಿݔ షభబ, … , ௥ಿݔ ൟ 
2. calculate ݂݅ݐ௚௥௣಴భ಴మୀ௞  for all the ݇  subproblems 

arranged as in ௚ܵത 
3. calculate ݊݁ݏ݌ݎ݃ݓௗ௜௙௙ for ௚ܵത 
4. If ݊݁ݏ݌ݎ݃ݓௗ௜௙௙ < ݃ݏ݌ݎௗ௜௙௙; then  

update ௚ܵ = ௚ܵത and ݃ݏ݌ݎௗ௜௙௙ =  ௗ௜௙௙ݏ݌ݎ݃ݓ݁݊
5. Go to STEP 2.4 

STEP 2.5: add the best arrangement ௚ܵ into the ܿ_݊݉ݑ row of FM 
which has ݉ܽݎݐݏ݊݋ܿ_ݔ rows and ܰ columns 

STEP 2.6: ܿ_݊݉ݑ =  1+ ݉ݑ݊_ܿ
STEP 3: starting with ܵே = ݇ for ;׎  =  do ݉ ݋ݐ 1

- divide FM vertically into ݉ blocks  
- record the frequency of all the variables in each 

block k of FM into its corresponding ݃݌ݎ௞ of GFM 
(there is one ݃݌ݎ௞ in GFM for each ݇) 

- count the frequency and record it into the “݈ܽݐ݋ݐ” 
row of GFM 

STEP 4: for ݅ =  ࢕ࢊ ݇ ݋ݐ 1
- remove the variables that are in ܵே, from the “total” 

of the ݃݌ݎ௜ block in GFM 
- sort the “total” row of the  ݃݌ݎ௜ block in GFM 
- add the variables, of the highest frequency variable 

of the ݃݌ݎ௜ block in GFM to ܵே 
STEP 5: Return ܵே 

௔௟௟಴భ಴మݐ݂݅ =  ݉ כ ሾ݂݅ݐ௔௟௟಴భ ൅ ௔௟௟಴మݐ݂݅ ሿ             ሺ7ሻ ݂݅ݐ௔௟௟಴భ ௜ݔ , = ,ଵܥ ݅  ׊ = ሾ1, ܰሿ                           ሺ8ሻ  ݂݅ݐ௔௟௟಴మ ௜ݔ  = ,ଶܥ ݅ ׊ = ሾ1, ܰሿ                             ሺ9ሻ ݃ݏ݌ݎௗ௜௙௙ =  ቚ݂݅ݐ௔௟௟಴భ಴మ െ ௥௢௨௣௦಴భ಴మீݐ݂݅ ቚ       ሺ10ሻ 
௥௢௨௣௦಴భ಴మீݐ݂݅ = ෍ ௚௥௣಴భ಴మୀ௞௠ݐ݂݅

௞ୀଵ                      ሺ11ሻ ݂݅ݐ௚௥௣಴భ಴మୀ௞ = ஼భ ௚௥௣ୀ௞ݐ݂݅ ൅ ݇ ׊ ௖మ ௚௥௣ୀ௞ݐ݂݅ א ݉    ሺ12ሻ ݔ௖ଵ = ൜ܿଵ ݔ ׊ א ܸ                     ܿଶ (13)  ,               ݁ݏ݅ݓݎ݄݁ݐ݋ 

௖ݔ ଶ = ൜ܿଶ ݔ ׊ א ܸ                     ܿଵ (14)              ,                ݁ݏ݅ݓݎ݄݁ݐ݋ 

where V is the number of variables in subproblem k. 

FM consists of the best obtained variables arrangements 
and it is divided into blocks (݃ݏ݌ݎ ) of size ܸ . Groups 
Frequency Matrix (GFM) contains the frequency of all the 
variables in each block ( ݌ݎ݃ ). Its rows represent the 
occurrence of each decision variable in all the rows of the 
corresponding block columns in FM. Then the highest 
frequency variables are grouped into one group to get the 
final grouping vector ܵே which is used in the subproblems 
optimization (step 2 of Table 5) and is saved in ݈݋݋ܲ_݌ݎܩ. 

DE is used to optimizing all the subproblems. A new 
generation, “Gen”, starts after optimizing all the 
subproblems and the optimization ends when ݏܧܨ ൐݉ܽݏܧܨ_ݔ , the optimization process continues and new 
variables arrangements are used (either from VIIU or ݈݋݋ܲ_݌ݎܩ ). The DE variant that was used is “rand/1/bin”. 
Its mutation and crossover are as follows. 

Mutation: The mutation vector, ௭ܸሬሬሬԦሺݍሻ, at generation ݍ , is 
generated by adding a random vector, ݔ௥ଵሬሬሬሬሬሬԦሺݍሻ , to the 
multiplication of the amplifier factor, ܨ , by the 
difference of another two random vectors, ݔ௥ଶሬሬሬሬሬሬԦሺݍሻ and ݔ௥ଷሬሬሬሬሬሬԦሺݍሻ. ௭ܸሬሬሬԦሺݍሻ = ሻݍ௥ଵሬሬሬሬሬሬԦሺݔ ൅ .ܨ ቀݔ௥ଶሬሬሬሬሬሬԦሺݍሻ െ ,ଵݎ ሻቁ            ሺ15ሻ whereݍ௥ଷሬሬሬሬሬሬԦሺݔ א ଷ are random numberݎ ଶ andݎ ሼ1,2, … , ܰܲሽ. 

Crossover: Binomial crossover is applied with probability 
less than or equal to the Crossover rate (ݎܥ). ݑ௭,௝ሺݍሻ = ቊ ,ሻݍ௭,௝ሺݒ ݀݊ܽݎ ൏ ݆ ݎ݋ ݎܥ =  ሺ16ሻ                         ݁ݏ݅ݓݎ݄݁ݐ݋                 ,ሻݍ௭,௝ሺݔ݀݊ܽݎ݆

where ݀݊ܽݎ א ሾ0,1ሿ,  and jrand  are randomly chosen 
indexes א ሾ1,2,3, … , ܰሿ  to guarantee that at least one 
variable is added to ௭ܷሺݍሻ from ௭ܸሺݍሻ. 
Selection: The new individuals for generation ݍ ൅ 1  are 

chosen as follows: ݔ௭ሺݍ ൅ 1ሻ = ቊݑ௭ሺݍሻ,     ݂݅ ݂൫ݑ௭ሺݍሻ൯ ൑ ݂൫ݔ௭ሺݍሻ൯    ݔ௭ሺݍሻ,     ݁ݏ݅ݓݎ݄݁ݐ݋                                  ሺ17ሻ 
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B. DERGC 
DERGC follows exactly the same steps of DEVIIC 

except in STEP 2.1 (VIIC) which is replaced by RG where ܵே is generated randomly at each call for step 2 as long as ݏܧܨ ൏ RG creates a new random arrangement ܵே .ݏܧܨ_ݔܽ݉   of ܰ  variables, ܵே = ൛ݔ௥భ, ,௥మݔ … , … , ௥ಿൟݔ , where ݎଵ  to ݎே 
are random indices for the variables from 1 to ܰ. This random 
arrangement is decomposed into subproblems ݉ of size ܸ in 
STEP 2.2 and optimized sequentially in STEP 2.3. 

V. EXPERIMENTS AND RESULTS 
Three experiments are carried out in this paper to 

evaluate the performance of the VIIC against RG on real-
world problems. The constraint-handling technique that was 
used for DED problems in the literature is penalty functions 
[27, 30, 31]. To test the VIIC technique that is used in 
DEVIIC, the constraints of DED problems should be 
handled using different constraint-handling technique than 
the penalty functions technique. This is because the penalty 
functions technique adds the constraints with penalty 
coefficients to the objective function. And to show the 
ability of VIIC, the objective function and the constraints 
need to be presented separately. Therefore, the used 
constraints-handling technique for DED in this paper is the 
superiority of feasible solution that was used by Deb et al. 
[32]. The individual that achieves the best fitness value from 
two feasible solutions to be better, any feasible individual is 
better than an infeasible individual, and for two infeasible 
individuals; the one that achieves less violation is preferred. 
The equality constraints ห ௝݄ሺݔԦሻห = 0  are transformed to 
inequality constraints, ห ௝݄ሺݔԦሻห െ ߳ ൑ 0 , where ߳  is the 
tolerance factor and ߳ = 0.0001  in literature [33]. This 
technique is simple, flexible, and easy to merge with 
optimization algorithms. Therefore it has been very popular 
in constrained optimization using EAs and it was used 
successfully with DE [34-37]. Its drawback is that it loses 
the population diversity, but this can be handled by using EA 
that is able to maintain diversity [38].  

Experimental setting: the stopping criteria ݉ܽݏܧܨ_ ݔ =20000 ൈ  ܰ, where ܰ is the dimension of the problem [33]. ܰܲ = 50, subproblem size ܸ = ܰ/2, Each subproblem is 
optimized for 30 iterations “݅ݎ݁ݐ”. The DE parameters are: 
scaling factor ܨ where 0.4 ൑ ܨ ൑ ݎܥ ,0.5 = 0.95. In VIIC, 
the number of combinations created for each objective 
function or constraint in the problem is ݉ܽ݌ݎ݃ݔ௜௧௘௥ = ݉ ൈ10ସ , the number of subproblems ݉ = ܰ/ܸ . DEVIIC and 
DERGC were implemented for 25 runs at all the three 
problems and the results are presented in Table 7. The 
experiments were conducted using MATLAB 2012 on an 
Intel(R) Core(TM) i5 CPU, 3.20 GHz, and running 
Microsoft Windows 7. 

It is shown in Table 7 that DEVIIC achieved better 
“best” and “mean” value than DERGC for 5-Units problem. 
Although the “std” of DERGC was better than DEVIIC, this 
does not mean that DERGC is more stable than DEVIIC 
because DERGC did not find a single feasible solution out 
of the 25 solutions  (“FR”=0). However, DEVIIC achieved 
“FR” of 100%. The same pattern of performance occurred 
for the 10-Units problem, which has 240 dimensions. The 

“best” and “mean” values achieved by DEVIIC for 10-Units 
problem were better than that of DERGC even if it was 
larger, because it was from feasible solution. DERGC did 
not find any feasible solution in the experiment at 10-Units 
problem. When the dimension of the problem is increased to 
720 at 30-Units problem the feasibility ratio of DEVIIC 
decreased than in the previous two problems. However, 
DVIIC outperformed DERGC at “best” value, even if it is 
larger than DERGC but it represents a feasible solution. The 
star (*) in Table 7 represent values which are achieved by 
infeasible solutions. 

Parameter Analysis: Table 7 views the results of the 
three problems when the subproblem size ܸ was decreased 
to ܰ/4 for 5-Units and 10-Units problems, and to ܰ/8 for 
30-Units problem, and ܰܲ was increased to 100 for all the 
problems. It can be seen that this change affected the 
performance of DEVIIC positively and did not affect 
DERGC at all. The “best” and “mean” fitness values of 5-
Units, and 10-Units problems were better than those 
achieved by large subproblem and small population. “FR” 
was still 100% for DEVIIC and 0% for DERG. At 30-Units 
problem, these parameter settings increased “FR” to 92% 
rather than 12%, when the previous setting of subproblem 
size and population were used. 

In summary, DEVIIC achieved good results at all the 
three problems using different setting. These results showed 
that even if DEVIIC requires additional computations to use 
variable interaction identification technique, and DERG does 
not, these computations are justified and worth spending 
computational resources and time doing them. More analysis 
is conducted in the following section to show if the 
difference in time between the two used models is 
significant or not. DEVIIC and DERGC are ranked based on 
these results in the following section. 

Table 7: Results of 5-Units, 10-Units, and 30-Units 

NP=50, V=60 NP=100, V=30 
5-Units DEVIIC DERGC DEVIIC DERGC 
FR 100% 0% 100% 0% 
time 5.5995E+03 5.5283E+03 5.6211E+03 5.6518E+03 
best 5.0648E+04 5.1483E+04 5.0649E+04 5.1339E+04 
mean 5.2206E+04 5.2245E+04 5.2162E+04 5.2178E+04 
median 5.2276E+04 5.2200E+04 5.2225E+04 5.2294E+04 
std 5.8835E+02 4.2418E+02 6.9805E+02 4.1397E+02 
worst 5.3274E+04 5.3216E+04 5.3433E+04 5.2862E+04 

NP=50, V=120 NP=100, V=60 
10-Units DEVIIC DERGC DEVIIC DERGC 
FR 100% 0% 100% 0% 
time 5.1640E+03 5.0881E+03 4.9151E+03 4.9381E+03 
best 1.0712E+06 1.0705E+06* 1.0648E+06 1.0713E+06 
mean 1.0740E+06 1.0744E+06 1.0680E+06 1.0743E+06 
median 1.0740E+06 1.0743E+06 1.0678E+06 1.0745E+06 
std 1.2085E+03 1.8707E+03 1.9504E+03 1.7068E+03 
worst 1.0760E+06 1.0775E+06 1.0719E+06 1.0776E+06 

NP=50, V=360 NP=100, V=90 
30-Units DEVIIC DERGC DEVIIC DERGC 
FR 12% 0% 96% 0% 
time 2.1800E+04 2.2253E+04 1.7905E+04 1.8016E+04 
best 3.2177E+06 3.2026E+06* 3.2084E+06 3.1281E+06* 
mean 3.2244E+06 3.2155E+06* 3.2139E+06 3.2029E+06* 
median 3.2237E+06 3.2162E+06 3.2142E+06 3.2110E+06 
std 4.2244E+03 6.6696E+03 2.9203E+03 2.1435E+04 
worst 3.2372E+06 3.2271E+06 3.2200E+06 3.2222E+06 

1902



 
 

VI. ALGORITHM RANKING 
To clearly rank the optimization models based on their 

performance including the feasibility ratio they achieve, the 
scoring technique that was proposed in [39] is used. The 
results which use ܰܲ = 100  and ܰ/4  or ܰ/8 as the 
subproblem size is used in this section. This scoring 
technique calculates two score, one based on the best values 
(ܵ௭௬௕௘௦௧), and one based on the average values (ܵ௭௬௔௩௘௥௔௚௘), as 
follows: ܵ௭௬௕௘௦௧       = ൜ሺ1 െ หி೥೤ି஻ி೤ห௔ൈห஻ி೤ିௐி೤หሻ఍ൠ                 ሺ18ሻ  

ܵ௭௬௔௩௘௥௔௚௘ = ൜ሺ1 െ หி೥೤ି஻ி೤ห௔ൈห஻ி೤ିௐி೤หሻ఍ൠ                 ሺ19ሻ  

where ܵ௭௬௕௘௦௧ is the score of a model z based on “best” values 
and ܵ௭௬௔௩௘௥௔௚௘  is the score of a model z based on “mean” 
values in Table 7. ܽ  is used to differentiate between the 
worst feasible and any infeasible solution, and ζ is used to 
emphasis good solutions. These two values in addition to the 
average  feasibility ratio of model z at all the problems, ܴܨ௭, 
are used to find the final score for a model z, ܵܨ௭.  ܵܨ௭ = ቀ∑ ௌ೥೤್೐ೞ೟ೊ೤సభ ା ∑ ௌ೥೤ೌೡ೐ೝೌ೒೐ೊ೤సభ ቁZ ൈ   ௭        ሺ20ሻܴܨ

In ܵ௭௬௕௘௦௧, the actual “best” fitness values of a problem y 
using the optimization model z is (ܨ௭௬),and the best of the 
two models (smallest) is ܨܤ௬ = ݉݅݊ ሺܨ௭௬ሻ . The worst of 
them (largest) is ܹܨ௬ = ௭௬ሻ. In ܵ௭௬௔௩௘௥௔௚௘ܨሺ ݔܽ݉ , the actual 
best “mean” fitness value, the smallest mean fitness value in 
this optimization problem, and the worst “mean”, largest, 
fitness value of the two models at a problem y, are used. ܽ = 0.001, and ζ = 2. The scoring of DEVIIC and DERGC 
for the three problems are shown in Table 8.  

It is seen that DEVIIC is better than DERGC at two 
problems based on the “best” and “mean” values. Also, the 
average feasibility ratio of DEVIIC is higher than that 
achieved by DERGC as ܴܨ஽ா௏ூூ஼ ൐ ஽ாோீ஼ܴܨ   . Moreover, 
it has better final rank scores than DERGC where ܵܨ஽ா௏ூூ஼  ൐ ஽ாோீ஼ܵܨ  . This scoring technique showed that 
the decomposition-based EA which use variables interaction 
identification technique is successful. Certainly, these 
models require additional computational resources, but this 
might be justified by the good performance and high 
feasibility ratio which is highly desired for the constrained 
problems. The additional resources can be measured and 
analyzed as discussed in the following section using 
algorithm complexity measures. 

 
Table 8: DEVIIC and DERGC ranking 

 DED 
 DEVIIC DERGC ∑ ௒௬ୀଵ࢚࢙ࢋ࢈࢟ࢠࡿ   2 1 ∑ ௒௬ୀଵࢋࢍࢇ࢘ࢋ࢜ࢇ࢟ࢠࡿ  0 1.98 ܵܨ ௭ 98.7% 0%ܴܨ 1 2  

VII. ALGORITHM COMPLEXITY 
To measure the time required by each of the tested 

models when solving DED problems, the technique that was 
used in [40] is implemented on the 10-Units problem. This 
technique uses the time in seconds as an indication of the 
algorithm complexity. The three parameters for this 
algorithm complexity measurement technique are ଴ܶ, ଵܶ, and ଶܶ . ଴ܶ  is the computing time in seconds for the basic 
mathematical operations ݔ = ݔ ൅ ,ݔ ݔ = ,2 /ݔ ݔ = ݔ ,ݔכ ݔ = ,ሻݔሺݐݎݍݏ ݔ = ݈݊ሺݔሻ , ݔ = ሻݔሺ݌ݔ݁ , ݕ = ݔ/ݔ , using ݔ = 5.55, for 1000000 times. ଵܶ  is the computing time in 
seconds for the optimization problem of dimension ܰ  for 
ݏܧܨ 200000 . ଶܶ  is the mean of 5 runs for the computing 
time in seconds for the complete algorithm using 200000 ݏܧܨ at the same problem of dimension ܰ. The calculations 
of ଶܶ are based on 5 runs.  

The measurements are applied on the two algorithms 
DEVIIC and DERGC on the 10-Units problem and the 
results are presented in Table 9.  ଴ܶ  equals 1.5288. The 
results of this algorithm complexity measurement technique 
are presented in Table 9. These results showed that the 
difference in complexity is seconds. This justifies that the 
additional time used by DEVIIC which achieved notable 
difference in performance but the time it used is 
insignificant. The following section shows the convergence 
of DEVIIC and DERGC for 10-Units problem during the 
evolution process. 

Table 9: Algorithm complexity for 10-Units 

 ଵܶ ଶܶ ሺ ଶܶ െ ଵܶሻ/ ଴ܶ 

10-Unit 
DEVIIC 191.5380 219.2500 18.1266 
DERGC 191.5380 219.9396 18.5777 

VIII. CONVERGENCE GRAPHS 
The graphs of the best solution for each problem of the 5, 

10-Units problems using ܸ = ܰ/4, and 30-Units problem 
using ܸ = ܰ/8 , and ܰܲ = 100 , are discussed in this 
section. The graphs showed the performance of DEVIIC 
against DERGC. The subfigures represent magnified 
convergence curve for the two models after using one third, 
two thirds, and all the available  ݏܧܨ. The first subfigure of 
the 5-Units problem in Fig. 1 showed that both DEVIIC and 
DERGC did not achieve a feasible solution after using 4E+5 ݏܧܨ . When the used ݏܧܨ  are in the range of 4E+5 and 
8E+5, the convergence curve of DEVIIC was decreasing, 
which means that it found a feasible solution but DERGC 
did not. DEVIIC continued converging towards better 
solutions as shown in sub-graphs 2 and 3 until the end of the 
evolution process. However, there was hardly any 
improvement in DERGC specially during the last evolution 
stage after using two thirds of the available ݏܧܨ. 

At 10-Units problem convergence graph (Fig. 2), 
DEVIIC outperformed DERGC and converged better than it 
during the evolution process. DERGC converged slowly and 
it is clear from second subfigure that it did not manage to 
find a feasible solution even after using two thirds of the 
available  ݏܧܨ. This showed that even when DERGC does 
not use any ݏܧܨ for variables interaction identification, these 
saved ݏܧܨ  were not efficient in the optimization. This 
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indicates that spending more ݏܧܨ in the exploration of better 
variables that should be optimized in common subproblems 
leads to better convergence and better fitness values.  

 
Fig. 1: Convergence graph of 5-Units problem  

 
Fig. 2: Convergence graph of 10-Units problem 

 

 
Fig. 3: Convergence graph of 30-Units problem 

IX. CONCLUSION AND FUTURE WORK 
In conclusion, this paper presents the implementation of 

decomposition-based EA on a real-world constrained large 
scale optimization problem. The real-world problem that is 
tested in this paper is DED which has not been optimized in 
the literature before using decomposition-based EA. This 
problem is challenging, has complex structure, and has large 
number of constraints. Three different dimensions of this 
problem were tested, 5-Units, 10-Units, and 30-Units, using 
DEVIIC and DERGC. DEVIIC has been developed recently 
and it uses a novel variables interaction identification 
technique (VIIC). DERGC uses one of early developed the 
decomposition techniques in the literature. 

DEVIIC showed a remarkable performance at all the 
tested real-world large scale problems by achieving 
competitive results and higher feasibility ratios. Getting 
feasible solution for the constrained optimization problems 
is highly desired especially when the problems have high 
dimensionality. The analysis of the results and the algorithm 
complexity measures showed that the effort used to identify 
which variables should be optimized together is justified. 
Moreover, the difference in complexity between DEVIIC 
and DERGC showed that the time consumed to implement 
VIIC is not significant. Therefore, a decomposition-based 
EA which use a technique for grouping the variables into 
subproblems is highly recommended for real-world large 
scale constrained optimization problems. VIIC can be used 
with different EA to achieve better results for large problems 
like 30-Units problem. Also, different constraint handling 
techniques can be used.   
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