

A Decomposition-based Algorithm for Dynamic
Economic Dispatch Problems

Eman Sayed, Daryl Essam, Ruhul Sarker, Saber Elsayed
School of Engineering and Information Technology

UNSW-Canberra
Canberra, Australia

e.hasan@student.adfa.edu.au, d.essam@adfa.edu.au, r.sarker@adfa.edu.au, s.elsayed@adfa.edu.au

Abstract—Large scale constrained problems are complex
problems due to their dimensionality, structure, in addition to
their constraints. The performance of EAs decreases when the
problem dimension increases. Decomposition-based EAs can
overcome this drawback, but their performance would be
affected if the interdependent variables were optimized in
different subproblems. The use of EAs with variables interaction
identification technique handles this issue by identifying better
arrangements for decomposing a large problem into
subproblems in a way that minimizes the interdependencies
between them. The only technique in the literature that has been
developed to identify the variables interdependency in
constrained problems is the Variable Interaction Identification
for Constrained problems (VIIC). This technique is tested in this
paper on a real-world problem at three large dimensions which
are large scale constrained optimization problems. The
performance of the decomposition-based EA that uses VIIC is
compared to Random Grouping approach for decomposition, for
5-Units, 10-Units, and 30-Units DED problems.

Keywords—Evolutionary Algorithms; Deffirential Evolution;
large scale constrained problems; constrained problem
decomposition; variables interacntion identificatio; and dynamic
economic dispatch problems.

I. INTRODUCTION
EAs were used successfully to solve the constrained

optimization problems. However, the performance of EAs
decreases when the dimensionality of the problem increases.
The complexity to model large dimension real-world
problems, the noise of their objective function, and the
complexity of their constraints are three factors which add to
the difficulty of the real-world constrained optimization
problems [1]. Decomposing the large scale problems into
smaller scale subproblems, and then optimizing them,
overcomes this drawback of EA. This decomposition will
not be effective unless the interdependent variables of the
optimization problem were optimized in common
subproblems. Therefore, a dependency identification
technique is required to group the interdependent variables
into common subproblems.

 This paper presents the implementation of a newly
proposed Variable Interaction Identification technique for
Constrained problems (VIIC) on Dynamic Economic
Dispatch problem (DED) at three different dimensions. This
technique has been previously successfully tested on 18
problems of varying complexity on three different large
scales of 100, 500, and 1000. The problems tested in this
paper are DED of 5-Units, 10-Units, and 30-Units. DED

problems are challenging problems in the industry of power
generating which are large scale and complex problems.
There was no single attempt in the literature to solve these
problems using the decomposition approach with variable
interaction identification. These problems were optimized in
the literature in form of unconstrained problem, where the
constraints were represented as part of the objective
function, without considering any constraint violation
information. Therefore, the found solutions may not be
feasible. Moreover, representing DED problem in this way,
which is large scale problem, and optimizing it without
decomposition would be complex in comparison to the
decomposition approach.

This paper is organized as follows: Section II is the
literature review of the decomposition approaches. Section
III discusses the tested problems. The used models are
reviewed in section IV. Experiment and results are presented
in sections V. Sections VI to VIII discuss the analysis of the
results and convergence graphs. Finally, the conclusion and
future work in section IX.

II. LITERATURE REVIEW
Cooperative coevolutionary (CC) [2] is the first approach

that was developed to decompose a large scale problem into
smaller scale subproblems. One of the techniques
decomposes the large scale problem of ܰ dimension into ܰ
one-dimension subproblems. Other techniques divide the
large problem into two equal size subproblems or into more
than two subproblems of equal or different size [3-6]. Most
of the decomposition techniques for the constrained
problems were developed for problems of specific structure.
In 1960, Dantzig and Wolfe developed a decomposition
technique for the linear constraints problems that have
block-triangular structure [7]. Two years later Benders
developed a decomposition approach for mixed-variable
optimization problems [8]. Last decade Ryoo, and Hajela
proposed a decomposition technique and migration strategy
among subproblems [9]. Recently, Elfeky decomposed the
large scale problem, that have block-triangular structure, into
common problem that contains the objective function and a
set of constraints, and subproblems that contain only a
subset of constraints, such that no constraint exists in more
than one subproblem. Although the decomposition
overcome the dimensionality problem, the performance of
the decomposition-based EAs decreases when there is
interdependency between the subproblems [3]. This
interdependency between subproblems should be minimized
[4, 10]. This requires using decomposition technique which

1898

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

is able to detect and group the dependent variables into
common subproblems before optimizing them.

In the last decades, some decomposition techniques were
developed for the unconstrained problems. Random
Grouping (RG) [6] groups the variables randomly into
subproblems and it achieved good performance in the
literature [6, 11]. One of these techniques is correlation
based Adaptive Variable Partitioning [12] which is
computationally expensive and is not able to detect
nonlinear dependencies of variables. Delta Grouping
technique which is a successful technique in identifying
dependencies of large scale problems, but it is not very
efficient when the problem has more than one nonseparable
group [13]. Variable Interactive Learning technique (VIL)
[14] starts initially with ܰ subproblems which is not suitable
for large scale problems specially if it was nonseparable
problem. Dependency Identification (DI) create variant
groups of the variables and select, between the most recent
grouping and the previously best known grouping, the one
that achieves the least fitness difference [15, 16]. The most
recent technique is Statistical variable interdependence
Learning (SL) checks the change that every pair of the
decision variables has on each other to quantify the degree
of interdependencies among variables [17]. There is only
one technique that was developed for decomposing
constrained problems based on dependency identification in
literature which is VIIC. VIIC is able to find better
arrangements of the variables into subproblems that have
minimum interdependencies. Although RG does not have a
systematic way to detect the dependencies among the
variables, it can be implemented directly to the constrained
problems. It is tested in this paper against VIIC on DED
problems to show the performance of decomposition-based
EAs on real-world large scale problems when the
interdependencies variables are grouped in common
subproblems.

DED gets the cost of generating power from generating
units in a given period of time. The demand in DED changes
dynamically every hour over a period of 24 hours. DED is a
multimodal problem, with nonseparable variables and
additional constraints [18]. Although DED is known to be
large scale optimization problems, the optimization models
which were developed using EAs did not use any
decomposition-based technique. Sample of the EAs which
were used to optimize DED problems are Genetic
Algorithms (GA) [19, 20], Evolutionary Programming (EP)
[21, 22], and Differential Evolution (DE) [23-26]. Because
of the multimodality and nonseparability of DED, it is a
good study case to show the ability of decomposition-based
EAs that use variables interdependency identification over
those that do not. Three DED problems are tested in this
paper, 5-Units, 10-Units, and 30-Units. The dimensions of
these three problems are 120, 240, and 720 and the number
of constraints is 75, 80, and 100 respectively.

III. DED PROBLEM
DED problem is one of the challenging industrial large

scale constrained optimization problems. Its objective is to
minimize the total cost of the power generated from
generating units while satisfying the power demand, which
varies each hour, and all other constraints. This problem has

multimodal search space and its dimension is 24 times larger
than the static Economic Load Dispatch problems (ELD),
and it has more constraints. The objective function of DED
is quadratic function of active power outputs from
generating units. Additionally, in the large power plants,
where the turbines have steam admission valves, the cost of
the valve point effect is added to the objective function [27].
Therefore, the objective function of large scale DED
problem is multimodal function when valve point effect is
considered and its search space has more local optima [20,
22, 23, 28]. This is the problem that is experimented in this
paper, and its objective function is defined as follows: ݉݅݊ ௖ܨ = ෍ ෍ ௜௧ ሺܨ ௜ܲ௧ሻே ಸ

௜ୀଵ
்

௧ୀଵ ሺ1ሻ ܨ௜௧ ሺ ௜ܲ௧ሻ is the cost function of the ݅ generating unit at time ݐ , ௜௧ ሺܨ ௜ܲ௧ሻ = ܽ௜ ௜ܲ௧ଶ ൅ ܾ௜ ௜ܲ௧ ൅ ܿ௜ ൅ ቚ݁௜ ݊݅ݏ ቀ ௜݂௧൫ ௜ܲ௧௠௜௡ െܲ݅ܩܰ ,… ,1,2,3=݅ ,ݐ, and ܽ݅, ܾ݅, and ܿ݅ are cost coefficients, ௜ܲ௧ is the power output of generating unit ݅ at time ݐ. ݁௜ and ௜݂ are the cost functions of the valve point loading effect. ீܰ
is the number of dispatched generating units (which is 5, 10,
30 in this paper), and ܶ is the total time period of dispatch
which is 24.

DED is subject to the following three constraints:

1- Power balance constraint: ෍ ௜ܲ௧ െ ஽ܲ௧ேಸ
௜ୀଵ െ ௅ܲ௧ = 0 ሺ2ሻ

஽ܲ௧ is the total power demand at time ݐ , and ௅ܲ௧ is the
transmission power loss at time t in MW and is calculated as
follows:

௅ܲ௧ = ෍ ෍ ௜ܲ௧ ߚ௜௝ ௝ܲ௧ ே ಸ
௝ୀଵ

ே ಸ
௜ୀଵ ሺ3ሻ

where ߚ is the loss coefficients matrix. DED problem has ܶ
constraints of this first constraint. The transmission loss
coefficients for the 5-Units problem are:

ߚ = ێێێۏ
0.000049ۍ 0.000014 0.000015 0.000015 0.0000200.000014 0.000045 0.000016 0.000020 0.0000180.000015 0.000016 0.000039 0.000010 0.0000120.000015 0.000020 0.000010 0.000040 0.0000140.000020 0.000018 0.000012 0.000014 ۑۑۑے0.000035

ې MW.
The transmission loss PL୲ is neglected for the 10, and 30

units in this paper, as the problem in [27].

2- Capacity limit constraint:
Capacity limit constraints define the range of the power

generated from each unit i.
௜ܲ ௠௜௡ ൑ ௜ܲ ൑ ௜ܲ ௠௔௫ ݅ = 1, … , ܰீ ሺ4ሻ ௜ܲ ௠௜௡ and ௜ܲ ௠௔௫ are the minimum and maximum power

outputs of the ݅ generating unit, respectively. DED has ܰீ
Capacity limit constraints.

3- Ramp rate limits constraint:
The constraints that keep the thermal gradients inside the

turbine with in ramp rate limits increase the life of the units.
Pounding the generated power restricts the operating range
of all the units NG to operate only between two limits, the
upper ramp rate limit UR୧ and the down ramp rate limit DR୧.

1899

௜ܲ௧ െ ܲ௜ሺ௧ିଵሻ ൑ ܷܴ௜ ݅ = 1, … , ீܰ, ݐ = 1, … , ܶ ሺ5ሻ ܲ௜ሺ௧ିଵሻ െ ௜ܲ௧ ൑ ݅ ௜ܴܦ = 1, … , ீܰ, ݐ = 1, … , ܶ ሺ6ሻ
where ௜ܲ௧ is the power generated from generating unit ݅ at
the time t and ܲ௜ሺ௧ିଵሻ is the power generated from the same
uniti at the previous time ݐ െ 1. Each unit in the DED has its
own range of power generating. The number of Ramp rate
limits constraint in DED problem is 2 ൈ ሺܶ െ 1ሻ.

The experiments in the following section use three
different problems where ீܰ is 5, 10, or 30 units. The used
data for the 5-Units and the 10-Units are the same as in [21,
25, 29]. The data 5-Units problem is shown in Table 1 and
the load demand for 24 hours is shown in Table 2.

The data for the 10-Units problem without loss
coefficient are shown in Table 3 and the load demand is
presented in Table 4. The data for the 30-Units is three folds
of the 10-Units as in Table 3 as the data in [30, 31], and the
Load demand for the 30-Units is triple the load demand of
the 10-Units in Table 4. The dimensions ܰ of the DED
problems are 120, 240, 720 variables, for 5-Units, 10-Units,
and 30-Units problems. The number of constraints also
increases to 75, 80, and 100 for the three problems
respectively. The following section presents a review for
DEVIIC and DERGC.

Table 1: Data for 5-Units problem

 1 2 3 4 5 ௜ܲ ௠௔௫(MW) 75 125 175 250 300 ௜ܲ ௠௜௡(MW) 10 20 30 40 50 ܽ௜($/h) 25 60 100 120 40 ܾ௜($/MWh) 2.0 1.8 2.1 2.0 1.8 ܿ௜ሺܹܯଶ݄ሻ 0.0080 0.003 0.0012 0.0010 0.0015 ݁௜ሺ$/݄ሻ 100 140 160 180 200 ௜݂ሺܹܯ/݀ܽݎሻ 0.042 0.040 0.038 0.037 0.035 ܷܴ௜(MW) 30 30 40 50 50 ܴܦ௜(MW) 30 30 40 50 50

Table 2: Load demand for 24 hours for 5-Units

Hour 1 2 3 4 5 6 7 8
Demand (MW) 410 435 475 530 558 608 626 654
Hour 9 10 11 12 13 14 15 16
Demand (MW) 690 704 720 740 704 690 654 580
Hour 17 18 19 20 21 22 23 24
Demand (MW) 558 608 654 704 680 605 527 463

Table 3: data for 10-Units problem

Unit 1 2 3 4 5 ௜ܲ ௠௔௫(MW) 470 460 340 300 243 ௜ܲ ௠௜௡(MW) 150 135 73 60 73 ܽ௜($/h) 958.2 1313.6 604.97 471.6 480.29 ܾ௜($/MWh) 21.6 21.05 20.81 23.9 21.62 ܿ௜ሺܹܯଶ݄ሻ 0.00043 0.00063 0.00039 0.0007 0.00079 ݁௜ሺ$/݄ሻ 450 600 320 260 280 ௜݂ሺܹܯ/݀ܽݎሻ 0.041 0.036 0.028 0.052 0.063 ܷܴ௜(MW) 80 80 80 50 50 ܴܦ௜(MW) 80 80 80 50 50
Unit 6 7 8 9 10 ௜ܲ ௠௔௫(MW) 160 130 120 80 55 ௜ܲ ௠௜௡(MW) 57 20 47 20 55 ܽ௜($/h) 601.75 502.7 639.4 455.6 692.4 ܾ௜($/MWh) 17.87 16.51 23.23 19.58 22.45 ܿ௜ሺܹܯଶ݄ሻ 0.00056 0.00211 0.0048 0.10908 0.00951 ݁௜ሺ$/݄ሻ 310 300 340 270 380 ௜݂ሺܹܯ/݀ܽݎሻ 0.048 0.086 0.082 0.098 0.094 ܷܴ௜(MW) 50 30 30 30 30 ܴܦ௜(MW) 50 30 30 30 30

Table 4: Load demand for 24 hours for 10-Units problem

Hour 1 2 3 4 5 6 7 8
Demand(MW) 1036 1110 1258 1406 1480 1628 1702 1776
Hour 9 10 11 12 13 14 15 16
Demand(MW) 1924 2072 2146 2220 2072 1924 1776 1554
Hour 17 18 19 20 21 22 23 24
Demand(MW) 1480 1628 1776 2072 1924 1628 1332 1184

IV. DEVIIC AND DERGC
The optimization models which are used in this paper to

optimize the three DED problems are DEVIIC, and
DERGC. Both of them use DE for subproblems
optimization. DEVIIC uses VIIC for decomposing the large
scale problem into smaller subproblems, while DERGC uses
RG for decomposition.

A. DEVIIC
DEVIIC is presented in Table 5. DEVIIC initialize a

population of ܰܲ individuals at generation ݊݁ܩ = 0 , and
each individual has ܰ variables. ௚ܵis the initial arrangement
of variables, which represent the variables in a sequential
arrangement. The number of different arrangements which
are generated is ݉ܽ݌ݎ݃ݔ௜௧௘௥ . Each subproblem is optimized
for number of iterations (݅ݎ݁ݐ). The maximum number of
fitness evaluations (݉ܽݏܧܨ_ݔ) is predefined before starting
the optimization. DEVIIC uses VIIC for decomposition.

Table 5: Basic steps in DEVIIC

STEP 1 Initialisation: in generation Gen = 0:
- generate an initial random population that has ܰܲ

individuals and where each individual has ܰ variables.
The variable in each individual of the population must be
generated within its range by: ݔ௜,௝ = ௝ܮ ൅ ݀݊ܽݎ ൈ ቀ ௝ܷ െ ௝ቁܮ , ݆ א ሾ1, ܰሿ, ݅ א ሾ1, ܰܲሿ
where ܮ௝ and ௝ܷ are the lower and upper bounds of the
variable ݔ௝ in the individual ݆ , and rand is a uniform
random number, rand א ሾ0,1ሿ.

- identify the number of subproblems, ݉, the subproblem
size, ܸ, ݉ܽݏܧܨ_ݔ

STEP 2: While ݏܧܨ ൏ ݏܧܨ_ݔܽ݉
STEP 2.1: If (Gen < 25) or ((Gen%50) = 0 && (Gen < ݉ܽ2/ ݏܧܨ_ݔ))
or (((Gen%100) = 0 && (Gen > ݉ܽ2/ ݏܧܨ_ݔ))); then

- call VIIC
- find the best arrangement of the N variables (ܵே)
- save ܵே into ݈݋݋ܲ_݌ݎܩ

Else
- select ܵே randomly from ݈݋݋ܲ_݌ݎܩ

STEP 2.2: Problem decomposition
use ܵே to group the variables into ݉ subproblems of size ܸ. Each k subproblem contains the number of variables, ܸ,
where ܰ = ݉ ൈ ܸ.

STEP 2.3: Subproblems optimization
use EA to optimize each subproblem ݇, for number of
iterations iter.

STEP 2.3: Information Exchange –
- update the values of subproblem k into the complete

solution vector, ܵே = ൛ݔଵ, … , ,௥భݔ … , ,௥మݔ … , ேൟݔ . So that
any ݔ௝ that is interdependent among more than one
subproblems, where ݆ א ݇ ת ሾ݉ െ ݇ሿ , is updated to the
latest optimized ݔ௝ .

STEP 3: END While

1900

VIIC uses initial arrangement ௚ܵ for objective function
and each constraint to produce the final variables
arrangement vector ܵே . ܵே is then used to group variables
into subproblems that achieve the minimum subproblems
interdependency, and maximum variables interdependency.
A new ܵே is generated every generation for the first 25
generations (݊݁ܩ ൑ 25), every 50 generations (Gen%50) in
the first half of the ݏܧܨ , and every 500 generations
(Gen%500) in the second half of the ݈݋݋݌_݌ݎܩ .ݏܧܨ is the
repository which contains all the generated ܵே. The detailed
steps for VIIC are in Table 6. ݉ܽݎݐݏ݊݋ܿ_ݔ is the maximum number of constraints, and ݉ܽ݌ݎ݃ݔ௜௧௘௥ is the times of generating new arrangement. ݊ܿ
is the number of the objective function and constraints which
need finding a variable arrangement for, then adding it to the
Frequency Matrix (FM). These ݊ܿ arrangements can be
found using the following calculations as in steps 2.2, 2.3
and 2.4.

Table 6: Basic steps of VIIC

STEP 1 Initialisation:
- set ݉ܽݎݐݏ݊݋ܿ_ݔ = ݊ܿ if no feasible solution has been

found or ݉ܽݎݐݏ݊݋ܿ_ݔ = ݊ܿ ൅ 1 otherwise, ݉ܽ݌ݎ݃ݔ௜௧௘௥ = ݉ ൈ 10ସ , ܸ is the subproblem size of ݉
subproblems, ܿ_݊݉ݑ = 0, ܵே = ׎

STEP 2: While ܿ_݊݉ݑ ൏ ݎݐݏ݊݋ܿ_ݔܽ݉
STEP 2.1: initialize the starting variables vector ௚ܵ, generate two

random values, ܥଵ ൐ 0 and ܥଶ ൐ 0
STEP 2.2: calculate ݂݅ݐ௔௟௟಴భ಴మ for the fitness function for the

subproblems in the arrangement ௚ܵ and calculate ݂݅ݐ௚௥௣಴భ಴మୀ௞ for all the ݇ subproblems.
STEP 2.3: calculate ݃ݏ݌ݎௗ௜௙௙ for the starting arrangement, ௚ܵ
STEP 2.4: If ݃ݏ݌ݎௗ௜௙௙ ് 0 and ݃݌ݎ௜௧௘௥ ൏ ௜௧௘௥ ; then݌ݎ݃ݔܽ݉

1. generate a new random arrangement of variables ௚ܵത = ൛ݔ௥భ, ,௥మݔ … , ௥ಿݔ షభబ, … , ௥ಿݔ ൟ
2. calculate ݂݅ݐ௚௥௣಴భ಴మୀ௞ for all the ݇ subproblems

arranged as in ௚ܵത
3. calculate ݊݁ݏ݌ݎ݃ݓௗ௜௙௙ for ௚ܵത
4. If ݊݁ݏ݌ݎ݃ݓௗ௜௙௙ < ݃ݏ݌ݎௗ௜௙௙; then

update ௚ܵ = ௚ܵത and ݃ݏ݌ݎௗ௜௙௙ = ௗ௜௙௙ݏ݌ݎ݃ݓ݁݊
5. Go to STEP 2.4

STEP 2.5: add the best arrangement ௚ܵ into the ܿ_݊݉ݑ row of FM
which has ݉ܽݎݐݏ݊݋ܿ_ݔ rows and ܰ columns

STEP 2.6: ܿ_݊݉ݑ = 1+ ݉ݑ݊_ܿ
STEP 3: starting with ܵே = ݇ for ;׎ = do ݉ ݋ݐ 1

- divide FM vertically into ݉ blocks
- record the frequency of all the variables in each

block k of FM into its corresponding ݃݌ݎ௞ of GFM
(there is one ݃݌ݎ௞ in GFM for each ݇)

- count the frequency and record it into the “݈ܽݐ݋ݐ”
row of GFM

STEP 4: for ݅ = ࢕ࢊ ݇ ݋ݐ 1
- remove the variables that are in ܵே, from the “total”

of the ݃݌ݎ௜ block in GFM
- sort the “total” row of the ݃݌ݎ௜ block in GFM
- add the variables, of the highest frequency variable

of the ݃݌ݎ௜ block in GFM to ܵே
STEP 5: Return ܵே

௔௟௟಴భ಴మݐ݂݅ = ݉ כ ሾ݂݅ݐ௔௟௟಴భ ൅ ௔௟௟಴మݐ݂݅ ሿ ሺ7ሻ ݂݅ݐ௔௟௟಴భ ௜ݔ , = ,ଵܥ ݅ ׊ = ሾ1, ܰሿ ሺ8ሻ ݂݅ݐ௔௟௟಴మ ௜ݔ = ,ଶܥ ݅ ׊ = ሾ1, ܰሿ ሺ9ሻ ݃ݏ݌ݎௗ௜௙௙ = ቚ݂݅ݐ௔௟௟಴భ಴మ െ ௥௢௨௣௦಴భ಴మீݐ݂݅ ቚ ሺ10ሻ
௥௢௨௣௦಴భ಴మீݐ݂݅ = ෍ ௚௥௣಴భ಴మୀ௞௠ݐ݂݅

௞ୀଵ ሺ11ሻ ݂݅ݐ௚௥௣಴భ಴మୀ௞ = ஼భ ௚௥௣ୀ௞ݐ݂݅ ൅ ݇ ׊ ௖మ ௚௥௣ୀ௞ݐ݂݅ א ݉ ሺ12ሻ ݔ௖ଵ = ൜ܿଵ ݔ ׊ א ܸ ܿଶ (13) , ݁ݏ݅ݓݎ݄݁ݐ݋

௖ݔ ଶ = ൜ܿଶ ݔ ׊ א ܸ ܿଵ (14) , ݁ݏ݅ݓݎ݄݁ݐ݋

where V is the number of variables in subproblem k.

FM consists of the best obtained variables arrangements
and it is divided into blocks (݃ݏ݌ݎ) of size ܸ . Groups
Frequency Matrix (GFM) contains the frequency of all the
variables in each block (݌ݎ݃). Its rows represent the
occurrence of each decision variable in all the rows of the
corresponding block columns in FM. Then the highest
frequency variables are grouped into one group to get the
final grouping vector ܵே which is used in the subproblems
optimization (step 2 of Table 5) and is saved in ݈݋݋ܲ_݌ݎܩ.

DE is used to optimizing all the subproblems. A new
generation, “Gen”, starts after optimizing all the
subproblems and the optimization ends when ݏܧܨ ൐݉ܽݏܧܨ_ݔ , the optimization process continues and new
variables arrangements are used (either from VIIU or ݈݋݋ܲ_݌ݎܩ). The DE variant that was used is “rand/1/bin”.
Its mutation and crossover are as follows.

Mutation: The mutation vector, ௭ܸሬሬሬԦሺݍሻ, at generation ݍ , is
generated by adding a random vector, ݔ௥ଵሬሬሬሬሬሬԦሺݍሻ , to the
multiplication of the amplifier factor, ܨ , by the
difference of another two random vectors, ݔ௥ଶሬሬሬሬሬሬԦሺݍሻ and ݔ௥ଷሬሬሬሬሬሬԦሺݍሻ. ௭ܸሬሬሬԦሺݍሻ = ሻݍ௥ଵሬሬሬሬሬሬԦሺݔ ൅ .ܨ ቀݔ௥ଶሬሬሬሬሬሬԦሺݍሻ െ ,ଵݎ ሻቁ ሺ15ሻ whereݍ௥ଷሬሬሬሬሬሬԦሺݔ א ଷ are random numberݎ ଶ andݎ ሼ1,2, … , ܰܲሽ.

Crossover: Binomial crossover is applied with probability
less than or equal to the Crossover rate (ݎܥ). ݑ௭,௝ሺݍሻ = ቊ ,ሻݍ௭,௝ሺݒ ݀݊ܽݎ ൏ ݆ ݎ݋ ݎܥ = ሺ16ሻ ݁ݏ݅ݓݎ݄݁ݐ݋ ,ሻݍ௭,௝ሺݔ݀݊ܽݎ݆

where ݀݊ܽݎ א ሾ0,1ሿ, and jrand are randomly chosen
indexes א ሾ1,2,3, … , ܰሿ to guarantee that at least one
variable is added to ௭ܷሺݍሻ from ௭ܸሺݍሻ.
Selection: The new individuals for generation ݍ ൅ 1 are

chosen as follows: ݔ௭ሺݍ ൅ 1ሻ = ቊݑ௭ሺݍሻ, ݂݅ ݂൫ݑ௭ሺݍሻ൯ ൑ ݂൫ݔ௭ሺݍሻ൯ ݔ௭ሺݍሻ, ݁ݏ݅ݓݎ݄݁ݐ݋ ሺ17ሻ
1901

B. DERGC
DERGC follows exactly the same steps of DEVIIC

except in STEP 2.1 (VIIC) which is replaced by RG where ܵே is generated randomly at each call for step 2 as long as ݏܧܨ ൏ RG creates a new random arrangement ܵே .ݏܧܨ_ݔܽ݉ of ܰ variables, ܵே = ൛ݔ௥భ, ,௥మݔ … , … , ௥ಿൟݔ , where ݎଵ to ݎே
are random indices for the variables from 1 to ܰ. This random
arrangement is decomposed into subproblems ݉ of size ܸ in
STEP 2.2 and optimized sequentially in STEP 2.3.

V. EXPERIMENTS AND RESULTS
Three experiments are carried out in this paper to

evaluate the performance of the VIIC against RG on real-
world problems. The constraint-handling technique that was
used for DED problems in the literature is penalty functions
[27, 30, 31]. To test the VIIC technique that is used in
DEVIIC, the constraints of DED problems should be
handled using different constraint-handling technique than
the penalty functions technique. This is because the penalty
functions technique adds the constraints with penalty
coefficients to the objective function. And to show the
ability of VIIC, the objective function and the constraints
need to be presented separately. Therefore, the used
constraints-handling technique for DED in this paper is the
superiority of feasible solution that was used by Deb et al.
[32]. The individual that achieves the best fitness value from
two feasible solutions to be better, any feasible individual is
better than an infeasible individual, and for two infeasible
individuals; the one that achieves less violation is preferred.
The equality constraints ห ௝݄ሺݔԦሻห = 0 are transformed to
inequality constraints, ห ௝݄ሺݔԦሻห െ ߳ ൑ 0 , where ߳ is the
tolerance factor and ߳ = 0.0001 in literature [33]. This
technique is simple, flexible, and easy to merge with
optimization algorithms. Therefore it has been very popular
in constrained optimization using EAs and it was used
successfully with DE [34-37]. Its drawback is that it loses
the population diversity, but this can be handled by using EA
that is able to maintain diversity [38].

Experimental setting: the stopping criteria ݉ܽݏܧܨ_ ݔ =20000 ൈ ܰ, where ܰ is the dimension of the problem [33]. ܰܲ = 50, subproblem size ܸ = ܰ/2, Each subproblem is
optimized for 30 iterations “݅ݎ݁ݐ”. The DE parameters are:
scaling factor ܨ where 0.4 ൑ ܨ ൑ ݎܥ ,0.5 = 0.95. In VIIC,
the number of combinations created for each objective
function or constraint in the problem is ݉ܽ݌ݎ݃ݔ௜௧௘௥ = ݉ ൈ10ସ , the number of subproblems ݉ = ܰ/ܸ . DEVIIC and
DERGC were implemented for 25 runs at all the three
problems and the results are presented in Table 7. The
experiments were conducted using MATLAB 2012 on an
Intel(R) Core(TM) i5 CPU, 3.20 GHz, and running
Microsoft Windows 7.

It is shown in Table 7 that DEVIIC achieved better
“best” and “mean” value than DERGC for 5-Units problem.
Although the “std” of DERGC was better than DEVIIC, this
does not mean that DERGC is more stable than DEVIIC
because DERGC did not find a single feasible solution out
of the 25 solutions (“FR”=0). However, DEVIIC achieved
“FR” of 100%. The same pattern of performance occurred
for the 10-Units problem, which has 240 dimensions. The

“best” and “mean” values achieved by DEVIIC for 10-Units
problem were better than that of DERGC even if it was
larger, because it was from feasible solution. DERGC did
not find any feasible solution in the experiment at 10-Units
problem. When the dimension of the problem is increased to
720 at 30-Units problem the feasibility ratio of DEVIIC
decreased than in the previous two problems. However,
DVIIC outperformed DERGC at “best” value, even if it is
larger than DERGC but it represents a feasible solution. The
star (*) in Table 7 represent values which are achieved by
infeasible solutions.

Parameter Analysis: Table 7 views the results of the
three problems when the subproblem size ܸ was decreased
to ܰ/4 for 5-Units and 10-Units problems, and to ܰ/8 for
30-Units problem, and ܰܲ was increased to 100 for all the
problems. It can be seen that this change affected the
performance of DEVIIC positively and did not affect
DERGC at all. The “best” and “mean” fitness values of 5-
Units, and 10-Units problems were better than those
achieved by large subproblem and small population. “FR”
was still 100% for DEVIIC and 0% for DERG. At 30-Units
problem, these parameter settings increased “FR” to 92%
rather than 12%, when the previous setting of subproblem
size and population were used.

In summary, DEVIIC achieved good results at all the
three problems using different setting. These results showed
that even if DEVIIC requires additional computations to use
variable interaction identification technique, and DERG does
not, these computations are justified and worth spending
computational resources and time doing them. More analysis
is conducted in the following section to show if the
difference in time between the two used models is
significant or not. DEVIIC and DERGC are ranked based on
these results in the following section.

Table 7: Results of 5-Units, 10-Units, and 30-Units

NP=50, V=60 NP=100, V=30
5-Units DEVIIC DERGC DEVIIC DERGC
FR 100% 0% 100% 0%
time 5.5995E+03 5.5283E+03 5.6211E+03 5.6518E+03
best 5.0648E+04 5.1483E+04 5.0649E+04 5.1339E+04
mean 5.2206E+04 5.2245E+04 5.2162E+04 5.2178E+04
median 5.2276E+04 5.2200E+04 5.2225E+04 5.2294E+04
std 5.8835E+02 4.2418E+02 6.9805E+02 4.1397E+02
worst 5.3274E+04 5.3216E+04 5.3433E+04 5.2862E+04

NP=50, V=120 NP=100, V=60
10-Units DEVIIC DERGC DEVIIC DERGC
FR 100% 0% 100% 0%
time 5.1640E+03 5.0881E+03 4.9151E+03 4.9381E+03
best 1.0712E+06 1.0705E+06* 1.0648E+06 1.0713E+06
mean 1.0740E+06 1.0744E+06 1.0680E+06 1.0743E+06
median 1.0740E+06 1.0743E+06 1.0678E+06 1.0745E+06
std 1.2085E+03 1.8707E+03 1.9504E+03 1.7068E+03
worst 1.0760E+06 1.0775E+06 1.0719E+06 1.0776E+06

NP=50, V=360 NP=100, V=90
30-Units DEVIIC DERGC DEVIIC DERGC
FR 12% 0% 96% 0%
time 2.1800E+04 2.2253E+04 1.7905E+04 1.8016E+04
best 3.2177E+06 3.2026E+06* 3.2084E+06 3.1281E+06*
mean 3.2244E+06 3.2155E+06* 3.2139E+06 3.2029E+06*
median 3.2237E+06 3.2162E+06 3.2142E+06 3.2110E+06
std 4.2244E+03 6.6696E+03 2.9203E+03 2.1435E+04
worst 3.2372E+06 3.2271E+06 3.2200E+06 3.2222E+06

1902

VI. ALGORITHM RANKING
To clearly rank the optimization models based on their

performance including the feasibility ratio they achieve, the
scoring technique that was proposed in [39] is used. The
results which use ܰܲ = 100 and ܰ/4 or ܰ/8 as the
subproblem size is used in this section. This scoring
technique calculates two score, one based on the best values
(ܵ௭௬௕௘௦௧), and one based on the average values (ܵ௭௬௔௩௘௥௔௚௘), as
follows: ܵ௭௬௕௘௦௧ = ൜ሺ1 െ หி೥೤ି஻ி೤ห௔ൈห஻ி೤ିௐி೤หሻ఍ൠ ሺ18ሻ

ܵ௭௬௔௩௘௥௔௚௘ = ൜ሺ1 െ หி೥೤ି஻ி೤ห௔ൈห஻ி೤ିௐி೤หሻ఍ൠ ሺ19ሻ

where ܵ௭௬௕௘௦௧ is the score of a model z based on “best” values
and ܵ௭௬௔௩௘௥௔௚௘ is the score of a model z based on “mean”
values in Table 7. ܽ is used to differentiate between the
worst feasible and any infeasible solution, and ζ is used to
emphasis good solutions. These two values in addition to the
average feasibility ratio of model z at all the problems, ܴܨ௭,
are used to find the final score for a model z, ܵܨ௭. ܵܨ௭ = ቀ∑ ௌ೥೤್೐ೞ೟ೊ೤సభ ା ∑ ௌ೥೤ೌೡ೐ೝೌ೒೐ೊ೤సభ ቁZ ൈ ௭ ሺ20ሻܴܨ

In ܵ௭௬௕௘௦௧, the actual “best” fitness values of a problem y
using the optimization model z is (ܨ௭௬),and the best of the
two models (smallest) is ܨܤ௬ = ݉݅݊ ሺܨ௭௬ሻ . The worst of
them (largest) is ܹܨ௬ = ௭௬ሻ. In ܵ௭௬௔௩௘௥௔௚௘ܨሺ ݔܽ݉ , the actual
best “mean” fitness value, the smallest mean fitness value in
this optimization problem, and the worst “mean”, largest,
fitness value of the two models at a problem y, are used. ܽ = 0.001, and ζ = 2. The scoring of DEVIIC and DERGC
for the three problems are shown in Table 8.

It is seen that DEVIIC is better than DERGC at two
problems based on the “best” and “mean” values. Also, the
average feasibility ratio of DEVIIC is higher than that
achieved by DERGC as ܴܨ஽ா௏ூூ஼ ൐ ஽ாோீ஼ܴܨ . Moreover,
it has better final rank scores than DERGC where ܵܨ஽ா௏ூூ஼ ൐ ஽ாோீ஼ܵܨ . This scoring technique showed that
the decomposition-based EA which use variables interaction
identification technique is successful. Certainly, these
models require additional computational resources, but this
might be justified by the good performance and high
feasibility ratio which is highly desired for the constrained
problems. The additional resources can be measured and
analyzed as discussed in the following section using
algorithm complexity measures.

Table 8: DEVIIC and DERGC ranking

 DED
 DEVIIC DERGC ∑ ௒௬ୀଵ࢚࢙ࢋ࢈࢟ࢠࡿ 2 1 ∑ ௒௬ୀଵࢋࢍࢇ࢘ࢋ࢜ࢇ࢟ࢠࡿ 0 1.98 ܵܨ ௭ 98.7% 0%ܴܨ 1 2

VII. ALGORITHM COMPLEXITY
To measure the time required by each of the tested

models when solving DED problems, the technique that was
used in [40] is implemented on the 10-Units problem. This
technique uses the time in seconds as an indication of the
algorithm complexity. The three parameters for this
algorithm complexity measurement technique are ଴ܶ, ଵܶ, and ଶܶ . ଴ܶ is the computing time in seconds for the basic
mathematical operations ݔ = ݔ ൅ ,ݔ ݔ = ,2 /ݔ ݔ = ݔ ,ݔכ ݔ = ,ሻݔሺݐݎݍݏ ݔ = ݈݊ሺݔሻ , ݔ = ሻݔሺ݌ݔ݁ , ݕ = ݔ/ݔ , using ݔ = 5.55, for 1000000 times. ଵܶ is the computing time in
seconds for the optimization problem of dimension ܰ for
ݏܧܨ 200000 . ଶܶ is the mean of 5 runs for the computing
time in seconds for the complete algorithm using 200000 ݏܧܨ at the same problem of dimension ܰ. The calculations
of ଶܶ are based on 5 runs.

The measurements are applied on the two algorithms
DEVIIC and DERGC on the 10-Units problem and the
results are presented in Table 9. ଴ܶ equals 1.5288. The
results of this algorithm complexity measurement technique
are presented in Table 9. These results showed that the
difference in complexity is seconds. This justifies that the
additional time used by DEVIIC which achieved notable
difference in performance but the time it used is
insignificant. The following section shows the convergence
of DEVIIC and DERGC for 10-Units problem during the
evolution process.

Table 9: Algorithm complexity for 10-Units

 ଵܶ ଶܶ ሺ ଶܶ െ ଵܶሻ/ ଴ܶ

10-Unit
DEVIIC 191.5380 219.2500 18.1266
DERGC 191.5380 219.9396 18.5777

VIII. CONVERGENCE GRAPHS
The graphs of the best solution for each problem of the 5,

10-Units problems using ܸ = ܰ/4, and 30-Units problem
using ܸ = ܰ/8 , and ܰܲ = 100 , are discussed in this
section. The graphs showed the performance of DEVIIC
against DERGC. The subfigures represent magnified
convergence curve for the two models after using one third,
two thirds, and all the available ݏܧܨ. The first subfigure of
the 5-Units problem in Fig. 1 showed that both DEVIIC and
DERGC did not achieve a feasible solution after using 4E+5 ݏܧܨ . When the used ݏܧܨ are in the range of 4E+5 and
8E+5, the convergence curve of DEVIIC was decreasing,
which means that it found a feasible solution but DERGC
did not. DEVIIC continued converging towards better
solutions as shown in sub-graphs 2 and 3 until the end of the
evolution process. However, there was hardly any
improvement in DERGC specially during the last evolution
stage after using two thirds of the available ݏܧܨ.

At 10-Units problem convergence graph (Fig. 2),
DEVIIC outperformed DERGC and converged better than it
during the evolution process. DERGC converged slowly and
it is clear from second subfigure that it did not manage to
find a feasible solution even after using two thirds of the
available ݏܧܨ. This showed that even when DERGC does
not use any ݏܧܨ for variables interaction identification, these
saved ݏܧܨ were not efficient in the optimization. This

1903

indicates that spending more ݏܧܨ in the exploration of better
variables that should be optimized in common subproblems
leads to better convergence and better fitness values.

Fig. 1: Convergence graph of 5-Units problem

Fig. 2: Convergence graph of 10-Units problem

Fig. 3: Convergence graph of 30-Units problem

IX. CONCLUSION AND FUTURE WORK
In conclusion, this paper presents the implementation of

decomposition-based EA on a real-world constrained large
scale optimization problem. The real-world problem that is
tested in this paper is DED which has not been optimized in
the literature before using decomposition-based EA. This
problem is challenging, has complex structure, and has large
number of constraints. Three different dimensions of this
problem were tested, 5-Units, 10-Units, and 30-Units, using
DEVIIC and DERGC. DEVIIC has been developed recently
and it uses a novel variables interaction identification
technique (VIIC). DERGC uses one of early developed the
decomposition techniques in the literature.

DEVIIC showed a remarkable performance at all the
tested real-world large scale problems by achieving
competitive results and higher feasibility ratios. Getting
feasible solution for the constrained optimization problems
is highly desired especially when the problems have high
dimensionality. The analysis of the results and the algorithm
complexity measures showed that the effort used to identify
which variables should be optimized together is justified.
Moreover, the difference in complexity between DEVIIC
and DERGC showed that the time consumed to implement
VIIC is not significant. Therefore, a decomposition-based
EA which use a technique for grouping the variables into
subproblems is highly recommended for real-world large
scale constrained optimization problems. VIIC can be used
with different EA to achieve better results for large problems
like 30-Units problem. Also, different constraint handling
techniques can be used.

REFERENCES
[1] Z. Michalewicz, and D. B. Fogel, How to solve it: Modern

Heuristics: Springer New York, 2000.
[2] M. A. Potter, and K. A. De Jong, "A cooperative

coevolutionary approach to function optimization," Parallel
Problem Solving from Nature—PPSN III, pp. 249-257:
Springer, 1994.

[3] Y. Liu, X. Yao, Q. Zhao, and T. Higuchi, "Scaling up fast
evolutionary programming with cooperative coevolution." pp.
1101-1108.

[4] M. A. Potter, and K. A. De Jong, “Cooperative coevolution: An
architecture for evolving coadapted subcomponents,”
Evolutionary computation, vol. 8, no. 1, pp. 1-29, 2000.

[5] X. Li, and X. Yao, "Tackling high dimensional nonseparable
optimization problems by cooperatively coevolving particle
swarms." pp. 1546-1553.

[6] Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary
optimization using cooperative coevolution,” Information
Sciences, vol. 178, no. 15, pp. 2985-2999, 2008.

[7] G. B. Dantzig, and P. Wolfe, “Decomposition Principle for
Linear Programs,” OPERATIONS RESEARCH, vol. 8, no. 1,
pp. 101-111, January 1, 1960, 1960.

[8] J. F. Benders, “Partitioning procedures for solving mixed-
variables programming problems,” Numerische mathematik,
vol. 4, no. 1, pp. 238-252, 1962.

[9] J. Ryoo, and P. Hajela, “Decomposition-based design
optimization method using genetic co-evolution,” Engineering
Optimization, vol. 36, no. 3, pp. 361 - 378, 2004.

[10] W. Chen, and K. Tang, "Impact of problem decomposition on
Cooperative Coevolution." pp. 733-740.

[11] M. N. Omidvar, X. Li, Z. Yang, and X. Yao, "Cooperative co-
evolution for large scale optimization through more frequent
random grouping." pp. 1-8.

2 4 6 8

x 10
5

5.05

5.1

5.15

5.2

5.25

x 10
4

1 1.5

x 10
6

4.95

5

5.05

5.1

5.15

5.2
x 10

4

1.8 2 2.2 2.4

x 10
6

4.95

5

5.05

5.1

5.15

5.2
x 10

4

0.5 1 1.5 2

x 10
6

5

5.1

5.2

x 10
4

Fitness Evaluations

5-
U

ni
ts

DEVIIC

DERGC

0 5 10 15

x 10
5

1.02

1.04

1.06

x 10
6

2 2.5 3

x 10
6

1.06

1.065

1.07

1.075

1.08
x 10

6

3.5 4 4.5

x 10
6

1.06

1.065

1.07

1.075

1.08
x 10

6

0 1 2 3 4

x 10
6

1.02

1.04

1.06

x 10
6

Fitness Evaluations

10
-U

ni
ts

DEVIIC

DERGC

0 2 4

x 10
6

3.1

3.15

3.2

x 10
6

6 8

x 10
6

3.1

3.15

3.2

x 10
6

1 1.2 1.4

x 10
7

3.1

3.15

3.2

x 10
6

0 2 4 6 8 10 12 14

x 10
6

3.1

3.15

3.2

x 10
6

Fitness Evaluations

30
-U

ni
ts

DEVIIC

DERGC

1904

[12] T. Ray, and X. Yao, "A cooperative coevolutionary algorithm
with correlation based adaptive variable partitioning." pp. 983-
989.

[13] M. N. Omidvar, X. Li, and X. Yao, "Cooperative co-evolution
with delta grouping for large scale non-separable function
optimization." pp. 1-8.

[14] W. Chen, T. Weise, Z. Yang, and K. Tang, "Large-scale global
optimization using cooperative coevolution with variable
interaction learning," Parallel Problem Solving from Nature,
PPSN XI, pp. 300-309: Springer, 2010.

[15] E. Sayed, D. Essam, and R. Sarker, "Using Hybrid Dependency
Identification with a Memetic Algorithm for Large Scale
Optimization Problems," Simulated Evolution and Learning,
Lecture Notes in Computer Science L. Bui, Y. Ong, N. Hoai, H.
Ishibuchi and P. Suganthan, eds., pp. 168-177: Springer Berlin
Heidelberg, 2012.

[16] E. Sayed, D. Essam, and R. A. Sarker, "Dependency
Identification technique for large scale optimization problems."
pp. 1-8.

[17] L. Sun, S. Yoshida, X. Cheng, and Y. Liang, “A cooperative
particle swarm optimizer with statistical variable
interdependence learning,” Information Sciences, vol. 186, no.
1, pp. 20-39, 2012.

[18] X. Han, H. Gooi, and D. S. Kirschen, “Dynamic economic
dispatch: feasible and optimal solutions,” Power Systems, IEEE
Transactions on, vol. 16, no. 1, pp. 22-28, 2001.

[19] D. He, F. Wang, and Z. Mao, “A hybrid genetic algorithm
approach based on differential evolution for economic dispatch
with valve-point effect,” International Journal of Electrical
Power & Energy Systems, vol. 30, no. 1, pp. 31-38, 2008.

[20] D. C. Walters, and G. B. Sheble, “Genetic algorithm solution of
economic dispatch with valve point loading,” Power Systems,
IEEE Transactions on, vol. 8, no. 3, pp. 1325-1332, 1993.

[21] P. Attaviriyanupap, H. Kita, E. Tanaka, and J. Hasegawa, “A
hybrid EP and SQP for dynamic economic dispatch with
nonsmooth fuel cost function,” Power Systems, IEEE
Transactions on, vol. 17, no. 2, pp. 411-416, 2002.

[22] T. Jayabarathi, K. Jayaprakash, D. Jeyakumar, and T.
Raghunathan, “Evolutionary programming techniques for
different kinds of economic dispatch problems,” Electric Power
Systems Research, vol. 73, no. 2, pp. 169-176, 2005.

[23] M. A. K. Azad, “A modified differential evolution based
solution technique for economic dispatch problems,” 2009.

[24] R. Balamurugan, and S. Subramanian, “Differential evolution-
based dynamic economic dispatch of generating units with
valve-point effects,” Electric Power Components and Systems,
vol. 36, no. 8, pp. 828-843, 2008.

[25] R. Balamurugan, and S. Subramanian, “An improved
differential evolution based dynamic economic dispatch with
nonsmooth fuel cost function,” Journal of Electrical Systems,
vol. 3, no. 3, pp. 151-161, 2007.

[26] Y. Lu, J. Zhou, H. Qin, Y. Wang, and Y. Zhang, “Chaotic
differential evolution methods for dynamic economic dispatch
with valve-point effects,” Engineering Applications of Artificial
Intelligence, vol. 24, no. 2, pp. 378-387, 2011.

[27] S. Das, and P. Suganthan, “Problem definitions and evaluation
criteria for CEC 2011 competition on testing evolutionary
algorithms on real world optimization problems,” Jadavpur
Univ., Nanyang Technol. Univ., Kolkata, India, 2010.

[28] Z.-L. Gaing, “Particle swarm optimization to solving the
economic dispatch considering the generator constraints,”
Power Systems, IEEE Transactions on, vol. 18, no. 3, pp. 1187-
1195, 2003.

[29] C. Panigrahi, P. Chattopadhyay, R. Chakrabarti, and M. Basu,
“Simulated annealing technique for dynamic economic
dispatch,” Electric power components and systems, vol. 34, no.
5, pp. 577-586, 2006.

[30] V. Ravikumar Pandi, and B. K. Panigrahi, “Dynamic economic
load dispatch using hybrid swarm intelligence based harmony
search algorithm,” Expert Systems with Applications, vol. 38,
no. 7, pp. 8509-8514, 2011.

[31] T. Victoire, and A. E. Jeyakumar, “Deterministically guided
PSO for dynamic dispatch considering valve-point effect,”

Electric power systems research, vol. 73, no. 3, pp. 313-322,
2005.

[32] K. Deb, “An efficient constraint handling method for genetic
algorithms,” Computer methods in applied mechanics and
engineering, vol. 186, no. 2, pp. 311-338, 2000.

[33] R. Mallipeddi, and P. N. Suganthan, Problem definitions and
evaluation criteria for the CEC 2010 competition on
constrained real-parameter optimization, 2010.

[34] J. Tvrdík, and R. Polakova, "Competitive differential evolution
for constrained problems." pp. 1-8.

[35] N. M. Hamza, S. M. Elsayed, D. L. Essam, and R. A. Sarker,
"Differential evolution combined with constraint consensus for
constrained optimization." pp. 865-872.

[36] H. Liu, Z. Cai, and Y. Wang, “Hybridizing particle swarm
optimization with differential evolution for constrained
numerical and engineering optimization,” Applied Soft
Computing, vol. 10, no. 2, pp. 629-640, 2010.

[37] M. Ali, and Z. Kajee-Bagdadi, “A local exploration-based
differential evolution algorithm for constrained global
optimization,” Applied Mathematics and Computation, vol.
208, no. 1, pp. 31-48, 2009.

[38] E. Mezura-Montes, and C. A. Coello Coello, “Constraint-
handling in nature-inspired numerical optimization: past,
present and future,” Swarm and Evolutionary Computation, vol.
1, no. 4, pp. 173-194, 2011.

[39] S. M. Elsayed, R. A. Sarker, and D. L. Essam, “On an
evolutionary approach for constrained optimization problem
solving,” Applied Soft Computing, vol. 12, no. 10, pp. 3208-
3227, 2012.

[40] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. Chen, A.
Auger, and S. Tiwari, “Problem definitions and evaluation
criteria for the CEC 2005 special session on real-parameter
optimization,” KanGAL Report, vol. 2005005, 2005.

1905

