
Minimizing makespan for a no-wait flowshop using Tabu Mechanism
Improved Iterated Greedy Algorithm

Jianya Ding, Shiji Song, Rui Zhang, Cheng Wu

Abstract— This paper proposes a tabu mechanism improved
iterated greedy (TMIIG) algorithm to solve the no-wait flow-
shop scheduling problem with makespan criterion. The motiva-
tion of seeking for further improvement in the iterated greedy
(IG) algorithm framework is based on the observation that
the construction phase of the original IG algorithm may lead
to repeated search when applying the insertion neighborhood
search. To overcome the drawback, we modified the IG algo-
rithm by a tabu-based reconstruction strategy to enhance its
exploitation ability. A powerful neighborhood search method
which involves insert, swap, and double-insert moves is then
applied to obtain better soluions from the reconstructed solution
in the previous step. Numerical computations verified the
advantages of utilizing the new reconstruction scheme. In
addition, comparisons with other high-performing algorithms
demonstrated the effectiveness and robustness of the proposed
algorithm.

I. INTRODUCTION

The no-wait flowshop scheduling problem (NWFSP) is
an important scheduling problem that arises in many manu-
facturing industries. Examples include chemical processing
[1], plastic molding [2], pharmaceutical processing [3] and
steel rolling [4] industries. In a no-wait flowshop, n jobs
are to be processed successively through m machines in a
predetermined processing order. Typically, there should be no
waiting period in between consecutive machines when a job
is being processed. In this situation, the start of a job may get
delayed to satisfy the no-wait constraint. A comprehensive
survey on the research and application of no-wait flowshop
scheduling problems is given in Ref. [2].

The problem has been addressed with respect to vari-
ous performance measures, including makespan [5], total
flowtime [6], maximum lateness [7], total tardiness [8] and
number of tardy jobs [9]. In this study, we consider the
makespan criterion, which is defined as the completion time
of the last job leaving the system.

The no-wait flowshop scheduling problem with makespan
criterion is known to be NP-hard [10]. Due to the NP-
hard nature, exact algorithms that guarantee global optimal-
ity require unacceptably long computational time even for
moderate-sized problems. On the other hand, heuristics can
provide excellent results that are optimal or near-optimal

This research is partially supported by the National Natural Science
Foundation of China under Grants 61273233 and 61104176, the Research
Foundation for the Doctoral Program of Higher Education under Grants
20120002110035 and 20130002130010.

Ding, Song and Wu are with the Department of Automation, Tsinghua U-
niversity, Beijing 100084, China (emails: ding-jy12@mails.tsinghua.edu.cn,
shijis@tsinghua.edu.cn, wuc@tsinghua.edu.cn). Zhang is with the School
of Economics and Management, Nanchang University, Nanchang 330031,
China (email: zhangrui@ncu.edu.cn)

for large-scale problems. Therefore, considerable research
attention has been attracted to the design of heuristics in
recent years.

Heuristic algorithms can be broadly classified into two
groups: constructive methods and improvement methods.
Constructive methods generally exploit the problem-specific
information and present a single pass algorithm to build a
complete schedule under some predetermined priority rule.
Bertolissi [11], Rajendran [1], Bonney and Gundry [12],
King and Spachis [13], and Laha and Chakraborty [14]
introduced different constructive heuristics for the no-wait
flowshop problem to minimize makespan. In addition, the
famous NEH algorithm which was first proposed by Nawaz,
Enscore, and Ham [15] to solve the permutation flowshop
problem also suits the problem well. The improvement meth-
ods consist of a wide variety of meta-heuristics developed in
the past three decades. Meta-heuristics are general algorithm
frameworks and have been successfully implemented for
many complex optimization problems. Well-known meta-
heuristics include genetic algorithm (GA) [16], simulated
annealing (SA) [17], tabu search (TS) [18] and variable
neighborhood search (VNS) algorithm [19]. In recent years,
many more computationally effective meta-heuristic algo-
rithms are proposed, such as estimation of distribution (EDA)
algorithm [20], ant colony optimization (ACO) [21], discrete
particle swarm optimization (DPSO) [5], differential evolu-
tion algorithm [22] and memetic algorithm [23].

Although the newly developed meta-heuristic algorithms
provide excellent results for scheduling problems, they are
fairly sophisticated and their performance largely depends
on complicated parameter tuning schemes. This has created
difficulty of obtaining the same computational effectiveness
when re-implementing the reported algorithms. As Pan and
Ruiz [24] pointed out, simple and easily adaptable algorithms
are highly desirable. The iterated greedy (IG) [25] algorithm
is an example of such algorithms. It can provide comparable
or even better computational results to the other optimiza-
tion algorithms, while the search mechanism is simple and
general. The IG algorithm iteratively applies a neighborhood
search scheme to obtain a local optimal solution and a
greedy reconstruction scheme to escape from the obtained
local minima. This process is repeated until the termination
condition is satisfied.

The simplicity and effectiveness of IG algorithm moti-
vate us to exploit further improvement of the algorithm’s
structure. In particular, a more suitable perturbation method
and a more powerful neighborhood search approach are to
be considered in the algorithm’s framework. In the origi-

1906

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

nal perturbation scheme, some jobs are randomly removed
from a complete sequence and then reinserted greedily into
the obtained partial sequence one by one to build another
complete sequence. However, this insertion reconstruction
strategy utilizes a mechanism similar to the commonly used
neighborhood search method based on insert moves. This
may lead to repeated search and poor exploitation ability
in the search progress. To overcome this drawback, we
propose a tabu mechanism based construction method in the
perturbation scheme to avoid repeated search. In addition, a
more powerful neighborhood structure based on insert, swap
and double-insert moves is adopted to further enhance the
exploration ability.

The rest of the paper is organized as follows. In section 2,
the NWFSP problem with makespan performance measure
is formulated. Section 3 proposes the tabu mechanism im-
proved iterated greedy algorithm for the considered problem.
The computational effectiveness of the proposed algorithm is
verified through numerical comparison in section 4. Finally,
section 5 summarizes the paper and highlight some future
research directions.

II. PROBLEM FORMULATION

The no-wait flowshop scheduling problem is described
as follows. There are n jobs to be processed sequentially
through m machines in the same order. Every job j (j =
1, 2, . . . , n) requires a predetermined processing time pi,j
on every machine i (i = 1, 2, . . . ,m). To satisfy the no-
wait constraint, all the jobs must be processed without any
waiting time between consecutive machines. This implies
that the start of a job must be delayed on the first machine
when necessary. In this work, the target of scheduling is to
minimize the makespan denoted as Cmax (or Cm,n) which
equals the finish time of the last job on the last machine
in the shop. It is noticeable that some other assumptions on
the permutation flowshop scheduling problems described in
Ref. [26] apply to this problem as well.

The no-wait characteristic of the problem ensures that
the completion time difference between two adjacent jobs
is determined by the processing times of the two jobs,
regardless of the other jobs in the permutation. Thus, a
completion time distance can be defined between each pair
of adjacent jobs. The completion time distance from job i to
job j is calculated in advance as follows [27].

Di,j = max
k=1,...,m

{
m∑
h=k

(ph,j − ph,i) + pk,i

}
. (1)

It is clear that the makespan of a feasible permutation
schedule π = {π(1), . . . , π(n)} is given by

Cmax(π) = Cm,n(π)

=
n∑
j=2

D[j−1],[j] +
m∑
k=1

pk,π(1),

where D[j−1],[j] represents the completion time distance
between the (j − 1)-th and j-th job in schedule π, i.e.
Dπ(j−1),π(j).

To simplify the expression of the makespan, a dummy
job π(0), which has zero processing time on all machines
is introduced at the beginning of permutation π. Thus, the
schedule π is redefined as π′ = {π(0), π(1), . . . , π(n)}. With
the above developments, we obtain the objective function, i.e.
makespan of a permutation π as follows:

Cmax(π) = Cmax(π′) =
n∑
i=1

D[j−1],[j]. (2)

Let Π denote the set of all n! possible permutation
schedules in the solution space for the NWFSP. The problem
is then to find a permutation schedule π∗ ∈ Π such that:

Cmax(π∗) = min
π∈Π

Cmax(π).

III. TABU MECHANISM IMPROVED IG ALGORITHM

This section presents a tabu mechanism improved iterated
greedy (TMIIG) algorithm for solving the no-wait flowshop
scheduling problem with makespan criterion. The proposed
algorithm consists of the following three phases: an NEH
algorithm to generate an initial schedule, a tabu-based re-
construction technique to escape from local minima, and a
neighborhood search method to improve the current solution.
The reconstruction phase and neighborhood search phase
continue until a pre-defined termination condition is met.
In this section, we first describe each phase of the proposed
algorithm and the stopping criterion used. Then, we present
the steps of the proposed TMIIG algorithm.

A. Initial Solution

The NEH algorithm is an effective constructive heuristic
algorithm to minimize makespan in a permutation flowshop.
Starting from an initial sort of jobs in non-increasing order of
their total processing times, it constructs a complete solution
by inserting these jobs one by one into a partial schedule
to generate an approximate solution for the problem. Since
the NWFSP problem in this work also aims to obtain a job
permutation such that the makespan is minimized, the NEH
algorithm can suit this problem very well. The procedures
of the NEH algorithm is described as follows:

Algorithm 1 NEH algorithm
1: Generate an initial sequence in non-increasing order of

their total processing times. Denote this sequence as
π0 = (π0(1), π0(2), . . . , π0(n)).

2: Select the first two jobs in π0 and evaluate the two
possible partial sequences of the two jobs. The sequence
with the smaller makespan will become the current
partial sequence π2 = (π2(1), π2(2)).

3: for k = 3 to n do
4: Find the best position of inserting π0(k) into the

current partial sequence πk−1. The solution obtained
in this step is denoted as the new current partial
sequence πk.

5: end for
Output: sequence πn and Cmax(πn)

1907

Since the completion time matrix (Di,j)n×n can be cal-
culated in advance, the main computational burden of the
NEH algorithm lies in the inserting process of Step 3. By
considering the acceleration method for job insertion in
Ref. [28], the NEH algorithm can be completed in O(n2)
computational effort.

B. Tabu-based reconstruction

The original Iterated Greedy (IG) algorithm generates a
sequence of solutions by iteratively applying greedy con-
structive heuristics including destruction and construction
phases. In these two phases, some jobs are firstly removed
from a complete sequence and then reinserted into the
obtained partial sequence using the NEH-Insertion method.
However, this reconstruction mechanism may not have a
good performance in jumping out of local minima since it
utilizes a similar mechanism as in the neighborhood search
phase which may lead to repeated search. Faced with this
issue, a new reconstruction technique which forbids some
insert positions is proposed as follows.

Once the initial solution is obtained, we create a tabu list
TLj for each job j. When inserted into the partial sequence,
job j is not allowed to be placed at the positions immediately
after any job in the tabu list TLj . The tabu lists are updated
in each iteration.

To start the reconstruction, d jobs (d ∈ {1, . . . , n − 1})
are randomly selected and removed from the current com-
plete candidate solution π which contains n jobs. For each
removed job (say π(j)), the job that immediately precedes it
(π(j − 1)) is added to its tabu list (TLπ(j)). The removed d
jobs form a partial sequence πR in the same order that they
were selected. The partial solution with n − d remaining
jobs also forms another partial sequence denoted as πD in
its original order of jobs.

Next, the jobs in πR are re-inserted into πD one after
another. These jobs will be inserted at the positions such
that the makespan of partial sequence is minimized while
the tabu constraint is not violated. The procedure of the tabu
based reconstruction is given in Algorithm 2.

The main computational burden in the reconstruction lies
in line 9 where each of the possible inserting positions is
evaluated. By considering a similar acceleration method as
in the implementation of NEH algorithm, the reconstruction
phase in each iteration can be completed in O(dn) time.

C. Neighborhood Search

The schedule obtained in the reconstruction phase may
not be a good enough solution since there may be better
sequences in its neighborhood. Therefore, a local search
method is adopted to further improve the current sequence. In
particular, the variable neighborhood search (VNS) method
is applied in the presented algorithm to find more promising
solutions in the solution space by changing the neighborhood
structures in the search progress.

The selection on neighborhood structures can greatly
influence the performance of the VNS method [19]. Since
neighborhood is usually defined based on moves of jobs,

Algorithm 2 Tabu Based Reconstruction
Input: Tabu list TLj (j = 1, . . . , n), sequence π, number

of removed jobs d.
1: Set πR = ∅ and πD = π.
2: for k = 1 to d do
3: Select a job (without repetition) at a random position

j in π. Add π(j − 1) to the end of tabu list TLπ(j).
Insert job π(j) at the end of sequence πR and remove
it from sequence πD.

4: if Length(TLπ(j)) > maxLength then
5: Delete the first element in TLπ(j)

6: end if
7: end for
8: for k = 1 to d do
9: Evaluate each of the possible inserting positions for

job πR(k) that is not prohibited by the tabu list
TLπR(k). Insert job πR(k) into πD at the position with
the smallest makespan among the evaluated solutions.

10: end for
Output: sequence πD.

the search progress can benefit much from suitably selected
moves. Among various types of moves considered in the
literature, insert and pair-wise swap moves are most com-
monly used for the no-wait flowshop scheduling problems.
The neighborhood based on insert moves is defined by
enumerating all possible pairs of positions j, k ∈ {1, . . . , n}
in sequence π (j 6= k), where job π(j) is removed and
then reinserted at position k. The neighborhood based on
swap moves is defined similarly which considers exchanging
the positions of two jobs in the sequence. The acceleration
technique for the evaluation of both neighborhood solutions
is described in Ref [5].

In this work, we adopted the VNS moves which include
not only the insert and swap moves, but also the rarely tested
double-insert moves [14], [29]. The double-insert moves
consider removing two consecutive jobs from position j
(j = 1, . . . , n − 1) and re-inserting them together into
position k (k = 1, . . . , n − 1, and k > j + 1 or k < j)
in the same order. Let π denote the original sequence and π′

denote the sequence after the double-insert moves. It is easily
verified that the makespan increment is given as follows:

∆Cmax = Cmax(π′)− Cmax(π)

= D[k−1][j] +D[j+1][k] −D[k−1][k]

+D[j−1][j+2] −D[j−1][j] −D[j+1][j+2]

(3)

Based on the above discussion, the procedure of the
neighborhood search phase is described as in Algorithm 3.
By considering the acceleration described in Ref. [5] and
equation (3), the computational complexity in this phase can
be reduced to O(n2).

D. Acceptance Criterion and Stopping Rules

After a new sequence π′ is generated by the local search
procedure, it is to be decided whether to accept it as the

1908

Algorithm 3 Neighborhood Search
Input: sequence π.

1: Set the swap neighborhood structure as N1, the insert
neighborhood structure as N2 and the double-insert as
N3.

2: while l 6 3 do
3: Find the best neighbor solution π′ of π in Nl(π).
4: if Cmax(π′) < Cmax(π) then
5: Set π = π′ and l = 1.
6: else
7: Set l = l + 1.
8: end if
9: end while

Output: sequence π.

incumbent solution for the next iteration. Inspired by the
simulated annealing (SA) method, a SA-like acceptance
criterion is adopted in this paper. In this acceptance criterion,
π′ is accepted with a probability of

p = min

{
exp

(
Cmax(π)− Cmax(π′)

T

)
, 1

}
,

where π is the solution of current iteration and T is a constant
temperature. Following the suggestions of Osman and Potts
[30], the temperature is set as follows

T =

∑n
j=1

∑m
k=1 pkj

10 ·m · n
· T0,

where T0 is a parameter to be adjusted.
The maximum number of iterations and/or the maximum

computational time are the stopping rules adopted in this
paper. The proposed hybrid TMIIG algorithm stops when a
certain stopping condition is met, whichever first.

E. Algorithm framework
Based on the above developments, the procedures of the

proposed TMIIG algorithm are described in Algorithm 4.

IV. COMPUTATIONAL RESULTS

This section describes the computational results for the
evaluation of TMIIG in makespan minimization for NWFSP.
For this purpose, The well-known Taillard’s benchmark
problem dataset [31] was adopted for our computational
experiments where the no-wait constraints are assumed to
be active. This benchmark consists of 120 problem instances
with 12 different sizes, ranging from 20 jobs and 5 machines
to 500 jobs and 20 machines. For each size, 10 instances
are provided. All proposed algorithms and procedures were
coded in Visual C++ and computational experiments were
executed on a PC with Intel Core (TM) CPU running at
3.20 GHz.

Pilot experiments were conducted under a set of potential
parameter values to find the best combinations of parameter
settings. The parameter settings are as follows: d = 10,
maxLength = 1, and Tem = 0.4×

∑n
j=1

∑m
k=1 pk,j

10nm . All the
tested algorithms are allowed to run for tmax = (mn/2) ×
20 ms before terminated.

Algorithm 4 TMIIG algorithm
1: (Initial solution): Generate an initial sequence using the

NEH algorithm (described in Algorithm 1). Let π be the
solution obtained in this step.

2: Initialize all the tabu lists as empty set: TLj := ∅, j =
1, . . . , n.

3: while the termination condition is not met do
4: (Tabu based reconstruction): With respect to the

tabu lists, apply the tabu-based reconstruction method
(described in Algorithm 2) to sequence π to construct
another complete sequence π′. Update the tabu lists.

5: (Neighborhood search): Use the neighborhood
search method (described in Algorithm 3) that hy-
bridizes the insert, swap, and double-insert moves
to improve sequence π′ in the previous step. The
improved solution is denoted as π′′.

6: (Acceptance): Set π = π′′ with probability

p =

{
1, if ∆ < 0,

e−∆/Tem, if ∆ ≥ 0,

where ∆ = Cmax(π′′) − Cmax(π) and Tem is a
predetermined temperature parameter.

7: end while
Output: The best solution found.

A. Effectiveness of the tabu based reconstruction

To test the effectiveness of the proposed tabu based recon-
struction procedure, computational experiments are designed
as follows. For one instance, the proposed TMIIG algorithm
is evaluated twice. In the first trial, TMIIG is executed as de-
scribed in the previous sections without any modification. In
the second trial, however, TMIIG is executed by selecting the
tabu length to be zero and thus the effect of tabu mechanism
disappears. By comparing the experimental results in the
two trials, the contribution of the tabu mechanism is clearly
identified. Note that five independent runs are conducted
for each problem instance in both trials. For notational
simplicity, the algorithm evaluated in the first and second
trial is referred to as TMIIG1 and TMIIG2, respectively.

To test the difference between the two algorithms, a
series of paired sample t-test at 95% significance level was
conducted. Let µ1 and µ2 denote the average makespan of
the TMIIG1 and TMIIG2 algorithm, respectively. The null
hypothesis is H0 : µ1 = µ2 and the alternative hypothesis is
H1 : µ1 < µ2.

It is observed in Table I that the null hypothesis is rejected
and the alternative hypothesis is accepted for the middle and
large scale instances (n > 100). It means that the average
makespan obtained by TMIIG1 algorithm is smaller than
that of the TMIIG2 algorithm at the significance level of
0.95. This result revealed the effectiveness of involving tabu
mechanism in the reconstruction phase.

1909

TABLE II
COMPARISON OF RESULTS ON TAILLARD’S BECHMARK WITH MAKESPAN CRITERION OVER 5 RUNS

n×M Upper bound IIGA DPSOVND TMIIG
ARPD SD ARPD SD ARPD SD

20× 5 1480.3 0.00 0.00 0.00 0.00 0.00 0.00
20× 10 1983 0.01 0.01 0.00 0.00 0.00 0.00
20× 20 2971.9 0.02 0.01 0.02 0.02 0.00 0.00
50× 5 3272.7 0.30 0.20 0.34 0.18 0.19 0.14
50× 10 4276.1 0.27 0.14 0.22 0.16 0.13 0.11
50× 20 5898.6 0.22 0.14 0.28 0.16 0.08 0.10
100× 5 6236.3 0.51 0.18 0.27 0.28 0.25 0.16
100× 10 8029.9 0.42 0.19 0.48 0.25 0.17 0.14
100× 20 10688.9 0.62 0.19 0.52 0.30 0.21 0.16
200× 10 15326.1 0.56 0.20 0.23 0.23 0.18 0.14
200× 20 19979 0.75 0.20 0.43 0.21 0.15 0.13
500× 20 47226 0.87 0.14 0.58 0.19 0.22 0.18
Average NA 0.38 0.13 0.28 0.16 0.14 0.12

TABLE I
PAIRED SAMPLE T-TEST FOR TMIIG1 ALGORITHM AND TMIIG2

ALGORITHM ON THE TAILLARD INSTANCES

Instance H0 H1 p-value H0 H1

20× 5 µ1 = µ2 µ1 < µ2 0.1717 Accept Reject
20× 10 µ1 = µ2 µ1 < µ2 0.1717 Accept Reject
20× 20 µ1 = µ2 µ1 < µ2 0.1717 Accept Reject
50× 5 µ1 = µ2 µ1 < µ2 0.0461 Reject Accept
50× 10 µ1 = µ2 µ1 < µ2 0.0033 Reject Accept
50× 20 µ1 = µ2 µ1 < µ2 0.0071 Reject Accept
100× 5 µ1 = µ2 µ1 < µ2 0.0914 Accept Reject
100× 10 µ1 = µ2 µ1 < µ2 0.0012 Reject Accept
100× 20 µ1 = µ2 µ1 < µ2 0.0000 Reject Accept
200× 10 µ1 = µ2 µ1 < µ2 0.0003 Reject Accept
200× 20 µ1 = µ2 µ1 < µ2 0.0000 Reject Accept
500× 20 µ1 = µ2 µ1 < µ2 0.0000 Reject Accept

B. Comparison with Existing Algorithms

To test the effectiveness and efficiency of the pro-
posed TMIIG algorithm in searching better quality sched-
ules, we compared its computational results with the high-
performance algorithms: IIGA [32] and DPSOVND [5] to
solve the problem. For this purpose, the IIGA and DPSOVND
algorithms were re-implemented on the same PC using the
same coding language. Each of the 120 problem instances
in the Taillard’s dataset was solved using each of the three
algorithms. To compare the results obtained from these
experiments, the following statistics were collected.

1) Average relative percentage deviation (ARPD): the
criterion to measure the average relative quality of
solutions

ARPD =
1

R

R∑
r=1

Cr − C∗r
C∗r

× 100,

2) Standard deviation (SD): the criterion to measure the
degree of solutions’ closeness to the mean solutions
(and thus a measure of algorithm robustness)

SD =

√√√√ 1

R

R∑
r=1

[
Cr − C∗r
C∗r

× 100− ARPD
]2

,

where Cr is the solution generated by a specific algorith-
m A, (A ∈ {IIGA,DPSOVND,TMIIG} in the r-th (r =
1, 2, · · · , R) experiment for a given size problem, and C∗r is
the best solution found so far. Obviously, the less the value
of ARPD (or SD) is, the better the algorithm’s performance
is.

Table II summarizes the computational results for the
IIGA, DPSOVND, and TMIIG algorithms. As revealed in the
table, the total average of ARPD obtained by the proposed
TMIIG algorithm is 0.14, superior to the corresponding
value 0.38 and 0.28 obtained by the IIGA and DPSOVND
algorithms, respectively. Therefore, the proposed TMIIG
algorithm outperforms the IIGA and DPSOVND in solution
quality. Similarly, we can conclude from the table that
the proposed algorithm outperforms the other two tested
algorithms in terms of solution robustness. Since all the
three algorithms were executed in the same computational
environment, the results indicate that the proposed TMIIG
algorithm is superior to all the algorithms compared for
solving the NWFSP problem with makespan criterion.

V. CONCLUSION

In this work, a tabu mechanism improved iterated greedy
algorithm is developed for the no-wait flowshop scheduling
problem to minimize makespan. Unlike many newly reported
evolutionary algorithms, the proposed TMIIG algorithm is
simple and can be easily replicated. Despite its simplicity,
the developed algorithm provides promising computational
results. Therefore, the TMIIG algorithm is a suitable meta-
heuristic for solving the NWFSP problem.

The good performance of TMIIG algorithm largely de-
pends on the tabu-based reconstruction part in the algorithm
framework. This reconstruction technique improves the ex-
ploitation ability of the algorithm and leads to better perfor-
mance when compared with the high-performance IIGA and
DPSOVND algorithms. Further study related to this work will
focus on introducing more powerful neighborhood search
approaches to strengthen the exploration ability.

1910

REFERENCES

[1] C. Rajendran, “A no-wait flowshop scheduling heuristic to minimize
makespan,” Journal of the Operational Research Society, pp. 472–478,
1994.

[2] N. G. Hall and C. Sriskandarajah, “A survey of machine scheduling
problems with blocking and no-wait in process,” Operations research,
vol. 44, no. 3, pp. 510–525, 1996.

[3] W. Raaymakers and J. Hoogeveen, “Scheduling multipurpose batch
process industries with no-wait restrictions by simulated annealing,”
European Journal of Operational Research, vol. 126, no. 1, pp. 131–
151, 2000.

[4] T. Aldowaisan and A. Allahverdi, “Minimizing total tardiness in no-
wait flowshops,” Foundations of Computing and Decision Sciences,
vol. 37, pp. 149–162, 2012.

[5] Q.-K. Pan, M. Fatih Tasgetiren, and Y.-C. Liang, “A discrete particle
swarm optimization algorithm for the no-wait flowshop scheduling
problem,” Computers & Operations Research, vol. 35, no. 9, pp. 2807–
2839, 2008.

[6] S. J. Shyu, B. Lin, and P. Yin, “Application of ant colony optimiza-
tion for no-wait flowshop scheduling problem to minimize the total
completion time,” Computers & industrial engineering, vol. 47, no. 2,
pp. 181–193, 2004.

[7] C. Wang, X. Li, and Q. Wang, “Accelerated tabu search for no-
wait flowshop scheduling problem with maximum lateness criterion,”
European Journal of Operational Research, vol. 206, no. 1, pp. 64–72,
2010.

[8] G. Liu, S. Song, and C. Wu, “Some heuristics for no-wait flowshops
with total tardiness criterion,” Computers & operations research,
vol. 40, no. 2, pp. 521–525, 2013.

[9] T. A. Aldowaisan and A. Allahverdi, “No-wait flowshop scheduling
problem to minimize the number of tardy jobs,” The International
Journal of Advanced Manufacturing Technology, vol. 61, no. 1-4, pp.
311–323, 2012.

[10] H. Röck, “The three-machine no-wait flow shop is np-complete,”
Journal of the ACM (JACM), vol. 31, no. 2, pp. 336–345, 1984.

[11] E. Bertolissi, “Heuristic algorithm for scheduling in the no-wait flow-
shop,” Journal of Materials Processing Technology, vol. 107, no. 1,
pp. 459–465, 2000.

[12] M. Bonney and S. Gundry, “Solutions to the constrained flowshop
sequencing problem,” Operational Research Quarterly, pp. 869–883,
1976.

[13] J. King and A. Spachis, “Heuristics for flow-shop scheduling,” Inter-
national Journal of Production Research, vol. 18, no. 3, pp. 345–357,
1980.

[14] D. Laha and U. K. Chakraborty, “A constructive heuristic for mini-
mizing makespan in no-wait flow shop scheduling,” The International
Journal of Advanced Manufacturing Technology, vol. 41, no. 1-2, pp.
97–109, 2009.

[15] M. Nawaz, E. Enscore, and I. Ham, “A heuristic algorithm for the m-
machine, n-job flow-shop sequencing problem,” Omega, vol. 11, no. 1,
pp. 91–95, 1983.

[16] T. Aldowaisan and A. Allahverdi, “New heuristics for no-wait flow-
shops to minimize makespan,” Computers & Operations Research,
vol. 30, no. 8, pp. 1219–1231, 2003.

[17] S. Kirkpatrick, M. Vecchi, et al., “Optimization by simmulated an-
nealing,” science, vol. 220, no. 4598, pp. 671–680, 1983.

[18] J. Grabowski and J. Pempera, “Some local search algorithms for
no-wait flow-shop problem with makespan criterion,” Computers &
Operations Research, vol. 32, no. 8, pp. 2197–2212, 2005.

[19] N. Mladenović and P. Hansen, “Variable neighborhood search,” Com-
puters & Operations Research, vol. 24, no. 11, pp. 1097–1100, 1997.

[20] B. Jarboui, M. Eddaly, and P. Siarry, “An estimation of distribution
algorithm for minimizing the total flowtime in permutation flowshop
scheduling problems,” Computers & Operations Research, vol. 36,
no. 9, pp. 2638–2646, 2009.

[21] F. Ahmadizar, “A new ant colony algorithm for makespan minimiza-
tion in permutation flow shops,” Computers & Industrial Engineering,
vol. 63, no. 2, pp. 355–361, 2012.

[22] X. Li and M. Yin, “An opposition-based differential evolution algorith-
m for permutation flow shop scheduling based on diversity measure,”
Advances in Engineering Software, vol. 55, pp. 10–31, 2013.

[23] B. Liu, L. Wang, and Y.-H. Jin, “An effective pso-based memetic
algorithm for flow shop scheduling,” Systems, Man, and Cybernetics,
Part B: Cybernetics, IEEE Transactions on, vol. 37, no. 1, pp. 18–27,
2007.

[24] Q.-K. Pan and R. Ruiz, “Local search methods for the flowshop
scheduling problem with flowtime minimization,” European Journal
of Operational Research, vol. 222, no. 1, pp. 31–43, 2012.

[25] R. Ruiz and T. Stützle, “A simple and effective iterated greedy algo-
rithm for the permutation flowshop scheduling problem,” European
Journal of Operational Research, vol. 177, no. 3, pp. 2033–2049,
2007.

[26] J. N. Gupta and E. F. Stafford Jr, “Flowshop scheduling research after
five decades,” European Journal of Operational Research, vol. 169,
no. 3, pp. 699–711, 2006.

[27] D. Wismer, “Solution of the flowshop-scheduling problem with no
intermediate queues,” Operations Research, vol. 20, no. 3, pp. 689–
697, 1972.

[28] X. Li, Q. Wang, and C. Wu, “Heuristic for no-wait flow shops
with makespan minimization,” International Journal of Production
Research, vol. 46, no. 9, pp. 2519–2530, 2008.

[29] K. Gao, Q. Pan, P. Suganthan, and J. Li, “Effective heuristics for
the no-wait flow shop scheduling problem with total flow time
minimization,” The International Journal of Advanced Manufacturing
Technology, pp. 1–10, 2013.

[30] I. Osman and C. Potts, “Simulated annealing for permutation flow-
shop scheduling,” Omega, vol. 17, no. 6, pp. 551–557, 1989.

[31] E. Taillard, “Benchmarks for basic scheduling problems,” European
Journal of Operational Research, vol. 64, no. 2, pp. 278–285, 1993.

[32] Q.-K. Pan, L. Wang, and B.-H. Zhao, “An improved iterated greedy al-
gorithm for the no-wait flow shop scheduling problem with makespan
criterion,” The International Journal of Advanced Manufacturing
Technology, vol. 38, no. 7-8, pp. 778–786, 2008.

1911

