
Particle Swarm Optimization with Population
Adaptation

Nanda Dulal Jana1, Jaya Sil2, and Swagatam Das3

1Department of IT, National Institute of Technology, Durgapur-713209, India, nanda.jana@gmail.com
2Department of CST, Indian Institute of Engineering Science & Technology, Shibpur-711103, India, js@cs.becs.ac.in

3ECS Unit, Indian Statistical Institute, Kolkata- 700108, India, swagatam.das@isical.ac.in

Abstract—The Particle Swarm Optimization (PSO) algorithm
is a novel population based swarm algorithm has shown good
performance on well-known numerical test problems. However,
PSO tends to suffer from premature convergence on multimodal
test problems. This is due to lack of diversity of population in
search space and leads to stuck at local optima and ultimately fit-
ness stagnation of the population. To enhance the performance of
PSO algorithms, in this paper, we propose a method of population
adaptation (PA). The proposed method can identify the moment
when the population diversity is poor or the population stagnates
by measuring the Euclidean distance between particle position
and particles average position of a population. When stagnation
in the population is identified, the population will be regenerated
by normal distribution to increase diversity in the population. The
population adaptation is incorporated into the PSO algorithm and
is tested on a set of 13 scalable CEC05 benchmark functions. The
results show that the proposed population adaptation algorithm
can significantly improve the performance of the PSO algorithm
with standard PSO, ATREPSO and ARPSO.

I. INTRODUCTION

Particle Swarm Optimization (PSO), introduced by
Kennedy and Eberhart in 1995 [1], [2], is an efficient and
effective evolutionary computation technique for global op-
timization problem. It is a population and iterative based
optimization techniques that shares common properties with
other evolutionary computing algorithms. Its model is based on
social behaviour of birds flocking and fish schooling. In PSO,
each particle represents a potential solution that flies through
the search space with a velocity by adjusting flying trajectory
according to its personal experience and its social experience.

PSO has become one of the most frequently used optimiza-
tion techniques and has been successfully applied into many
real-world applications [3] due to the simple concept and fast
converging speed. Although PSO suffers from the premature
convergence due to lack of diversity in the population i.e.
the particles are easily trapped into local optima. Therefore,
the particles are gathering into a small region of the search
space. An algorithms search ability of exploration is decreased
when premature convergence occurs and particles have a low
possibility to explore new search areas.

Many approaches have been introduced to avoid premature
convergence in PSO through population diversity metrics in
[4], [5], [6], [7], [8], [9], [10], [11]. Shi and Eberhart proposed
population diversity of particle swarms [4], using various mea-
surement of population diversity - position based and velocity

based population diversity. In [5], exploration and exploitation
in PSO was measured by swarm diversity. Swarm diameter
and swarm radius, average distance around the swarm center
and swarm coherence was proposed for diversity measurement.
In [6], population diversity of PSO was guided by predefined
threshold values - dlow and dhigh. During evolution, particle
attraction and repulsion are associated to update particles
velocity according to dhigh and dlow. The modified version
of [6] is presented in [7]. When diversity in between phase
of the two threshold values, a new velocity update equation
was considered. Shi et. al. [8], proposed diversity control in
PSO, where position, velocity and cognition diversity are used
for diversity measurement. Particles position are updated by
adding random noise to the previous particles position. Zhi-hui
Zhan et. al. [9], discussed experimental study on PSO diversity.
Population diversity was further extend by diversity promotion
by employing random and elitist re-initialization of population
and the new algorithm was called promoting diversity in PSO
[10]. Another new population diversity in PSO was proposed
by Shi Cheng et. al. [11], where the inertia weight was adapted
by evolving sigmoid function based on population diversity.

In a few words, there are several ways to measure the
swarm diversity and even more variation of each of these
methods are exits. But, in which moment of the evolution
process, the diversity control can be considered and the way
of maintaining the diversity in population are less studied. Our
study focus on this issues.

This paper presents a simple and effective PSO algo-
rithm with population adaptation, called PAPSO. The proposed
method can identify the moment when the population diversity
is unchanged or the population stagnates by measuring the
Euclidean distance between particle position and particles
average position of a population. When moment is identified,
the population will be regenerated by normal distribution.
The proposed algorithm is able to increase the population
diversity automatically and enhance the performance of the
PSO algorithms.

The rest of the paper is organized as follows. In section II,
the frame work of PSO is presented. The proposed methodol-
ogy for population adaptation in PSO are utilized and described
in section III. In section IV, experimental results are described,
including the benchmark functions and experimental settings
of the algorithms. At last, conclusions are summarized and
future work is highlighted in section V.

573

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

II. PARTICLE SWARM OPTIMIZATION

The Particle Swarm Optimization (PSO) algorithm is a
swarm (population) based optimization techniques introduced
by Kennedy and Eberhart [1]. In PSO algorithm, each member
of the population is called a ’particle’ and each particle flies
around in the D-dimension search space with a velocity, which
is updated by the particles own experience and the experience
of the whole swarm. The experience of a particle is recoded
from the previous iterations and presented as personal best
(pbest); the experience among all the particles is represented
as global best (gbest). Each particle in the PSO has a position
and a velocity, its evaluation is achieved using the objective
function or fitness function (f) of a optimization problem,
whose variables are the particle position dimensions. The
particle updating method tries to move particles to better
position by accelerating them towards pbest and gbest.

While optimizing a problem in a D-dimensional search
space, each ith particle in the swarm has a position vec-
tor Xi = [xi1, xi2, ..., xiD] and velocity vector Vi =
[vi1, vi2, ..., viD] to indicates its current status. Moreover, the
ith particle will keep its personal best position, named pbest
and denoted as a vector Pi = [pi1, pi2, ..., piD]. All the current
positions can be treated as the position population and all
the pbest can be treated as the personal best population. In
PSO, Xi and Vi are initialize randomly and are updated by
learning from the personal best population to approach the
global optimum.

In general, each ith particle has a neighbourhoods and
its search behaviour is influenced by its own personal best
information Pi and the best personal best information Pn in
the neighbourhoods. The velocity and position are updated as
follows

Vi(t+1) = ω.Vi(t) + c1r1(Xpbesti(t)−Xi(t)) + c2r2(Xgbesti(t)−Xi(t))
(1)

Xi(t+ 1) = Xi(t) + Vi(t+ 1) (2)

Where ω is the inertia weight that used to control the global
and local search abilities. The c1 and c2 are positive constants,
called the acceleration coefficients, r1 and r2 are two uniformly
distributed random number in the interval [0, 1]. In Eq. (1), ω
is the inertia weight which provides the necessary diversity to
the swarm by changing the momentum of particles. Generally,
a maximum velocity (Vmax) for each modulus of the velocity
vector of the particles is defined in order to control excessive
roaming of particles outside the user defined search space.

III. METHODOLOGY

In this section, we will introduce the PSO algorithm with
population adaptation, called PAPSO. The PAPSO algorithm is
able to enhance the population diversity when the population
diversity is poor or it has been stagnates.

A. The Population Adaptation

Suppose that Xi,G = [xi,1,G, xi,2,G, ..., xi,D,G], a D-
dimensional position vector of ith particle at the Gth genera-
tion, i = 1, 2, ..., N , where N is the swarm size or population
size. The diversity (DG) of the swarm is calculated according
to the diversity measure [12] as follows

DG =
1

N

N∑
i=1

√√√√ D∑
j=1

(xij − x̄j)
2 (3)

where N is the swarm size, D is the dimensionality of
the problem, is the jth value of the ith particle and x̄j is the
average of the jth dimension overall particles, i.e.

x̄j =

∑N
i=1 xij
N

(4)

The diversity measure in Eq.(3) is independent of swarm
size and the dimensionality of the problem as well as the
search range in each dimension. When the population diversity
(DG) is poor or unchanged in two consecutive iterations, the
population has converged at an optimum and in that case
DG will not change any more. In the case of local optima
or stagnates situation, the algorithm may occasionally stop
proceeding toward the global optimum. When population stuck
at local optima, DG is unchanged or small change will be occur
in the consecutive generations. ZG is a flag to denote whether
the population diversity is poor at the Gth generation.

Zj =

{
1 if abs(DG −DG−1) ≤ (1E − 3)

0 Otherwise
(5)

If DG maintains unchanged or absolute value of the difference
of the diversity in two consecutive generations is less than
equal to a specific error (1E−3), it indicates that the algorithm
can’t generate better population. In this case, ZG = 1,
otherwise ZG = 0 (in Eq.(5)). If ZG = 1, the algorithm needs
to regenerate the population of the particles position. When
ZG = 1, the new population of particles position Xi,G+1,
i = 1, 2, ..., N , is generated as follows

xi,j,G+1 = aj,G + (bj,G − aj,G).randNj,G, j = 1, 2, ..., D.
(6)

where
aj,G = min(mj,G, xmin,j) (7)

bj,G = max(mj,G, xmax,j) (8)

xmin,j and xmax,j are the predefined lower and upper bounds
for the jth dimension, respectively. mj,G is the jth-dimension
value of the gbest particle in the population. randNj,G is a
random number with normal distribution of mean µj,G and
variance σ2

J,G and then truncated to [0, 1]. The values of µj,G
and σ2

J,G are as follows

µj,G =
mj,G − aj,G
bj,G − aj,G

(9)

σJ,G = (1 − k

T
).σJ,G (10)

where
σJ,G = max(µj,G, 1 − µj,G) (11)

In Eq.(10), T is a predefined maximum number of generation
and k is the current generation. σJ,G decreases with the
evolutionary progress by Eq.(10), so the diversity of the jth
dimension also decrease with evolutionary progress. From

574

Eq.(9) and (10), the new value of xi,j,G+1 is generated nearby
the best particle mj,G with a large probability but far way from
mj,G with a small probability. This scheme is able to enable
the algorithm to further exploit the local area of a revisited
location if the area is not sufficiently searched. The algorithm
is also able to explore other promising areas.

Algorithm 1 illustrates the framework of the population
adaptation (PA). In order to prevent the current best solution
from being destroyed, the PA approach does not re-diversify
the best solution found so far by the whole population.

Algorithm 1 Population Adaptation (PA)

1: Compute DG

2: Compute ZG using Eq. (5)
3: if ZG = 1 then
4: for each dimension j = 1, 2, ..., D do
5: for each particle Xi,G, i = 1, 2, ..., N do
6: if xi,G is not the best particle then
7: Regenerate x−i, j, G+ 1 of the next generation

using Eq. (6)
8: end if
9: end for

10: end for
11: Evaluate the fitness for each particle Xi,G+1, i =

1, 2, ..., N
12: end if

B. PAPSO Algorithm

The PSO algorithm with PA, called PAPSO, applies PA
approach after PSO operator at each iteration. The pseudo-code
of PAPSO is presented in Algorithm 2. Compared with the
original PSO algorithm, only the step 10 is added to perform
Algorithm 1. When velocity and position of a particle exceeds
the search range after the velocity and position update rule,
we map xi,j and vi,j legal as follows

vi,j =

Vmax if vi,j > Vmax
vi,j if −Vmax ≤ vi,j ≤ Vmax
−Vmax if vi,j < −Vmax

(12)

xi,j =

Xmax if xi,j > Xmax

xi,j if Xmin ≤ xi,j ≤ Xmax

Xmin if xi,j < Xmin

(13)

In this paper, this method is used for all algorithms to handle
the situation when particles are beyond the search range.

Algorithm 2 PAPSO Algorithm

1: Initialize velocity and position randomly for each particle
P0

2: G = 1
3: while The stoping criterion is not satisfied do
4: Adapt inertia weight (ω)
5: Evaluate the fitness of each particle
6: Update pbest and gbest
7: for each particle do
8: update particle’s velocity and position according to

the Eqs. (1) & (2)
9: end for

10: Implement the population adaptation using Algorithm
1

11: G = G+ 1
12: end while

IV. EXPERIMENTAL RESULTS

A. Benchmark Functions

In this section, PAPSO is applied to minimize a set of 13
scalable CEC05 benchmark functions in dimensions D = 10
and D = 30. In Table I, these CEC05 functions f1 - f13
include shifted functions, rotated functions and rotated shifted
functions. A more detailed description and parameter settings
of these CEC05 functions can be found in [13]. The functions
f1 - f5 are unimodal functions, f6 - f11 are basic multimodal
functions, f12 - f13 are expanded multimodal functions.

B. Experimental setup

For the purpose of performance evaluation, we compare
the purposed PAPSO algorithm with the standard PSO (SPSO)
[14], ATREPSO [7] and ARPSO [6]. In order to make a fair
comparison of these algorithms, we fixed the same seed for
random number generation so that the initial population is
same for all the four algorithms. The number of particles in the
population is 50. For each algorithm, the maximum number of
iterations is allowed 2000 for 10-dimensions and 6000 for 30-
dimensions. The parameter settings of all the algorithms are
as follows

a) PAPSO: A linearly decreasing inertia weight is used
which start at 0.9 and end at 0.4 with C1 = 1.49 and
C2 = 1.49.

b) SPSO: C1 = 1.49612, C2 = 1.496172 and ω =
0.72984 as used or recommended in [11].

c) ATREPSO: Linearly decreasing inertia weight from
0.9 to 0.4 with C1 = C2 = 2. The diversity controlling
parameters dlow = 5.0 ∗ 10 − 6 and dhigh = 0.25
respectively.

d) ARPSO: The ω is the linearly decreasing function,
ω(t) = (1 − t

tmax
), where t is the current iteration

number and tmax is the maximum iteration number.
The diversity parameters dlow and dhigh same as
ATREPSO.

A total of 30 runs for each experimental setting were
conducted and the average error best result throughout the
run was recorded. All these algorithms are implemented using

575

TABLE I: CEC05 Benchmark functions. D denotes the dimensionality of the test problem, S denotes the range of the variables
and fmin is the function value of global optimum

F Function Name S fmin

f1 Shifted Sphere Function [−100, 100]D -450
f2 Shifted Schwefel’s Problem 1.2 [−100, 100]D -450
f3 Shifted Rotated High Conditioned Elliptic Function [−100, 100]D -450
f4 Shifted Schwefel’s Problem 1.2 with Noise in Fitness [−100, 100]D -450
f5 Schwefel,s Problem 2.6 with Global Optimum on Bounds [−100, 100]D -310
f6 Shifted Rosenbrock’s Function [−100, 100]D -180
f7 Shifted Rotated Ackley,s Function with Global Optimum on Bounds [−32, 32]D -140
f8 Shifted Rastrigin’s Function [−5, 5]D -330
f9 Shifted Rotated Rastrigin’s Function [−5, 5]D -330
f10 Shifted Rotated Weierstrass Function [−0.5, 0.5]D 90
f11 Schwefel,s Problem 2.13 [−π, π]D -460
f12 Expanded Extended Griewank’s plus Rosenbrock’s Function [−0.5, 0.5]D -130
f13 Shifted Rotated Expanded Scaffer’s Rastrigin’s Function [−100, 100]D -300

MATLAB 7.6.0 (R2008a) applied on Intel (R) Core (TM) i7-
2670QM CPU @ 2.20 GHz with 8 GB RAM on windows 7
Home Premium platform.

C. Results and Discussions

Table II and Table III summarize the mean and standard
deviation of the average error results over 30 independent
runs for each algorithm on each function with D = 10 and
D = 30 respectively. For each functions error best value
of the results got by all the algorithms is shown in bold
front. For 10-dimensions problems, from Table II, it can
be seen that PAPSO performs better than SPSO, ATREPSO
and ARPSO on 13 benchmark unimodal, basic and expanded
multimodal functions. In the functions f7, f9, f12 and f13,
PAPSO performs better with compared to other algorithms.
However, there is no significant difference is observed with
respect to mean error values for the functions f7, f9, f12 and
f13. The standard deviation of the error values on the functions
f7, f12 and f13 are better in ARPSO than PAPSO. But
PAPSO performs significantly better than SPSO, ATREPSO
and ARPSO in terms of mean and standard deviation on the
functions f1 to f6, f8, f10 and f11 because of the PA approach
does improve the performance of PSO. In Table III, mean
error values obtained by PAPSO perform better than SPSO,
ATREPSO and ARPSO in unimodal, basic multimodal and
expanded multimodal functions except f3. Moreover, mean
error result is not highly significant than the PAPSO in SPSO
for f3. But standard deviation of the error value achieved
by the proposed algorithm dominates all other algorithms
on function f3. PAPSO performs significantly better than
SPSO, ATREPSO and ARPSO in terms of mean error values
on the functions f1, f2, f5, f6, f8, f11 and f12. So the
overall performance observed by proposed algorithm on the
13 benchmark functions with 10 and 30-dimensions is efficient
and robust from the other algorithms.

We have shown the convergence graph in Fig. 1 and Fig.
2 for the basic multimodal function f8 and the expanded
multimodal function f13 with D = 10. The graph record the
mean error of the best results over 30 independent runs for the
functions. From Fig. 1, it can be seen that beginning of the
iterations, SPSO converge faster than PAPSO. But end of the
iterations PAPSO converge faster than other PSO algorithms.
In Fig. 2, for the expanded multimodal function f13, converge
faster than SPSO, ATREPSO and ARPSO. In the Fig. 1 and

Fig. 2, when the population is trapped in a local optimum or
stagnates situation occur, PAPSO can jump out from the local
optimum and continue to evolve because of the population
adaptation and shown the faster convergence speed.

To study the working mechanism of population adaptation,
we apply PAPSO to minimize the multimodal function f8
in 10-dimensions. The Fig. 3 and Fig. 4 shows the change
of DG and the error result of the best particle. When the
population diversity is unchanged or small change of DG in
two consecutive iterations and the algorithm stops evolving.
Then PA is executed and the population diversity is enhanced.
The algorithm continues to evolve and enhance the perfor-
mance. From the figure, it has been shown that that when
the population diversity unchanged, PA can enhance it. The
new population generated by PA is beneficial to make the best
particle to get better results.

V. CONCLUSION

The possible moves given by a population, some moves
are beneficial in the search for the optimum while some others
are ineffective and result in a waste of computational effort.
Therefore, maintaining the diversity in the population is needed
in such a way that the maximum number of moves will be
beneficial in the search for optimum. This paper has studied
the population adaptation on PSO and proposed a method of
population adaptation, called PA.

Through measuring the Euclidean distances between parti-
cles position and average particles position of a population, PA
can identify the moment when the population diversity is un-
changed or small changed in two consecutive iterations. When
the moment is identified, PA can regenerate the population by
normal distribution. The new values are generated nearby the
best particle by the proposed method. The experimental results
show that PA can enhance the population diversity and improve
the performance of PSO algorithm. In the experiment on 13
CEC05 benchmark functions, our proposed PAPSO algorithm
outperforms from other algorithms.

Future research will involve investigating the effects of
different distance measures e.g. Manhattan distance, Quadratic
distance, etc. on the robustness of the different measures.
Lastly, the behavior of the different diversity control methods
will be investigated.

576

TABLE II: Average error values archived for 13 10-Dimensions CEC05 benchmark functions over 30 independent runs

F PAPSO SPSO ATREPSO ARPSO
Mean Std. Dev Mean Std. Dev Mean Std. Dev Mean Std. Dev

f1 8.323E-03 1.249E-03 4.832E+02 5.550E+02 6.818E+02 6.105E+02 6.709E+02 3.971E+02
f2 8.323E-03 1.249E-03 4.832E+02 5.550E+02 6.818E+02 6.105E+02 6.709E+02 3.971E+02
f3 5.413E+05 6.371E+05 6.369E+05 1.009E+06 1.820E+06 2.914E+06 4.093E+06 6.906E+06
f4 4.011E+01 5.932E+01 2.789E+02 3.995E+02 9.056E+02 1.436E+03 4.685E+02 4.403E+02
f5 7.925E-03 1.705E-03 1.822E+02 9.977E+02 1.048E+03 2.394E+03 7.833E+02 2.040E+03
f6 2.681E+04 1.447E+05 7.436E+06 1.620E+07 5.106E+07 8.266E+07 1.625E+07 2.525E+07
f7 2.027E+01 7.926E-02 2.028E+01 9.189E-02 2.029E+01 9.787E-02 2.031E+01 5.661E-02
f8 5.297E+00 4.611E+00 8.958E+00 6.392E+00 7.151E+00 6.023E+00 8.819E+00 7.856E+00
f9 2.229E+01 6.025E+00 2.408E+01 1.443E+01 2.320E+01 1.032E+01 2.748E+01 1.020E+01
f10 4.262E+00 1.159E+00 5.212E+00 1.435E+00 5.494E+00 1.289E+00 5.396E+00 1.676E+00
f11 1.715E+03 2.640E+03 3.950E+03 7.003E+03 2.399E+03 5.323E+03 3.586E+03 5.266E+03
f12 6.076E-01 2.165E-01 6.551E-01 2.484E-01 6.512E-01 2.758E-01 6.243E-01 1.988E-01
f13 2.926E+00 4.737E-01 3.321E+00 4.857E-01 3.017E+00 4.768E-01 3.078E+00 4.453E-01

TABLE III: Average error values archived for 13 30-Dimensions CEC05 benchmark functions over 30 independent runs

F PAPSO SPSO ATREPSO ARPSO
Mean Std. Dev Mean Std. Dev Mean Std. Dev Mean Std. Dev

f1 9.372E-03 5.922E-04 8.584E+03 7.669E+03 9.998E+03 4.617E+03 1.363E+04 5.188E+03
f2 1.819E+02 1.196E+02 9.553E+03 9.686E+03 2.089E+04 8.624E+03 2.770E+04 1.588E+04
f3 2.747E+07 1.879E+07 2.463E+07 2.026E+07 6.997E+07 4.794E+07 1.367E+08 9.299E+07
f4 1.260E+04 1.010E+04 1.384E+04 1.475E+04 2.622E+04 1.609E+04 3.028E+04 1.880E+04
f5 9.583E+03 2.053E+03 1.297E+04 3.440E+03 1.315E+04 3.688E+03 1.462E+04 3.861E+03
f6 7.044E+06 2.174E+07 1.399E+09 1.253E+09 3.628E+09 2.736E+09 4.692E+09 2.705E+09
f7 2.087E+01 6.348E-02 2.088E+01 5.822E-02 2.088E+01 6.134E-02 2.089E+01 6.664E-02
f8 7.855E+01 3.580E+01 1.175E+02 3.019E+01 1.391E+02 3.122E+01 1.467E+02 2.802E+01
f9 1.594E+02 3.956E+01 1.836E+02 4.558E+01 2.163E+02 5.070E+01 2.626E+02 4.582E+01
f10 2.418E+01 3.041E+00 2.620E+01 3.919E+00 2.635E+01 3.686E+00 2.664E+01 3.293E+00
f11 9.739E+04 1.142E+05 1.597E+05 1.188E+05 2.855E+05 1.411E+05 2.893E+05 1.178E+05
f12 4.264E+00 1.549E+00 6.304E+02 2.381E+03 7.243E+03 1.537E+04 5.801E+03 9.415E+03
f13 1.229E+01 6.128E-01 1.251E+01 4.819E-01 1.243E+01 4.057E-01 1.264E+01 3.554E-01

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−330

−320

−310

−300

−290

−280

−270

−260

−250

−240

Iterations

M
e
a
n
 E

rr
o
r

V
a
lu

e

PAPSO

PSO

ATREPSO

ARPSO

Fig. 1: Convergence graph for f8 with 10-Dimensions

0 200 400 600 800 1000 1200 1400 1600 1800 2000

−297

−296.8

−296.6

−296.4

−296.2

−296

−295.8

−295.6

−295.4

−295.2

Iterations

M
e
a
n
 E

rr
o
r

V
a
lu

e

PAPSO

PSO

ATREPSO

ARPSO

Fig. 2: Convergence graph for f13 with 10-Dimensions

REFERENCES

[1] J. Kennedy and R. Eberhart, ”Particle Swarm Optimization,” in Proceed-
ings of IEEE International Conference on Neural Networks (ICNN95),
Perth, IEEE Press, Australia, 1995, pp.1942-1948.

[2] R. Eberhart and J. Kennedy, ”A New Optimizer Using Particle Swarm
Theory,” in Proceedings of the Sixth International Symposium on Micro
Machine and Human Science, Nagoya, Japan, 1995, pp.39-43.

[3] X. D. Li and A. P. Engelbrecht, ”Particle Swarm Optimization: an
introduction and its recent developments,” in Proceedings of Conference
on Genetic and Evolutionary Computation, 2007, pp.3391-3414.

[4] Y. H. Shi and R. Eberhart, ”Population Diversity of Particle swarms,” in
Proceedings of IEEE Congress on Evolutionary Computation, 2008, pp.
1063-1067.

[5] O. Olorunda and A. P. Engelbrecht, ”Measuring Exploration/Exploitation
in Particle Swarms using swarm diversity,” in Proceedings of IEEE

Congress on Evolutionary Computation, 2008, pp. 1128-1134.
[6] J. Riget and A. Vesterstrom, ”A Diversity Guided particle swarm opti-

mizer - the ARPSO,” EVALife Project Group, Department of Computer
Science, Aarhus Universitym, Technical Report, 2002-02, 2002.

[7] M. Pant, T. Radha and V. P. Sing, ”A Simple Diversity Guided Particle
Swarm Optimization,” in Proceedings of IEEE Congress on Evolutionary
Computation, 2007, pp. 3294-3299.

[8] S. Cheng and Y. Shi, ”Diversity Control in particle swarm optimization,”
in Proceedings of IEEE Swarm Intelligence Symposium, Paris,France,
2011, .

[9] Z. Zhan, J. Zhang and Y. Shi, ”Experimental Study on PSO Diversity,”
in Proceedings of 3rd International Workshop on Advanced Computing
intelligence, 2010, pp. 310-317.

[10] S. Cheng, Y. Shi and Q. Qin, ”Promoting Diversity in Particle Swarm
Optimization to Solve Multimodal Problems,” in ICONIP, LNCS, 2011,
7063, pp. 228-237.

577

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

8

9

10

Iterations

D
iv

e
rs

it
y

Fig. 3: The change of diversity (DG) for the function f8

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−330

−320

−310

−300

−290

−280

−270

−260

−250

−240

Iterations

E
rr

o
r

o
f

B
e

s
t

Fig. 4: The error result of the best particle for the function f8

[11] S. Cheng, Y. Shi, Q. Qin and T. O. Ting, ”Population Diversity
Based Inertia weight Adaptation in Particle Swarm Optimization,” in
Proceedings of 5th International Conference on Advanced Computational
Intelligence, 2012, pp. 395-403.

[12] A. P. Engelbrecht, ”Fundamentals of Computational Swarm Intelli-
gence,” John Wiley & Sons Ltd, 2005.

[13] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. P. Chen, A. Auger
and S. Tiwari, ”Problem definitions and evaluation criteria for the CEC
2005 special session on real parameter optimization,” Technical Report,
NTU, Singapore, 2005.

[14] D. Bratton and J. Kennedy, ”Defining a standard for particle swarm
optimization,” in proceedings of the IEEE swarm intelligence Symposium
(SIS 2007), April, 2007, pp. 120-127.

578

