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Abstract—In this paper, a novel pseudo gradient based DE ap-
proach is proposed, which takes advantage of both the differential
evolutionary (DE) and the gradient-based algorithm. The gradient
information, which is called pseudo gradient, is generated through
randomly selected two vectors and their fitness function values.
This work is to investigate the effect of proposed pseudo gradient
on differential evolutionary algorithm. The simulation results
show that DE with pseudo gradient can obtain better performance
overall in comparison with classical DE variants. The pseudo
gradient based DE with adaptive parameter section is compared
with the existing adaptive DE algorithms. Also, the control
parameter, step size are investigated to understand the mechanism
of pseudo gradient in detail.

I. INTRODUCTION

Differential algorithm has been shown to be an efficient
evolutionary algorithm (EA) for many optimization prob-
lems [1], [2], [3]. It is easier to be implemented and has good
convergence properties. The performance of DE mainly de-
pends on mutation, crossover strategies and control parameters,
including population size NP, scaling factor F, and crossover
rate CR. Up to now, there is no fixed rule for choosing mutation
strategies and control parameters to solve practical problems.
To deal with this, adaptive or self-adaptive strategies on
mutation strategies and control parameters have been utilised
for years and showed excellent performance [3], [4], [5], [6],
[7], [8], [9]. However, it is still necessary to improve DE to
face challenges from various complex application areas.

Gradient based methods are widely used for continuously
differentiable unconstrained optimization problems. These
methods apply derivatives of functions to determine the search
direction in order to find the local optima iteratively [10]. How-
ever, difficulties will arise when gradient methods encounter
discontinuous problems in the real world. Meanwhile, fast
descent often results in obtaining local optima and premature
convergence easily.

In this paper, a novel approach to getting gradient in-
formation in DE is discussed. Without additional operation,
such as function derivation or imposing perturbation, we select
randomly two target vectors and their fitness function values
to capture corresponding gradient information, which is called
pseudo gradient. The ability of pseudo gradient to reflect right
searching direction is investigated. Moreover, self-adaption is
applied on the control parameters (F, CR, T), and compared
with previous study.

The remainder of this paper is organized as follows. In sec-
tion II, the basic operation of differential evolution algorithm

is provided and the related work is presented in Section III. In
Section IV the proposed pseudo gradient is demonstrated in de-
tail. Experimental results on benchmark problems are showed
in Section V, which shows the effectiveness of the proposed
approach. Finally the paper is concluded in Section VI.

II. BASIC OPERATIONS OF DE

Differential Evolution (DE) searches for global opti-
mum based on NP D-dimensional parameter vectors, i.e.,
xi,G;i=1,2,...,NP , called target vector. To cover the entire pa-
rameter space, the initial vectors xi,0 = (x1i,0, x2i,0, ..., xDi,0),
are generated randomly by

xji,0 = xmin + rand(0, 1) ⋅ (xmax − xmin) (1)

where j = 1, 2, ..., D and i = 1, 2, ..., NP . xmin is the lower
bound and xmax is the upper bound for the parameter space.
rand(0, 1) is an uniformly distributed random number in range
[0,1].

A. Mutation

DE generates a mutant vector vi,G+1 for each target vector
xi,G;i=1,2,3,...,NP , based on the current parent populations. The
classical mutation strategies are

1) ”DE/rand/1”

vi,G+1 = xr1,G + F ⋅ (xr2,G − xr3,G) (2)

2) ”DE/best/1”

vi,G+1 = xbest,G + F ⋅ (xr1,G − xr2,G) (3)

3) ”DE/current-best/1”

vi,G+1 = xi,G+F ⋅(xbest,G−xi,G)+F ⋅(xr1,G−xr2,G)
(4)

4) ”DE/best/2”

vi,G+1 = xbest,G+F ⋅(xr1,G−xr2,G)+F ⋅(xr3,G−xr4,G)
(5)

5) ”DE/rand/2”

vi,G+1 = xr1,G+F ⋅(xr2,G−xr3,G)+F ⋅(xr4,G−xr5,G)
(6)

with F > 0 and random integer indexes r1, r2, r3, r4, r5 ∈
1, 2, ..., NP , which are also different from the index i.
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B. Crossover

A binomial crossover is defined as follows to get the trial
vector ui,G+1 = (u1i,G+1, u2i,G+1, ..., uDi,G+1), where

uji,G+1 =

{

vji,G+1 if randj(0, 1) < CR or j = jrand
xji,G otherwise

(7)
in which j = 1, 2, ..., D and randj is a uniform random
number ∈ [0, 1]. CR ∈ [0, 1] is the crossover parameter.
jrand ∈ 1, 2, ..., D is a randomly chosen integer to ensure that
at least one parameter is transfered from vi,G+1 to ui,G+1.

C. Selection

From trial vector and target vector, the better vector pro-
ducing less fitness function value is chosen as new target vector
in next generation, expressed as follow:

xi,G+1 =

{

ui,G+1 if f(ui,G+1) < f(xi,G)
xi,G otherwise (8)

where f is the fitness function to be minimized.

III. RELATED WORKS

The work of DE optimization mostly focuses on mutation
strategies, crossover schemes and control parameters.

A. Adaptive DE Algorithms

Liu and Lampinen [3] proposed the fuzzy adaptive dif-
ferential evolution (FADE) algorithm, in which fuzzy logic
is used to adapt the control parameter for mutation strategy
and crossover scheme. The paper reports that FADE performs
better than traditional one on 6 benchmark functions overall.

Another self-adaptive DE algorithm (jDE) has been im-
plemented by stochastically refreshing the control factor F
and CR for each individual. The formular for generating new
control parameters are showed as follows:

Fi,G+1 =

{

Fl + rand1 ∗ Fu if rand2 < τ1
Fi,G otherwise (9)

CRi,G+1 =

{

rand3 if rand4 < τ2
CRi,G otherwise (10)

in which Fl, Fu, τ1, τ2 are fixed values. The better values of
control parameters tend to generate better offsprings which
are more likely to survive. Hence, these values should be
propagated to next generation. It is showed that jDE does
not need to guess good value for control parameters and can
achieve better performance [4].

Qin and Saganthan [11] developed self-adaptive DE al-
gorithm (SaDE) with adaption both on mutation strategy
and control parameters. In their version, strategy candicate
pool includes two mutation strategies DE/rand/1/bin and
DE/rand − to − best/2/bin. The trial vector generation
strategy is selected according to the probability according to its
success rate in generating better fitness function values within
previous 50 generations. SaDE is further improved by incor-
porating two additional mutation strategy DE/rand/2/bin,
DE/current − to − rand/1 and by adapting CRm for each
trial vector generation strategy [9].

Adaptive DE with optional external archive (JADE)
is presented in [8]. JADE applies new mutation strategy
DE/current − to − pbest with optional external archive as
follows:

vi,G = xi,G +Fi ⋅ (xpbest,g − xi,g) +Fi ⋅ (xr1,g − x̄r2,g) (11)

where xpbest is one of the top 100p% target vectors in the
current population, x̄r2,g is selected from the union of current
population and the archive. The author indicates that this
mutation strategy can improve the diversity of the population
and avoid premature convergence. Experimental results suggest
that JADE is better than or at least comparable to classical
DE and other adaptive DE variants on benchmark functions.
Especially on high dimensional problems, JADE with archive
shows promising performance.

Recently three algorithmic components have been embed-
ded in classical DE to improve its search performance [12].
The authors proposed the DE/current − to − gr best/1
mutation strategy,

vi,G = xi,G + Fi ⋅ (xgr best,g − xi,g + xr1,g − xr2,g) (12)

where xgr best,g is the best of the q% randomly selected vec-
tors from the current population. A so called p−best crossover
operation is employed in MDE pBX . The new trial vector is
constructed from randomly selected p−best vector and donor
vector based on normal binomial crossover type. To update F
and CR, Chauchy distribution and Gaussian distribution are
adopted, respectively.

B. Improving EA with gradient approach

Hybrid EA including DE algorithm based on gradient
is developed for various problems, such as real-valued uni-
modal, multimodel, multiobjective, constrained and dynamic
optimization.

Salomon discussed the obvious similarities and differences
between classical gradient methods and evolutionary algo-
rithms in [13]. It is argued that evolutionary algorithm has
a high probability to jump out of the local optima.

Chiou and Wang [14] introduced acceleration phase based
on gradient in DE algorithm to solve static and dynamic
problems. The corresponding gradient in the acceleration phase
is obtained from finite difference and the step size � ∈ [0, 1].
To overcome the drawback of premature convergence in accel-
eration phase, a migration phase is performed to regenerate a
new population through adding a vector of independent random
Gaussian numbers.

Pseudo-gradient in evolutionary algorithm is proposed
in [15]. It chooses a test candicate xl and compares the objec-
tive function value of this test vector with another point xk.
If f(xl) < f(xk), the gradient is defined as g(xl) = dir(xl),
where

dir(xl,i) =

{

1 if xl,i > xk,i
0 if xl,i = xk,i
−1 if xl,i < xk,i

(13)

if f(xl) > f(xk), g(xl) = 0. Hence, it is not necessary for
the objective functions to be differentiable. In addition, this
approach makes use of the directions which lead the individual
to better fitness and neglects the direction which is wrong.

2020



The " constrained DE method with gradient-based mutation
is proposed in [16], which constructs gradients from both
equality and non-zero equality constraints. It is showed this
algorithm is efficient to solve 23 problems out of 24 benchmark
problems.

For multiobjective problems, hybrid multiobjective evolu-
tionary algorithms with a gradient-based operator is presented
to solve the production planning optimization problem for min-
eral processing [17]. Gradients are obtained from differential
of continuous objective functions.

IV. PSEUDO GRADIENT

In this section, we propose a new DE algorithm, PGDE,
which implements gradient approach in mutation strategy. In
mutation part of DE, we choose two target vectors and their
corresponding fitness function values to generate, so called
pseuso gradient, to distinguish from general gradient. The
formular is as follows:

∇f =
f(xr1)− f(xr2)

xr1 − xr2
(14)

in which xr1, xr2 are randomly selected different vectors,
f(xr1), f(xr2) are the values of fitness function corresponding
to xr1, xr2 respectively. The difference vectors in classical
mutation strategy are random and store no information about
searching direction. But pseudo gradient with fitness values
store corresponding searching information. We replace the
difference vector in classical mutation strategy by pseudo
gradient. For example, we change DE/rand/1/bin to below
formular, naming PGDE/rand/1/bin.

vi,G+1 = xr1,G + T ×∇f (15)

where T is step size which behaves similarly with scale factor
F in classical mutation strategy. One decaying formular for T
is employed as

T = DT × Gmax −Gcurrent + 1

Gmax
(16)

where Gmax is the maximal number of iterations in simula-
tion allowed, Gcurrent is the current number of iterations in
running and DT is a control parameter.

It is obvious that the ∇f may be zero when f(xr1)
equals to f(xr2). Another problem arises when one or more
parameters in x1, x2 are equal. The gradient will be not a
number, called ”NAN”. So we set one switch parameter in
mutation. In running if parameter in pseudo gradient is zero or
NAN, then mutation strategy will be switched to corresponding
classical mutation strategy, which is DE/rand/1/bin in this
case. Such switch has another advantage that algorithm based
on gradient approach becomes easier to escape the local optima
area. Meanwhle, a factor Fration ∈ (0, 1) is set to decide
choosing pseudo gradient mutation strategy or classical one
to improve the exploration of gradient approach. The pseudo
code of PGDE/rand/1/bin is showed as Table I.

Then DE/best/1/bin is employed into the mutation strat-
egy in PGDE, so the corresponding PGDE/best/1/bin mu-
tation strategy is shown as Table II.

TABLE I: Pseudo Code of PGDE

Procedure of PGDE

1 Initialization
xi,0 = xmin + randi × (xmax − xmin)

2 Set control parameter
F,CR,DT, Fration

3 Decide switch value and calculate pseudo gradient when necessary
Select randomly vector xr1, xr2, xr3

if rand(1) < Fration set Iswitch = 0

else Iswitch = 1

if Iswitch = 0 ,Calculate corresponding gradient

∇f =
f(xr1)−f(xr2)

xr1−xr2

if ∇f is NAN or 0, Iswitch = 1

4 Mutation
if Iswitch = 1, then classical mutation strategy
vi,G+1 = xr1,G + F × (xr2,G − xr3,G)

else
vi,G+1 = xr1,G −DT × Gmax−Gcurrent+1

Gmax
×∇f

6 Crossover

uji,G+1 =

{

vji,G+1 if randj(0, 1) < CR or j = jrand

xji,G otherwise
7 Selection

xi,G+1 =

{

ui,G+1 if f(ui,G+1) < f(xi,G)

xi,G otherwise

TABLE II: Mutation strategy of PGDE/best

if Iswitch = 1 then classical mutation strategy
vi,G+1 = xbest,G + F × (xr2,G − xr3,G)

else
vi,G+1 = xbest,G −DT × Gmax−Gcurrent+1

Gmax
×∇f

Also we employ the adaption on F,CR,DT in PGDE. The
formulars of adaption for these control parameters are similar
with those in jDE as follows,

Fi,G+1 =

{

Fl + rand1 ∗ Fu if rand2 < τ1
Fi,G otherwise (17)

CRi,G+1 =

{

rand3 if rand4 < τ2
CRi,G otherwise (18)

DTi,G+1 =

{

DTl + rand1 ∗DTu if rand2 < τ3
DTi,G otherwise (19)

in which Fl, Fu, DTl, DTu, τ1, τ2, τ3 are fixed values. We call
it PGjDE.

V. RESULTS

We tested PGDE on 25 benchmark functions defined in the
CEC 2005 special session and real-parameter optimization[18].
These functoins cover a large range of real world problems,
such as multimodality, ill-conditioning, inseparability and ro-
tation. These 25 test functions can be divided into four groups:

1) unimodal functions f1− f5
2) basic multimodal functions f6− f12
3) expand multimodal functions f13− f14
4) hybrid composition functions f15− f25

PGDE was compared with classical DE variants and adap-
tive algorithms. For all algorithms, the dimension D was set
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to 30 and the population size was kept equal to 50. All
experiments were run 25 times independently. The same initial
population were used to make sure the performance was only
based on the algorithm itself only. The mean and standard
deviation of the function error value f(x)−f(x∗) were stored
for measuring the performance of every algorithm, where x
was the best individual found by the algorithm in one run and
x∗ is the global optimum of the test functions. The control
parameters for each algorithm were chosen as in their original
publications and listed as follows:

1) ∙ DE/rand/1/bin with F = 0.9, CR = 0.9;
∙ PGDE/rand/1/bin with F = 0.9, CR = 0.9, DT =
0.05.

2) ∙ DE/best/1/bin with F = 0.9, CR = 0.9, DT =
0.05;
∙ PGDE/best/1/bin with F = 0.9, CR = 0.9, DT =
0.05.

3) ∙ JADE with c = 1, p = 0.05, and optional external
archive[8];
∙ jDE with Fl = 0.1, Fu = 0.9, τ1 = τ2 = 0.1[4];
∙ SaDE [9];
∙ MDE pBX [12];
∙ PGjDE with Fl = 0.1, Fu = 0.9, DTl = 0.001,
DTu = 0.999, and τ1 = τ2 = τ3 = 0.1.

A. Comparision with classical DE algorithms

Table III shows the mean and standard deviation
for test functions obtained by DE/rand/1/bin and
PGDE/rand/1/bin. The better results are typed in bold.

It is obvious that PGDE/rand/1/bin achieves better
performance for 22 functions out of 25 functions. For unimodal
functions f1 − f5, PGDE has faster convergence speed,
which represents that pseudo gradient has the ability to lead
individuals to right direction towards gloabal optimum. Hybrid
composition functions have a huge number of local optima, so
it’s difficult for DE operator to find the global optima. Here
we observe that for most hybrid compositon functions, PGDE
achieves lower fitness function values overall, which suggests
that the pseudo gradient migrated with normal mutation oper-
ator enhances the diversity of the population.

Mean and standard deviation from DE/best/1/bin
and PGDE/best/1/bin are compared in Table IV. The
PGDE/best/1/bin is slightly better than DE/best/1/bin,
with 16 and 9 better results, respectively. For unimodal func-
tion f1−f5, PGDE/best/1/bin achieves better performance.
Especially for f1, f2, PGDE improves the solution by more
than 20 magnitude in comparision with classical DE variant.

For these four group test functions, the performance of
PGDE/best is similar with DE/best to some extent. But
compared with DE/rand, PGDE/rand outperforms almost
in all test functions. DE/rand usually demonstrates stronger
exploration capacity but with very slow convergence speed.
The DE/best strategy has fast onvergence speed but is more
likely to drop in local optimum, as well as the pseudo gradient.
So compared with DE/best, the drawback at exploration in
PGDE/best is not so well improved. This suggests us that
a diverse operator, such as DE/rand, is more suitable for
PGDE. A greedy mutation strategy can not help PGDE to find
global optimum so much.

TABLE III: Results of DE/rand/1/bin and PGDE/rand/1/bin

DE/rand/1 Mean(Std) PGDE Mean(Std)

f1 3.1504e-03 (2.5905e-03) 3.3695e-25 (1.4917e-25)
f2 3.8247e+02 (3.4840e+02) 3.2253e-05 (2.7187e-05)
f3 6.0577e+06 (2.7770e+06) 5.1552e+05 (2.9022e+05)
f4 1.9425e+03 (1.1291e+03) 1.5046e-01 (1.8837e-01)
f5 8.7800e+02 (3.1192e+02) 4.3144e+02 (2.4811e+02)
f6 6.1159e+01 (4.3896e+01) 1.2193e+02 (1.0457e+02)
f7 9.8685e-01 (5.7216e-02) 2.4491e-02 (2.3381e-02)
f8 2.0954e+01 (3.8102e-02) 2.0190e+01 (5.3467e-02)
f9 4.0538e+01 (1.9449e+01) 1.4574e+01 (3.7175e+00)
f10 2.2325e+02 (1.9636e+01) 3.7059e+01 (1.3151e+01)
f11 3.9667e+01 (1.3115e+00) 1.8575e+01 (2.8601e+00)
f12 4.8309e+03 (4.4040e+03) 8.0804e+03 (1.1108e+04)
f13 1.1431e+01 (3.1793e+00) 3.5494e+00 (6.6556e-01)
f14 1.3351e+01 (1.6539e-01) 1.3237e+01 (3.3412e-01)
f15 3.1378e+02 (1.2206e+02) 3.7022e+02 (1.1111e+02)
f16 2.7104e+02 (5.4446e+01) 7.0941e+01 (2.4790e+01)
f17 3.0175e+02 (4.8966e+01) 1.0933e+02 (3.3507e+01)
f18 9.0513e+02 (1.0461e+00) 9.0408e+02 (3.0238e-01)
f19 9.0564e+02 (9.4354e-01) 9.0415e+02 (8.4920e-01)
f20 9.0544e+02 (1.0128e+00) 9.0410e+02 (6.6735e-01)
f21 5.0000e+02 (2.7211e-04) 5.0000e+02 (1.6583e-05)
f22 8.9640e+02 (1.2548e+01) 8.9410e+02 (1.4225e+01)
f23 5.7880e+02 (1.5448e+02) 5.5028e+02 (8.0567e+01)
f24 3.2279e+02 (2.8714e+02) 2.0000e+02 (1.5264e-04)
f25 2.1245e+02 (1.2176e+00) 2.1122e+02 (6.2671e-01)
+ 3 22

TABLE IV: Results of DE/best/1/bin and PGDE/best/1/bin

DE/best/1 Mean(Std) PGDE Mean(Std)

f1 4.9159e+00 (2.4579e+01) 1.6841e-27 (1.2569e-27)
f2 1.3190e+02 (6.4589e+02) 2.3112e-23 (2.8864e-23)
f3 2.9761e+05 (2.6411e+05) 6.2329e+05 (6.5475e+05)
f4 5.3745e+02 (2.0747e+03) 2.2998e-04 (3.2503e-04)
f5 7.9126e+02 (1.3524e+03) 7.1605e+02 (1.0707e+03)
f6 3.8230e+06 (1.9115e+07) 1.0050e+05 (5.0246e+05)
f7 1.5023e-02 (2.0639e-02) 1.9971e-02 (1.5017e-02)
f8 2.0944e+01 (6.3513e-02) 2.0009e+01 (6.9385e-03)
f9 5.5903e+01 (1.7997e+01) 1.5918e+01 (5.4719e+00)
f10 6.0692e+01 (1.8240e+01) 8.4452e+01 (2.8520e+01)
f11 1.3856e+01 (3.0597e+00) 1.6173e+01 (2.6337e+00)
f12 2.4010e+04 (2.6936e+04) 1.3794e+04 (1.7756e+04)
f13 4.1760e+00 (1.5109e+00) 3.7896e+00 (1.2315e+00)
f14 1.2469e+01 (6.6538e-01) 1.3788e+01 (3.0120e-01)
f15 3.5877e+02 (7.9901e+01) 3.5060e+02 (6.4145e+01)
f16 3.7854e+02 (1.3547e+02) 4.4602e+02 (1.1074e+02)
f17 3.2496e+02 (1.7156e+02) 3.1735e+02 (1.6146e+02)
f18 9.0673e+02 (1.9906e+00) 9.0807e+02 (4.7449e+00)
f19 9.0660e+02 (1.8944e+00) 9.0624e+02 (3.1766e+00)
f20 9.0734e+02 (4.1633e+00) 9.0768e+02 (3.8427e+00)
f21 6.6686e+02 (2.3391e+02) 5.7195e+02 (1.7188e+02)
f22 8.7985e+02 (3.4838e+01) 8.7955e+02 (2.2637e+01)
f23 6.8477e+02 (2.0698e+02) 5.8417e+02 (1.3609e+02)
f24 6.5038e+02 (3.7010e+02) 2.3049e+02 (1.5244e+02)
f25 2.1146e+02 (1.0515e+00) 2.1515e+02 (1.6653e+00)

+ 9 16

Figure 1 shows the median convergence characteristics of
above 4 DE variants. It shows that classical DE operator
DE/rand/1/bin converges too slowly for unimodal functions
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f1, f2, f4. Instead, DE/best/1/bin converges too early. In
contrast, both PGDE performs well with consideration about
convergence speed and searching ability of gloabal optimum.

For multimodal functions, PGDE/rand/1/bin speed up
the convergence compared with DE/rand/1/bin. It is obvi-
ous that for f6, in which there is a very narrow valley from
local optimum to global optimum, the PGDE operation jumps
out the local optimum. This demonstrates that PGDE has
the ability to jump out local optimum. Also for composition
functions, which have huge number of local optimums, PGDE
performs better overall. This suggests that PGDE is more
suitable for optimization of complex problems with many local
optimums. Moreover, for some test functions DE/rand/1/bin
and DE/best/1/bin perform better than corresponding PGDE
variants. This reflects the capacity of pseudo gradient to
express the right searching direction for optimization has some
limitations to some extent, as the pseudo gradient may reflect
wrong searching direction if there are vallies between two
random points.

B. Comparision with adaptive DE algorithms

The performance of DE is very sensitive to the choice of
the control parameters the control parameters (F, CR). In this
section, an adaption operator on F,CR,DT is introduced into
PGDE, denoted as PGjDE. According to last section, we know
that DE/rand/1/bin is more suitable for PGDE. Meanwhile,
in most adaptive DE algorithms, jDE adopt DE/rand/1/bin
mutation strategy. So the adaption strategy of the parameter
F,CR chosen in this papar is the same as in jDE. PGjDE was
compared with other adaptive DE variants, including jDE [4],
SaDE [9], JADE [8] and MDE pBX [12].

Table V shows that PGjDE is better than jDE and SaDE,
equal to JADE, and slightly worse than MDE pBX according
to overall performance. For the unimodal function f1, JADE,
SaDE and PGjDE find the global optimum. For function
f2, f3, f4, JADE is the best one. PGjDE obtains the best
results for function f5. For the multimodal functions, only
JADE and PGjDE find the global optimum for function f9.
Meanwhile, JADE is better for almost all the multimodal func-
tions, except for f8. JADE achieves better performances both
in f13, f14, comparied with the other adaptive DE variants.
In composition function group, for the function f18, f19, f20,
MDE pBX is the best one, followed by SaDE and PGjDE.
PGjDE sits at the second place for function f17, f25. For
function f15, f16, f21, f23, f24, the best results are obtained
by PGjDE.

It is obvious in Table V that PGjDE is better than jDE,
especially on composition functions, which suggests again that
the pseudo gradient operator improves the searching capacity
of DE algorithm and is more suitable for optimization of
complex problems with many local optimums. Table VI gives
imformation about the performances of PGDE/rand/1/bin
and PGjDE/rand/1/bin. PGjDE achieves much better per-
formance than PGDE, which demonstrates that the adaption
strategies of the control parameters enhance the exploration
ability of PGDE to some extent.

TABLE VI: Results of PGDE/rand/ and PGjDE/rand/

PGDE Mean(Std) PGjDE Mean(Std)

f1 3.3695e-25 (1.4917e-25) 0.0000e+00 (0.0000e+00)
f2 3.2253e-05 (2.7187e-05) 1.0178e-05 (7.7833e-06)
f3 5.1552e+05 (2.9022e+05) 4.0186e+05 (2.3273e+05)
f4 1.5046e-01 (1.8837e-01) 4.0092e+05 (2.4636e+05)
f5 4.3144e+02 (2.4811e+02) 2.2466e-01 (3.0454e-01)
f6 1.2193e+02 (1.0457e+02) 3.2865e+01 (2.8541e+01)
f7 2.4491e-02 (2.3381e-02) 1.8897e-02 (1.1757e-02)
f8 2.0190e+01 (5.3467e-02) 2.0026e+01 (1.5544e-02)
f9 1.4574e+01 (3.7175e+00) 0.0000e+00 (0.0000e+00)
f10 3.7059e+01 (1.3151e+01) 4.7554e+01 (9.9144e+00)
f11 1.8575e+01 (2.8601e+00) 2.9247e+01 (1.6473e+00)
f12 8.0804e+03 (1.1108e+04) 1.7727e+04 (5.0032e+03)
f13 3.5494e+00 (6.6556e-01) 1.3674e+00 (1.0973e-01)
f14 1.3237e+01 (3.3412e-01) 1.2900e+01 (4.6891e-01)
f15 3.7022e+02 (1.1111e+02) 2.2800e+02 (9.3629e+01)
f16 7.0941e+01 (2.4790e+01) 1.0210e+02 (7.3737e+01)
f17 1.0933e+02 (3.3507e+01) 1.4702e+02 (7.3364e+01)
f18 9.0408e+02 (3.0238e-01) 9.0391e+02 (1.1700e+00)
f19 9.0415e+02 (8.4920e-01) 9.0286e+02 (2.4005e+00)
f20 9.0410e+02 (6.6735e-01) 9.0308e+02 (2.6515e+00)
f21 5.0000e+02 (1.6583e-05) 5.0000e+02 (8.9877e-14)
f22 8.9410e+02 (1.4225e+01) 8.8260e+02 (1.7051e+01)
f23 5.5028e+02 (8.0567e+01) 5.3416e+02 (3.4676e-04)
f24 2.0000e+02 (1.5264e-04) 2.0000e+02 (2.9008e-14)
f25 2.1122e+02 (6.2671e-01) 2.1134e+02 (9.5884e-01)
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C. Timestep

In PGDE, the control parameters are F,CR,T. T consists of
two parts: constant DT and the decreasing part as

Gmax −Gcurrent + 1

Gmax
(20)

The effect of step size DT on the performance of PGDE
is studied in this section. Three step size are chosen as
0.5, 0.05, 0.005, repectively. 25 independent runs are made on
25 test functions in 30 dimensions.

Tabel VII reports the experimental results for dif-
ferent step size. For most functions, smaller step sizes
achieve better results overall. Especially for functions
f1, f2, f4, f8, f11, f19, f20, f22, f24, smaller is the step
size, better is the performance. However, this is just in the
range 0.005 − 0.5, there is still lack of results on more step
sizes. Due to the high computational cost, we didn’t investigate
it in more detail.

VI. CONCLUSION

The experimental results above demonstrate that the pseudo
gradient can improve the searching capacity and convergence
speed of DE algorithm. To some extent, the pseudo gradient
could reflect the right searching direction to the global optima,
for it takes advantage of the objective function value of target
vector. In addition, it is much simpler to implement compared
with other hybrid evolutionary algorithm variants based on
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TABLE V: Results of Adaptive DE Variants and PGDE

JADE Mean(Std) jDE Mean(Std) SaDE Mean(Std) MDEpBX Mean(Std) PGjDE Mean(Std)

f1 0.0000e+00 (0.0000e+00) = 2.0195e-30 (1.0097e-29) − 0.0000e+00 (0.0000e+00)= 3.8654e-14(2.6516e-14)− 0.0000e+00 (0.0000e+00)
f2 5.7032e-28 (2.5723e-28) + 1.0525e-10 (2.6553e-10) + 705042e-06 (1.3994e-05)+ 2.0464e-13(7.3677e-14)+ 1.0178e-05 (7.7833e-06)
f3 4.3241e+03 (2.8661e+03) + 1.2453e+05 (7.7210e+04) + 4.4039e+05 (1.5004e+05)− 2.7951e+04(1.7481e+04)+ 4.0186e+05 (2.3273e+05)
f4 2.7300e-06 (6.8744e-06) + 5.4116e-01 (2.1424e+00) + 1.1672e+02 (1.3563e+02)+ 2.8870e-04(5.3276e-04)+ 4.0092e+05 (2.4636e+05)
f5 8.0595e+00 (2.0554e+01) − 1.1254e+03 (6.4164e+02) − 3.4119e+03 (6.5088e+02)− 9.4952e+02(5.0235e+02)− 2.2466e-01 (3.0454e-01)
f6 6.5783e+00 (2.2252e+01) + 8.9871e-01 (1.6257e+00) + 4.7039e+01 (3.1083e+01)− 1.4352e+00(1.9136e+00)+ 3.2865e+01 (2.8541e+01)
f7 1.2999e-02 (1.0750e-02) + 1.9189e-02 (1.2645e-02) − 1.5549e-02 (1.3844e-02)+ 1.8989e-02(1.3929e-02)− 1.8897e-02 (1.1757e-02)
f8 2.0859e+01 (2.6173e-01) − 2.0935e+01 (5.4696e-02) − 2.0946e+01 (6.1664e-02)− 2.0000e+01(1.0836e-05)+ 2.0026e+01 (1.5544e-02)
f9 0.0000e+00 (0.0000e+00) = 3.9798e-02 (1.9899e-01) − 1.1940e-01 (3.2999e-01)− 2.4306e+01(6.3840e+00)− 0.0000e+00 (0.0000e+00)
f10 2.8152e+01 (7.4952e+00) + 4.2160e+01 (8.2429e+00) + 4.6524e+01 (8.9881e+00)+ 4.1537e+01(1.0547e+01)+ 4.7554e+01 (9.9144e+00)
f11 2.6619e+01 (1.9175e+00) + 2.3280e+01 (5.5476e+00) + 1.7267e+01 (3.2715e+00)+ 2.4065e+01(5.1563e+00)+ 2.9247e+01 (1.6473e+00)
f12 5.2917e+03 (5.2179e+03) + 4.2452e+03 (4.4603e+03) + 2.5364e+03 (2.1263e+03)+ 2.2442e+03(2.9947e+03)+ 1.7727e+04 (5.0032e+03)
f13 1.2030e+00 (1.1086e-01) + 1.2382e+00 (1.2995e-01) + 3.9040e+00 (3.2194e-01)− 4.1902e+00(1.1646e+00)− 1.3674e+00 (1.0973e-01)
f14 1.2312e+01 (3.1576e-01) + 1.2939e+01 (2.1952e-01) − 1.2711e+01 (2.3522e-01)+ 1.2974e+01(5.1086e-01)− 1.2900e+01 (4.6891e-01)
f15 2.9310e+02 (5.2091e+01) − 3.0800e+02 (1.1150e+02) − 3.6423e+02 (5.7016e+01)− 2.9908e+02(7.8990e+01)− 2.2800e+02 (9.3629e+01)
f16 3.0624e+02 (1.5846e+02) − 1.3875e+02 (1.2307e+02) − 1.4766e+02 (1.2944e+02)− 2.3341e+02(1.5632e+02)− 1.0210e+02 (7.3737e+01)
f17 2.4125e+02 (1.4873e+02) − 1.6417e+02 (1.0381e+02) − 8.4245e+01 (3.5212e+01)+ 2.4576e+02(1.6763e+02)− 1.4702e+02 (7.3364e+01)
f18 9.0549e+02 (1.3428e+00) − 9.0525e+02 (1.5861e+00) − 8.8442e+02 (5.9290e+01)+ 8.1761e+02(2.3823e+00)+ 9.0391e+02 (1.1700e+00)
f19 9.0517e+02 (1.0972e+00) − 9.0513e+02 (1.2322e+00) − 8.9198e+02 (5.3022e+01)+ 8.1736e+02(1.0467e+00)+ 9.0286e+02 (2.4005e+00)
f20 9.0536e+02 (1.2991e+00) − 9.0536e+02 (1.2501e+00) − 8.9301e+02 (5.3753e+01)+ 8.1621e+02(1.2008e-01)+ 9.0308e+02 (2.6515e+00)
f21 5.1600e+02 (8.0000e+01) − 5.0000e+02 (9.3547e-14) − 6.4714e+02 (2.7146e+02)− 6.2121e+02(2.2632e+02)− 5.0000e+02 (8.9877e-14)
f22 8.6795e+02 (1.9264e+01) + 8.7695e+02 (1.8165e+01) + 9.3634e+02 (2.0121e+01)− 5.0009e+02(2.8583e-01)+ 8.8260e+02 (1.7051e+01)
f23 5.4969e+02 (7.6948e+01) − 5.3416e+02 (3.8845e-04) = 5.3417e+02 (5.4817e-03)− 5.7514e+02(1.0971e+02)− 5.3416e+02 (3.4676e-04)
f24 2.0000e+02 (2.9008e-14) = 2.0000e+02 (2.9008e-14) = 2.0000e+02 (2.9008e-14)= 2.0831e+02(4.2255e+00)− 2.0000e+02 (2.9008e-14)
f25 2.1315e+02 (2.7725e+00) − 2.1195e+02 (1.6222e+00) − 2.1252e+02 (1.3979e+00)− 2.1043e+02(7.9917e-01)+ 2.1134e+02 (9.5884e-01)

+ 11 9 11 13
− 15 14 12 12
= 3 1 2 0

gradient. Parameter step size also plays an important role in
PGDE, but to understand its mechanism still needs more work.

Based on the obtained results above, we can conclude that
our pseudo gradient is effective to improve DE with stronger
diversity. However, to enlarge this positive effect of pseudo
gradient leaves to the future work.
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