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Abstract—Since multi-objective optimization algorithms
(MOEAs) have to find exponentially increasing number
of nondominated solutions with the increasing number of
objectives, it is necessary to discriminate more meaningful
ones from the other nondominated solutions by additionally
incorporating user preference into the algorithms. This paper
proposes dual multi-objective particle swarm optimization
(DMOSPO) by introducing secondary objectives of maximizing
both user preference and diversity to the nondominated solutions
obtained for primary objectives. The proposed DMOSPO can
induce the balanced exploration of the particles in terms
of user preference and diversity through the dual-stage of
nondominated sorting such that it can generate preferable
and diverse nondominated solutions. To demonstrate the
effectiveness of the proposed DMOPSO, empirical comparisons
with other state-of-the-art algorithms are carried out for
benchmark functions. Experimental results show that DMOPSO
is competitive with the other compared algorithms and properly
reflects the user’s preference in the optimization process while
maintaining the diversity and solution quality.

Index Terms—Multi-objective Evolutionary Algorithm, Multi-
objective Particle Swarm Optimization, Dual-stage dominance
check, Crowding distance, User preference

I. INTRODUCTION

The problems in engineering usually require the process
for optimizing some parameters with respect to multiple
objectives, some of which conflict with each other. The multi-
objective optimization is to obtain a set of Pareto-optimal
solutions because there is no unique solution for the trade-
offs between the objectives. Since it is impossible to calculate
Pareto-optimal front explicitly, multi-objective evolutionary
algorithms (MOEAs) have been developed to find the solutions
as closely as possible to the Pareto-optimal front. Along with
this issue of proximity to Pareto-optimal front, diversity preser-
vation is another issue to maintain Pareto-optimal solutions as
diverse a distribution as possible in multi-objective optimiza-
tion. Through MOEAs, various nondominated solutions can
be obtained, which are proximate to Pareto-optimal front in
objective space and none of which can be directly compared
with each other [1]–[16].

However, with the increasing number of objectives, the
percentage of nondominated solutions increases. In fact, over
90% of the possible solutions are nondominated solutions
if the number of the objectives is over 10 [17]. In other
words, just finding nondominated solutions cannot be mean-
ingful. Thus, recently, the approaches of incorporating user
preference into the optimization process have been studied for
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discriminating the meaningful nondominated solutions from
the others [18]–[20]. In these approaches, with the preferences
of users, a global evaluation value of each nondominated
solution is figured out and relatively more meaningful solu-
tions are selected out in each iteration of the algorithm. In
addition, since the solutions may be converged prematurely
if the preferences are considered too much even though the
preferences are well-defined, the solution diversity is also
controlled heuristically. However, a clear criterion for the
balance between user preference and diversity has not been
studied yet.

In this paper, we propose dual multi-objective particle
swarm optimization (DMOPSO) with the concept of dual-
stage optimization by introducing secondary objectives in
addition to primary objectives. In the proposed DMOPSO,
each particle chooses its global best attractor (GBest) ran-
domly from the GBest candidate pool that is extracted from
the archive through the dual-stage of nondominated sorting
with respect to primary and secondary objectives. Primary
objectives are the given objectives of the problem and as
secondary objectives, global evaluation value (GEval) with
respect to user preference and crowding distance (CD) are
employed. Through the dual-stage of nondominated sorting,
more preferable as well as less crowded particles are selected
as the GBests and the balanced exploration of the particles
is induced in terms of user preference and diversity. To
demonstrate the effectiveness of the proposed DMOPSO, it is
empirically compared with NSGA-II, MQEA, MOPSO, and
MOPSO-PS for DTLZ functions which are test problems for
multi-objective optimization.

The remainder of this paper is organized as follows. Section
II explains the proposed DMOPSO. In Section III, experimen-
tal results are discussed. Finally, conclusion follows in Section
IV.

II. DUAL MULTI-OBJECTIVE PARTICLE SWARM
OPTIMIZATION

In this section, canonical particle swarm optimization (PSO)
is briefly reviewed and dual multi-objective particle swarm
optimization (DMOPSO) is proposed.

A. Brief summary of canonical PSO

A pseudo code of canonical PSO is presented in Algorithm
1 and each step is described in the following:

1. Initialize swarm
At first, the velocity and position of particles in a population

are randomly initialized on D-dimensional space. A popula-
tion is a set of N particles which have their own velocity and
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Algorithm 1 Particle Swarm Optimization

1) Initialize swarm
2) Update swarm

1: for each particle do
2: Evaluate the objective function
3: end for
4: for each particle do
5: Update pxtk and gxtk
6: Update velocity and position
7: end for

3) Repeat

position. The velocity vk and position xk of the k-th particle,
pk, k = 1, 2, . . . , N , are the D-dimensional vectors as follows:

vk ∈ RD, xk ∈ RD.

The personal best position and the global best position are
also initialized.

2. Update swarm
After initialization process, objective function value of each

particle at generation t, f(xtk), k = 1, 2, . . . , N , is evaluated,
where

f(xtk) : R
D → R.

After function evaluation, the personal best position of each
particle, pxt

k, k = 1, 2, . . . , N , is updated. The personal best
position of pk is defined as the position where the fitness value
is the largest all over the past positions of pk. After that, the
global best position of each particle, gxtk, k = 1, 2, . . . , N ,
is updated. The global best position of pk is defined as the
best position of the personal best positions of pk’s neighbors.
Finally, the velocity and position of each particle are updated
as follows:

⎧

⎨

⎩

vtk = w · vt−1k + c · {φ1,tk (pxt−1k − xt−1
k )

+φ2,tk (gxt−1
k − xt−1

k )}
xtk = xt−1k + vt

k

(1)

where w and c are constants and φ1,tk and φ2,tk are random
real values uniformly distributed in [0, 1]. vtk and xt

k represent
the velocity and position of the k-th particle at generation
t, respectively. New random values are generated for each
particle and generation.

3. Repeat
Repeat Step 2 until a termination condition is met.

B. DMOPSO

The word ‘dual’ implies that there are two stages of
nondominated sorting in DMOPSO. In the first stage, the
dominated particles with respect to primary objectives are
culled out where primary objectives are the given objectives
of the problem. This is called primary objectives-based non-
dominated sorting. And then, one more nondominated sorting

Algorithm 2 Global Evaluation

• M : The number of objectives
• N : The number of particles
• O = {o1, o2, · · · , oM}: A set of objectives
• P (O): A power set of O
• hi(xk): Partial evaluation value of xk over oi
• e(xk): Global evaluation value of the k-th particle

1) Fuzzy measure identification
1: for each A ∈ P (O) do
2: Calculate fuzzy measure g(A)
3: end for

2) Global evaluation of particles
4: for k = 1, 2, . . . , N do
5: for i = 1, 2, . . . ,M do
6: Calculate hi(xk)
7: end for
8: end for
9: for k = 1, 2, . . . , N do

10: e(xk) =
∫

g ◦ h (Choquet fuzzy integral)
11: end for

is conducted with respect to secondary objectives, called sec-
ondary objectives-based nondominated sorting. Global evalua-
tion value (GEval) and crowding distance (CD) are adopted as
secondary objectives to induce the balanced exploration of the
particles in terms of user preference and diversity. To reflect
the user’s preference in each iteration of the optimization
process, the GEval of every particle is used, which represents
the quality of the particle according to the user’s preference
[18], [20]. The user’s preference or the degree of consideration
for each objective is represented by using the fuzzy measure.
The GEval of a particle is calculated by the fuzzy integral that
integrates its partial evaluation valuee (PEvals) with respect
to the degree of consideration. In addition, for diversity,
the archive is sorted by CD and the archive members with
relatively long CDs are selected as attractors or elites. The
CD of a point is an estimate of the size of the largest cuboid
enclosing the point without including any other points [21].
Algorithms 2 and 3 show the overall procedures for calculating
GEval and CD, respectively.

Fig. 1 shows the flow diagram of DMOPSO, where At is
the external archive, Pt is the population, Gt is the GBest
candidate pool, pxkt is the personal best attractor (PBest)
position of the k-th particle, and gxk

t is the GBest position of
the k-th particle at generation t. In DMOPSO, each particle
chooses its global best attractor (GBest) randomly from
the GBest candidate pool, extracted from the archive after
the secondary objectives-based nondominated sorting. The
secondary objectives-based nondominated sorting is done
by the following three steps: i) calculate GEval and CD of
every archive member. ii) set GEval and CD as secondary
objective variables, and perform nondominated sorting for all
the archive members with respect to the secondary objectives.
iii) gather the particles in the first tier of the sorted archive,
i.e. hyper-nondominated particles, to the GBest candidate
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Fig. 1: The flow diagram of DMOPSO.

pool. The overall procedure of DMOPSO is summarized as
Algorithm 4 and each step of the algorithm is described in
the following.

1. Initialize P0 and A0

A population is a set of N particles, which have their own
position and velocity. The position xk and velocity vk of the k-
th particle pk, k = 1, 2, . . . , N , are the D-dimensional vectors
as follows:

vk ∈ RD, xk ∈ RD.

For every particle in the population, the position is randomly
initialized in a D-dimensional space and the velocity is ini-
tially set to 0. The M -objective function of each particle f(xk

t )
is evaluated, which is defined as

f(xkt ) : R
D → RM

and the PBest position of each particle is set to be the position
of itself. The external archive is also initialized as a null set.

2. Update At

The current archive At is updated by uniting the previous
archive At−1 and the previous population Pt−1 and conducting

primary objectives-based nondominated sorting. For each
particle in At, the GEval and CD are calculated.

3. Extract Gt

At first, the particles in At are sorted by secondary
objectives-based nondominated sorting for GEval and CD.
And then, the particles of the first tier are stored into Gt.
Since the particles in Gt are mutually nondominating and no
particles in Gt are dominated by xk

t−1, every particle in Gt

can be a candidate for the GBest of each particle in Pt−1.
Moreover, the particles in Gt are nondominated with respect
to GEvals and CDs and this means that they are less crowded
and more preferable than the others. Thus, by choosing gxk

t

from Gt, the particles are guided by the user’s preference
while maintaining diversity.

4. Update particles
For each particle, gxk

t is randomly chosen from Gt. The
velocity and position of each particle are updated by (1).
After that, f(xkt ) for every particle in the updated Pt−1 is
evaluated. Finally, pxkt is updated. pxkt = xkt if xkt weakly
dominates pxkt−1 or they are mutually non-dominating.
Otherwise, pxkt = pxkt−1.
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Algorithm 3 Crowding distance

• M : The number of objectives
• N : The number of particles
• CD(pk): CD of the k-th particle
• fi(xk): The i-th objective function value of xk

1) Initialization
1: for k = 1, 2, . . . , N do
2: CD(xk) = 0
3: end for

2) Computation of the CD of each particle
4: for i = 1, 2, . . . ,M do
5: for k = 1, 2, . . . , N do
6: Calculate fi(xk)
7: end for
8: Sort the particles according to fi(xk)
9: CD(p1) = CD(p1) + 100 (large value)

10: CD(pN ) = CD(pN ) + 100 (large value)
11: for k = 2, 3, . . . , N − 1 do
12: CD(pk) = CD(pk)+(fi(xk+1)−fi(xk−1))
13: end for
14: end for

5. Go back to Step 2 and repeat
Go back to Step 2 and repeat until a termination condition

is met.

III. EXPERIMENTAL RESULTS

At first, the proposed DMOPSO was compared with NSGA-
II [4], MQEA [5], [6], MOPSO [13], and MOPSO-PS [20]
through DTLZ functions [22] to demonstrate its effectiveness.
Note that for fair comparison, the preference degrees in both
DMOPSO and MOPSO-PS were set to f1 : f2 : f3 : f4 :
f5 = 1 : 1 : 1 : 1 : 1. In addition, to see how the preference
degrees effect on the result, DMOPSO was repeatedly tested
by varying the preference degree configurations.

The parameters used in the analysis are given in Table
I. Every DTLZ function is a minimization problem and the
number of objectives was set to 5. The number of variables of
each DTLZ function was set to 9 for DTLZ1, 16 for DTLZ2
- DTLZ6, and 26 for the DTLZ7 function.

Two performance metrics, the size of dominated space and
diversity, were employed to evaluate the performance of the
algorithms. The size of dominated space, S is defined by the
hypervolume of nondominated solutions [1]. The reference
point to calculate S was set to (10.0, 10.0, 10.0, 10.0, 10.0).
The quality of the obtained solution set is proportional to
the hypervolume. Diversity, D is for evaluating the spread of
nondominated solutions [23], which is defined as follows:

D =

∑n
k=1(f

(max)
k − f (min)

k )
√

1
|N0|

∑|N0|
i=1 (di − d̄)2

(2)

where N0 is the set of nondominated solutions, di is the
minimal distance between the i-th solution and the nearest

Algorithm 4 DMOPSO

• Pt: The population at iteration t
• At: The external archive at iteration t
• Gt: GBest candidate pool at iteration t
• NP /NA/NG: The number of particles in Pt/At/Gt

• D: The dimension of the search space
• rand(L,U): Random integer value between L and U
• vk

t : The velocity of the k-th particle at iteration t
• xk

t : The position of the k-th particle at iteration t
• f(xkt ): The objective function of xkt
• gxk

t : GBest position of the k-th particle at iteration t
• pxk

t : PBest position of the k-th particle at iteration t

1) Initialize P0 and A0

1: t = 0
2: for k = 1, 2, . . . , NP do
3: xkt = random vector ∈ RD

4: vkt = 0
5: Evaluate f(xk

t )
6: pxkt = xkt
7: end for
8: At = Null set

2) Update At

9: t = t+ 1
10: At = At−1 ∪ Pt−1
11: Cull the dominated particles of At

12: for k = 1, 2, . . . , NA do
13: Evaluate the GEval of each particle in At

14: Calculate the CD of each particle in At

15: end for
3) Extract Gt

16: Perform the secondary objectives-based nondomi-
nated sorting

17: Take the first tier as Gt

4) Update particles
18: for k = 1, 2, . . . , NP do
19: r = rand(0, NG)
20: gxkt = the position of the r-th particle in Gt

21: Update vkt and xkt by (1)
22: Evaluate f(xk

t )
23: Update pxkt
24: end for

5) Go back to Step 2 and repeat

neighbor, and d̄ is the mean value of all di. f
(max)
k and f (min)

k

represent the maximum and minimum objective function val-
ues of the k-th objective, respectively.

To verify that the comparison result is statistically signif-
icant, statistical hypothesis testing was used [24]. For every
pair of comparison, X1 and X2, a null hypotheses, H0 was
defined as X̄1 − X̄2 = 0 which means that there is no
significant difference between X1 and X2, where X̄ is the
mean value of X . Through the 50 pairs of sample data,
Welch’s t-value and the corresponding p-value were calculated
[25]. The null hypothesis was rejected and the corresponding
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TABLE I: The parameter settings of the algorithms

Algorithms Parameters Values

NSGA-II
Population size (N ) 100
No. of generations 3000

Mutation probability (pm) 0.1

MQEA

Global population size (n · s) 100
No. of generations 3000

Sub-population size (n) 25
No. of sub-populations (s) 4

No. of multiple observations 10
The rotation angle (Δθ) 0.23π

Population size (N ) 100
MOPSO, No. of generations 3000

MOPSO-PS, Max. archive size 500
DMOPSO Inertia weight (w) 1/(2 · log 2)

Cognitive/Social parameter (c) 0.5 + log 2

alternative hypothesis, H1 is claimed if the calculated p-value
is below the significance level of 0.05. Note that in this paper,
the normality of every sample data set was verified through
Jarque-Bera test [26]. Table II and III show the pairwise
hypothesis testing results on the both S and D, respectively.
As shown in Table II, in S, DMOPSO outperformed the
other algorithms except MOPSO-PS. S of DMOPSO was
similar or slightly better than that of MOPSO-PS. In case of
D, DMOPSO showed better D than MQEA, MOPSO, and
MOPSO-PS. And, there was no choice between DMOPSO and
NSGA-II; for DTLZ1, DTLZ3, and DTLZ6, D of DMOPSO
was significantly larger than that of NSGA-II while the
opposite was true for DTLZ2, DTLZ5, and DTLZ7. The
canonical MOEAs including NSGA-II, MQEA, and NSGA-II
use dominance check for proximity to Pareto optimal front and
crowding distance control for diversity. However, as mentioned
above, if the percentage of nondominated solutions increases
with the increasing number of objectives, it is hard to improve
the proximity with dominance check. Thus, DMOPSO and
MOPSO-PS showed better Ss than the others due to the
additional exploitation movement through incorporating user
preference into them. Moreover, DMOPSO showed better D
than MOPSO-PS because the balance between diversity and
user preference was efficiently managed by the dual-stage
optimization in DMOPSO whereas it was handled heuristically
in MOPSO-PS.

To see the effect of preference degrees on DMOPSO, it
was repeatedly tested with various preference degree config-
urations. In addition to the preference degree configuration
of 1:1:1:1:1 for the five objectives, 2:1:2:1:2 and 10:1:10:1:10
were used. Since f1, f3, and f5 were more considered at every
generation, DMOPSO could obtain the optimized solutions
that were more focused on those more preferred objectives.
Table IV shows the average objective function values over 50
runs. As the table shows, the average values of f1, f3, and f5
of DMOPSO decrease with the increasing preference degrees.
This means that the preference degrees had a pronounced
effect on the final solutions. However, the effect was not
highly sensitive to the magnitude of the preference degrees.
The hypothesis testing result also indicates that there was no
significant difference among the metrics of the three configu-

TABLE II: The hypothesis testing on S of various algorithms

H0 : SDMOPSO − SNSGA-II = 0
t-value (p-value) Reject H1

DTLZ1 2.754 (0.041) YES SDMOPSO − SNSGA-II > 0

DTLZ2 3.414 (0.001) YES SDMOPSO − SNSGA-II > 0

DTLZ3 4.039 (0.000) YES SDMOPSO − SNSGA-II > 0

DTLZ4 3.476 (0.001) YES SDMOPSO − SNSGA-II > 0

DTLZ5 3.138 (0.003) YES SDMOPSO − SNSGA-II > 0

DTLZ6 6.086 (0.000) YES SDMOPSO − SNSGA-II > 0

DTLZ7 3.469 (0.001) YES SDMOPSO − SNSGA-II > 0

H0 : SDMOPSO − SMQEA = 0
t-value (p-value) Reject H1

DTLZ1 30.026 (0.000) YES SDMOPSO − SMQEA > 0

DTLZ2 3.592 (0.001) YES SDMOPSO − SMQEA > 0

DTLZ3 3.212 (0.002) YES SDMOPSO − SMQEA > 0

DTLZ4 6.048 (0.000) YES SDMOPSO − SMQEA > 0

DTLZ5 7.490 (0.000) YES SDMOPSO − SMQEA > 0

DTLZ6 4.847 (0.000) YES SDMOPSO − SMQEA > 0

DTLZ7 9.028 (0.000) YES SDMOPSO − SMQEA > 0

H0 : SDMOPSO − SMOPSO = 0
t-value (p-value) Reject H1

DTLZ1 3.932 (0.001) YES SDMOPSO − SMOPSO > 0

DTLZ2 7.085 (0.000) YES SDMOPSO − SMOPSO > 0
DTLZ3 -0.252 (0.802) NO N/A
DTLZ4 5.212 (0.000) YES SDMOPSO − SMOPSO > 0

DTLZ5 5.319 (0.000) YES SDMOPSO − SMOPSO > 0

DTLZ6 3.629 (0.001) YES SDMOPSO − SMOPSO > 0

DTLZ7 3.223 (0.002) YES SDMOPSO − SMOPSO > 0

H0 : SDMOPSO − SMOPSO-PS = 0
t-value (p-value) Reject H1

DTLZ1 1.688 (0.098) NO N/A
DTLZ2 1.153 (0.254) NO N/A
DTLZ3 -0.980 (0.332) NO N/A
DTLZ4 3.959 (0.000) YES SDMOPSO − SMOPSO-PS > 0
DTLZ5 0.962 (0.340) NO N/A
DTLZ6 0.840 (0.405) NO N/A
DTLZ7 -1.584 (0.120) NO N/A

rations as shown in Table V. It is a distinctive advantage of
DMOPSO that its S and D were maintained, even though the
preferred objectives were considered more. Note that when
the conventional utility function method, like the weighted
sum method, is used for considering the user’s preference,
the weights need to be set very carefully in order to obtain
the solutions optimized not only for preferred objectives but
also for the other objectives to a certain level. On the other
hand, DMOPSO can solve this problem more efficiently by
employing the fuzzy measure representing the interactions
between the objectives and the user’s preference for them.

IV. CONCLUSIONS

In this paper, dual multi-objective particle swarm opti-
mization (DMOPSO) was proposed by introducing secondary
objectives of maximizing user preference and diversity to
the nondominated solutions obtained for primary objectives.
The most important advantage of the DMOPSO was that
both the user’s preference and the crowding distance could
be incorporated into the optimization process through the
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TABLE III: The hypothesis testing on D of various algorithms

H0 : DDMOPSO −DNSGA-II = 0
t-value (p-value) Reject H1

DTLZ1 30.818 (0.000) YES DDMOPSO −DNSGA-II > 0

DTLZ2 -18.612 (0.000) YES DDMOPSO −DNSGA-II < 0

DTLZ3 25.012 (0.000) YES DDMOPSO −DNSGA-II > 0
DTLZ4 0.662 (0.511) NO N/A
DTLZ5 -10.041 (0.000) YES DDMOPSO −DNSGA-II < 0

DTLZ6 34.610 (0.000) YES DDMOPSO −DNSGA-II > 0

DTLZ7 -48.817 (0.000) YES DDMOPSO −DNSGA-II < 0

H0 : DDMOPSO −DMQEA = 0
t-value (p-value) Reject H1

DTLZ1 44.586 (0.000) YES DDMOPSO −DMQEA > 0

DTLZ2 10.418 (0.000) YES DDMOPSO −DMQEA > 0

DTLZ3 22.815 (0.000) YES DDMOPSO −DMQEA > 0

DTLZ4 3.290 (0.002) YES DDMOPSO −DMQEA > 0
DTLZ5 1.284 (0.205) NO N/A
DTLZ6 34.127 (0.000) YES DDMOPSO −DMQEA > 0

DTLZ7 3.565 (0.001) YES DDMOPSO −DMQEA > 0

H0 : DDMOPSO −DMOPSO = 0
t-value (p-value) Reject H1

DTLZ1 -1.304 (0.198) NO N/A
DTLZ2 -0.627 (0.534) NO N/A
DTLZ3 -0.459 (0.648) NO N/A
DTLZ4 -0.356 (0.723) NO N/A
DTLZ5 3.841 (0.001) YES DDMOPSO −DMOPSO > 0

DTLZ6 6.152 (0.000) YES DDMOPSO −DMOPSO > 0

DTLZ7 17.126 (0.000) YES DDMOPSO −DMOPSO > 0

H0 : DDMOPSO −DMOPSO-PS = 0
t-value (p-value) Reject H1

DTLZ1 1.071 (0.289) NO N/A
DTLZ2 2.733 (0.009) YES DDMOPSO −DMOPSO-PS > 0
DTLZ3 0.775 (0.442) NO N/A
DTLZ4 0.601 (0.551) NO N/A
DTLZ5 0.793 (0.432) NO N/A
DTLZ6 2.218 (0.031) YES DDMOPSO −DMOPSO-PS > 0

DTLZ7 2.156 (0.036) YES DDMOPSO −DMOPSO-PS > 0

TABLE IV: Average objective function values by DMOPSO
with each preference degree

Preference
f1 f2 f3 f4 f5degree

DTLZ1
1:1:1:1:1 0.0173 0.0180 0.0200 0.0226 0.0225
2:1:2:1:2 0.0161 0.0204 0.0180 0.0266 0.0202

10:1:10:1:10 0.0158 0.0208 0.0177 0.0267 0.0202

DTLZ2
1:1:1:1:1 0.0570 0.0553 0.0605 0.0691 0.0701
2:1:2:1:2 0.0479 0.0653 0.0557 0.0781 0.0663

10:1:10:1:10 0.0475 0.0704 0.0544 0.0789 0.0639

DTLZ3
1:1:1:1:1 0.0641 0.0581 0.0697 0.0719 0.0794
2:1:2:1:2 0.0635 0.0699 0.0658 0.0747 0.0791

10:1:10:1:10 0.0572 0.0759 0.0623 0.0887 0.0769

DTLZ4
1:1:1:1:1 0.0853 0.0487 0.0475 0.0474 0.0457
2:1:2:1:2 0.0799 0.0545 0.0449 0.0523 0.0428

10:1:10:1:10 0.0778 0.0580 0.0439 0.0553 0.0402

DTLZ5
1:1:1:1:1 0.0609 0.0607 0.1310 0.1928 0.0775
2:1:2:1:2 0.0616 0.0625 0.1320 0.1948 0.0744

10:1:10:1:10 0.0607 0.0647 0.1306 0.2041 0.0727

DTLZ6
1:1:1:1:1 0.0593 0.0592 0.1515 0.2284 0.0823
2:1:2:1:2 0.0583 0.0608 0.1490 0.2219 0.0775

10:1:10:1:10 0.0592 0.0630 0.1518 0.2696 0.0779

DTLZ7
1:1:1:1:1 0.1142 0.1140 0.1134 0.1139 1.2746
2:1:2:1:2 0.1107 0.1179 0.1108 0.1176 1.2701

10:1:10:1:10 0.1075 0.1213 0.1069 0.1217 1.2676

TABLE V: The hypothesis testing on S and D of DMOPSO
with various preference degrees

H0 : S1:1:1:1:1 − S2:1:2:1:2 = 0
t-value (p-value) Reject H1

DTLZ1 0.197 (0.845) NO N/A
DTLZ2 0.602 (0.550) NO N/A
DTLZ3 -0.112 (0.911) NO N/A
DTLZ4 0.527 (0.601) NO N/A
DTLZ5 -0.264 (0.793) NO N/A
DTLZ6 0.899 (0.373) NO N/A
DTLZ7 0.795 (0.430) NO N/A

H0 : S1:1:1:1:1 − S10:1:10:1:10 = 0
t-value (p-value) Reject H1

DTLZ1 0.987 (0.328) NO N/A
DTLZ2 0.737 (0.465) NO N/A
DTLZ3 -0.827 (0.412) NO N/A
DTLZ4 0.868 (0.390) NO N/A
DTLZ5 0.319 (0.751) NO N/A
DTLZ6 -0.802 (0.426) NO N/A
DTLZ7 -0.758 (0.452) NO N/A

H0 : D1:1:1:1:1 −D2:1:2:1:2 = 0
t-value (p-value) Reject H1

DTLZ1 -0.553 (0.583) NO N/A
DTLZ2 -1.040 (0.303) NO N/A
DTLZ3 0.197 (0.845) NO N/A
DTLZ4 0.611 (0.544) NO N/A
DTLZ5 0.182 (0.856) NO N/A
DTLZ6 1.476 (0.146) NO N/A
DTLZ7 0.521 (0.605) NO N/A

H0 : D1:1:1:1:1 −D10:1:10:1:10 = 0
t-value (p-value) Reject H1

DTLZ1 -0.989 (0.327) NO N/A
DTLZ2 -0.724 (0.473) NO N/A
DTLZ3 -0.628 (0.533) NO N/A
DTLZ4 1.007 (0.319) NO N/A
DTLZ5 -2.304 (0.026) YES D1:1:1:1:1 −D10:1:10:1:10 < 0
DTLZ6 0.477 (0.635) NO N/A
DTLZ7 -1.189 (0.240) NO N/A

the dual-stage of nondominated sorting. The effectiveness of
DMOPSO was demonstrated by comparison with NSGA-II,
MQEA, MOPSO, and MOPSO-PS for the DTLZ functions.
The comparison results indicated that DMOPSO is competitive
with the other algorithms and properly reflects user preference
in the optimization process while maintaining the diversity and
solution quality.
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