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Abstract—Protein folding estimation attracts a large attention
in the area of computational biology, due to its benefits on medical
research and the challenge of NP-hard objective functions. In
order to simulate the protein folding procedure and estimate
the structure of the protein after folding, this paper adopts
a Paired-Bacteria Optimizer (PBO), which is a biologically-
inspired optimization algorithm. Compared with most Evolution-
ary Algorithms (EAs), the computational complexity of PBO is
much less. Therefore, it is suitable to be applied to solve NP-
hard problem. The experimental studies is performed on several
benchmark lattice protein combination. The experimental results
demonstrated that PBO is able to estimate the folded protein
structure with a superior convergence.

Index Terms—Protein folding, optimization, paired-bacteria
optimizer.

I. INTRODUCTION

Protein is a large biological molecule, which plays the fun-
damental role in life progress. The structure of protein consists
of one or more chains of amino acid residues. With different
combinations of the amino acid residues, proteins perform
varieties of functions in living organisms [1]. The structures
of protein are determined by the nucleotide sequence of their
genes, and which usually results in folding of the protein
into a specific three-dimensional structure that determines its
behavior. The folding process reforms the protein from an
unfolded polypeptide, when translated from a sequence of
mRNA to a linear chain of amino acids, to a unique structure.
This progress not only enhances the stability of the protein, but
also enables its function [2]. Misfolded proteins cause variants
of diseases, such as allergies and mad cow disease. Therefore,
simulation of protein progress attracts great attention recently
in the area of computational biology, which in turn further
benefits the medical research in relevant areas.

In order to simulate protein folding, a hydrophobic-polar
(H-P) model is introduced in this research, which simplifies
the protein structure into two types of residues [3]. This model
has been widely used in the study of computational biology,
which aims to analyze the role of sub structures in protein.
Several researches define the protein folding as an optimization
problem, which aims to estimate the optimal structure that has
the best stability in physics, i.e., the H-P interactions have a

minimum energy configuration. The problem of searching such
an optimal structure is an NP-hard problem, which requires
a great amount of evaluation with different trail structures.
As the algorithm does not need to make any assumption
on the objective function, heuristics algorithms show a great
potential on solving NP-hard problem. Research [4] imple-
ments Genetic Algorithm (GA) with improved crossover and
mutation operators. The experimental results have indicate that
the heuristics algorithm outperforms conventional methods,
such as Monte Carlo simulation. Research [5] indicates that
the crossover operator is the major factor which limits the
better performance of GA on the searching of optimal protein
structure. Therefore, an Estimation of Distribution Algorithm
(EDA) is improved from GA, which extends the selection pro-
cedure with an explicit probability [6]. Although the Markov
probabilistic model in EDA enhances the algorithms searching
ability, its computational complexity is increased as well.

Compared with EDA, Swarm-Intelligences (SIs), such as
Particle Swarm Optimiser (PSO), not only has a small com-
putational complexity, but also achieves superior performance
on real number optimization problems. Therefore, this paper
adopts an SI algorithm – PBO, which is inspired from the bac-
terial behaviors proposed in the Bacterial Foraging Algorithm
with Varying Population (BFAVP) [7]. The previous research
work has demonstrated that PBO has a superior performance
than most EAs developed recently [7][8]. Followed by this
study, PBO has also been applied to solve the optimal power
flow problem with stochastic loads, and obtains a prospective
result in our previous experiment [9]. Different from most
EAs, PBO has only a pair of individuals in a population. The
two individuals perform different tasks. The primary individual
plays a role in data mark, which provides a reference for the
next movement of the individuals. The associated individual
performs random walk around the primary individual, which
provides the gradient information for the primary individual.
Occasionally, the associated individual is randomly placed
at a location far away from the primary individual so as
to prevent the premature results. In order to accelerate the
convergence speed of the PBO, a simplified quorum sensing
is introduced either attracting the primary individual to the
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best fitness location or exchanging the the searching history
the two individuals have experienced.

The rest of the paper is organized as follows. Section II
introduces the details of the mathematical models of PBO, and
the implementation of the algorithm. Section III shows an H-P
model to simulates the protein folding progress. This section
also explains the procedure of the evaluation on the energy
of a specified protein configuration. Section IV presents the
simulation studies which are undertaken on several benchmark
H-P models.

II. PAIRED-BACTERIA OPTIMIZER

PBO is a cutting-edge EA with a superior performance on
expensive computational function. It is inspired from bacte-
rial behaviours which consists of the pseudo gradient based
searching and the quorum sensing scheme. Two mathematical
models are presented in detail in this section respectively.

A. Pseudo Gradient Searching

The position of a bacterium at the kth iteration is defined as
Xk = (xk1 , x

k
2 , ..., x

k
n) ∈ R

n, where xki is the component of the
Xk on the ith dimension. Meanwhile, an associated bacterium
˜X is associated to X at each iteration as a mutation of bacteri-

um X . A dimension, l, l ∈ {1, 2, ..., n}, is randomly chosen
for the mutation. The position of the associated bacterium ˜X
at the kth iteration is given as:

˜Xk = Xk + δDk, (1)

where δDk = (0, ..., 0, dkl , 0, ..., 0), and dkl is randomly chosen
in the feasible space on the lth dimension, which is denoted
as:

dkl = c1r1(Bupl
−Blol), (2)

where r1 ∈ [−1, 1] is a random number, and Blol and Bupl

denote the lower and upper boundary of the lth dimension,
respectively. A coefficient c1, which has two values, is set to be
0.05 and 1. Equation (2) generates a random location around
primary bacterium on the lth dimension, and equation (1)
places the associated bacterium on that location. By calculating
a direction with better pseudo gradient using the fitness value
and location of two individuals by equation (1), the algorithm
will decide whether it will move to the primary individual to
that direction.

Set gkl ( ˜X
k, Xk) in an alternative format of pseudo gradient

along the lth dimension at the kth iteration, as follows.

gkl (
˜Xk, Xk) =

F ( ˜Xk)− F (Xk)

x̃kl − xkl
, (3)

where F (Xk) and F ( ˜Xk) are the evaluation values of Xk and
˜Xk, respectively. At each iteration, the velocity of the pseudo

gradient searching is given as:

V k
c = (0, ...,−gkl ( ˜Xk, Xk), ..., 0). (4)

B. Simplified Quorum Sensing

The velocity of the simplified quorum sensing is updated at
the kth iteration as follows,

V k
q = r2(P

k
g −Xk)), (5)

where P k
g indicates the position of the best bacterium from

the past k iterations, and r2 is a random number, r2 ∈ [0, 1].
The lth elements vkl in V k is in the range of [−vmax

l , vmax
l ],

where vmax
l is the maximal velocity of bacterium X along the

lth dimension, which is scaled proportionally to the range of
the search boundary of that dimension. This equation is similar
to social attraction in Particle Swarm Optimization (PSO) [10].
PBO employs this equation to accelerate the convergence in
the early stage of the optimization process.

A dimensional velocity is inspired from the co-evolutionary
algorithm, which assumes that the gradient along each dimen-
sion has similar tendency [11]. As a result, if the algorithm
detects a better convergence along the lth dimension, PBO will
converge towards to that direction with a small step length on
all dimensions. According to out previous research, dimen-
sional velocity increases the convergence speed in the early
stage [12]. The dimensional velocity of primary individual
movement is updated as:

V k
s =

{

r3(X
k � x̃kl ), F ( ˜Xk) < F (Xk),

0, otherwise,
(6)

where r3 ∈ [0, 1] is a uniformly distributed random number,
and a� b means a constant b (b ∈ R) is subtracted from each
element a.

The velocity of the primary bacterium at the kth iteration
is donated by V k, V k ∈ R

n, V k = (vk1 , v
k
2 , ..., v

k
n), where vki

is a component of the V k on the ith dimension. The velocity
of the primary bacterium combines the the speed in pseudo
gradient searching and simplified quorum sensing, which is
expressed as:

V k = V k
c + V k

q + V k
s (7)

Hence, the position of the primary bacterium is updated as:

Xk+1 = Xk + γV k. (8)

where γ indicates the inertia weight, which is fixed in each
iteration. In an optimization process, pseudo gradient search-
ing and simplified quorum sensing are performed iteratively.
The pseudo code of PBO is listed in Table I.

III. EVALUATION OF PROTEIN FOLDING

A. H-P Models

Currently, there is not any correct model to accurately
describe how the folding is performed in sequence. In classical
view, the folding progress has a specified pathway, which
consists of several steps. The energy is minimized through the
pathway step by step. However, research [6] proposes a new
folding model, which assumes the folding is a random progress
without a fixed pathway. The energy can be both increased or
decreased during the folding progress. When the protein has a
stable structure with minimized energy, the folding progress is
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TABLE I
PSEUDO CODE OF PBO

Initialize the position of the primary individual and pseudo individual;
Initialize the velocity of the primary individual;
Evaluate the fitness of the primary individual;
Set g0p as the guessed value of global optimum;
Set k := 1;
WHILE(the termination conditions are not met)

Select a dimension l randomly;
Pseudo individual: Place the pseudo individual to position X̃k

by equation (1); Evaluate the fitness value
of X̃k;

Gradient updating: Exchange the gradient information on each
dimension by equation (6);

Velocity updating: Calculate the velocity of primary individual
by equation (7);

Generation: Update the position of the primary individ-
ual by equation (8); Update gkp if the fitness
of current individual is better;

k := k + 1
END WHILE

complete. In the new view, the searching of the folded structure
is a high dimensional multimodal optimization problem, which
has a large number of local optima.

Before the folding, polypeptide is a single linear polymer
chain derived from the condensation of amino acids. Over
twenty types of amino acids are found inside the cell, which
are the fundamental materiel to compose the protein. However,
simulating the folding progress of amino acids in 3 dimen-
sional space is too complex to evaluate the algorithm, as the
implementation of the model for amino acid chain requires
a large number of predefined chemical settings. Therefore,
this research adopts a simplified H-P model to describe the
protein structure. In this model, H indicates a hydrophobic
residue, which is the dominant force in the protein folding.
On the other hand, P indicates a polar residue, which connects
hydrophobic residue and maintains the protein structure. The
H-P model is considered as a suitable benchmark for the
studies of computational biology and optimization.

The energy function, which is defined as the objective
function in the optimization progress, is calculated from the
topological structure of the H-P model. The optimization aims
to minimize the total energy of the H-P model by evaluating
the energy of topological neighbours in the space. Different
topological neighbours of the residues in the space have
different energy levels, which are expressed as:

EHH = −1,
EHP = 0,

EPP = 0, (9)

where EHH, EHP and EPP are the energy measured of H-
H, H-P and P- P topological neighbours. Figure 1 shows the
configuration of a protein with the sequence of HHHPHH-
HHPHP. In this figure, the dot indicates an H residue and the
circle indicates a P residue. It can be found that there are two
H-H topological neighbours (marked as dashed line), one P-P
topological neighbour (marked also in dotted line), and one

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 1. A configuration of the H-P model folded structure.

H-P topological neighbour (marked as dotted line). Therefore,
the total energy of this configuration is calculated as:

E = 2 ·EHH = −2. (10)

B. Trial Protein Sequence Evaluation

Before the evaluation of the trial protein sequence, two
two-dimensional matrices, Y and Z , are initialized to record
the folded protein structure and protein placement sequence.
Assuming the objective protein has n residues, the size of the
matrices Y and Z will be set to (2n− 1)× (2n− 1). Element
Y (j, k) indicates the type of the residue, which is defined as:

Y (j, k) =

⎧

⎨

⎩

0 space
1 H− residue
2 P− residue.

(11)

Element Z(j, k) indicates the sequence number of the residue
placed at the coordinate (j, k). If the ith residue of the protein
is placed at coordinate (j, k), Z(j, k) will be set to i. A zero
value in Z indicates an empty space, meaning no residue is
placed in that location.

The first residue is placed at the coordinate of (n, n). As a
result, Z(n, n) is set to 1. In this experiment, the trial solution
X , discussed in Section II, indicates a folding sequence of the
protein combination. The ith element of X , xi, determines the
folding direction of the (i + 1)th residue, which is expressed
as:

xi ∈
⎧

⎨

⎩

[0, 1] rotate 90◦ left;
(1, 2] rotate 90◦ right;
(2, 3] rotate 0◦.

(12)

Figure 2 shows an example of the residue placement opera-
tion. The sub-figure a indicates a 90◦ left rotation placement,
where xi ∈ [0, 1]. The solid line shows the original residue
placement direction. Meanwhile, sub-figure b indicates a 90◦

right rotation placement, where xi ∈ (1, 2]. When xi ∈ (2, 3],
the (i+1)th residue will be placed along the original direction
as demonstrated in sub figure c.
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(a)

(c)

(b)

residue

residue i

residue i

i

residue +1i

residue +1i

residue +1i

Fig. 2. An example of the residue placement operation.

After all residues are placed, the energy configuration is
calculated using an energy matrix G:

Gjk =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−2 Yjk = 1, Y(j+1)k = 1 and Yj(k+1) = 1
−1 Yjk = 1 and Y(j+1)k = 1
−1 Yjk = 1 and Yj(k+1) = 1
0 otherwise

, (13)

Thus, the total energy configuration is calculated as:

E =

2n
∑

i=1

2n
∑

j=1

Gij , (14)

The placement sequence is randomly generated by PBO,
and overlap of the residue may happen during the placement.
Therefore, a penalty function is introduced to calculate the
missing residues after the placement. Assume there are m
elements in matrix Y , which have non-zero values. The
number of the missing residue is n−m. Thus, the objective
function of the protein folding is rewritten as:

E =
2n
∑

i=1

2n
∑

j=1

Gij + λp(n−m), (15)

where λp represents the coefficient for the penalty function.
λp is set to 100 in this study.

IV. EXPERIMENTAL STUDIES

A. Experimental Setting

PBO was evaluated in comparison with PSO [10]. PSO
is a Swarm Intelligence Algorithm (SIA), which has been
widely studied and compared in the past few years. The
implementation of PSO was described in detail in [10]. For
the parameters of PSO, the inertia weight ω is set to 0.73, and
the acceleration factors c1 and c2 are both set to 2.05. The
number of iterations for PSO to simulate protein folding is set
to 1.0× 104, and the population size is set to 100. Therefore,
the total number of function evaluations for PSO is 1.0×106,
which has the same value as the setting of PBO. As there are
only 2 individuals, the iterations of PBO is set to be 5.0×105.

TABLE III
THE NUMBER OF RESIDUES, MINIMAL FOLDED ENERGY AND THE

SEQUENCE OF THE H-P INSTANCES

Instant Optimum Algorithm Minimum Mean

f1 -9 PBO -9 -8.78
PSO -9 -8.68

f2 -14 PBO -14 -13.42
PSO -14 -13.16

f3 -21 PBO -21 -19.38
PSO -20 -18.58

f4 -42 PBO -38 -36.5
PSO -35 -33.36

f5 -48 PBO -42 -38.84
PSO -38 -32.64

In the experimental study, a set of H-P instances has been
adopted to evaluate the folding performance of the proposed
algorithm. These H-P instances are adopted in [6] and [13].
Table II lists the number of residues, minimal folded energy
and the sequence of these instances. The sequences of H-P
instances are specially designed, which follows the natural
protein behaviors. There is only one explicit structure, which
has the minimal folding energy, for each H-P instance. The
numbers of residues of these proteins range from 20 to 100.
Therefore, the folding simulations are high-dimensional multi-
modal optimization problem, which is suitable to be solved
using PBO.

B. Experimental Results

During the experiment, PBO and PSO are applied to mini-
mize the folded energy for the benchmark H-P instances. Each
algorithm is applied to these benchmark functions with 50 in-
dividual runs. Table III compares the minimal and mean energy
of the configuration obtained by PBO and PSO. The overall
values of the average energy in the table demonstrates that
PBO outperforms PSO on all these 5 benchmark functions. For
the instances with simple structures, such as f1 and f2, both
the two algorithms successfully estimate the optimal folded
structure, which has the minimal energy as known. PSO fails
to find the optimal configuration when the number of residues
is increased to 50, whereas PBO still shows a great searching
potential. However, the results on the complex cases, such as
f4 and f5, show that PSO and PBO are not able to locate the
optimal structure when the number of residues is increased
over 64. Figure 3 shows an optimal configuration obtained by
PBO on instance f1.

Figure 4 illustrates the convergence curves of PSO and PBO
on f1. It can be found that PSO converges rapidly in the early
period of searching, which is caused by the large population
size. As there are only two individuals, the convergence speed
of PBO is slightly lower. However, PBO outperforms PSO on
the overall period of the searching. The objective function of
the protein folding is an NP-hard problem with a large number
of local optima. Therefore, the algorithms that have limited
mutation operators, such as PSO, are more likely to be trapped
in local optima. The convergence curve of PBO indicates
that the gradient searching in the algorithm overcomes this
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TABLE II
THE NUMBER OF RESIDUES, MINIMAL FOLDED ENERGY AND THE SEQUENCE OF THE H-P INSTANCES

Instant umber of Optimal Sequence
residues folded energy

f1 20 -9 {HP}2P{H2P}2HPH2P2HPH
f2 36 -14 P3{H2P2}2P3H7P2H2P4H{HPP}2
f3 50 -21 H{HP}4H4PH{P3H}2P4H{P3H}2PH4{PH}4H
f4 64 -42 H12{PH}2{P2H2}2P2H{P2H2}2P2H{P2H2}2P2{PH}3H11

f5 99 -48 P6HPH2P5H3PH5PH2P4H2P2H2{PH5}2H5{PH2}2H5P11H7P{PH}2H2P6HPH

Fig. 3. An example of the optimial configuration obtained by PBO on instance
f1.

0 2 4 6 8 10

x 10
5

−9

−8

−7

−6

−5

−4

−3

Number of simulation

M
ea

n 
en

er
gy

 

 

Convergence curve of PBO
Convergence curve of PSO

Fig. 4. Convergence curve of PBO and PSO on instance f1.

drawback, which allows the individuals to escape from the
local optima.

Folding simulations on large-scale protein structure are nec-
essary due to its applications in the area of medicine research.
Therefore, another critical issue of this study is the comparison
on computation complexities of the adopt algorithms. In this
experiment, a threshold, which has the value of 80% of the
optimal energy, is set for each benchmark instance. Once
the algorithms obtain a optimised folded structure, which
has a energy less than the threshold, the number of the
function evaluated will be recorded. Figure 5 illustrates the
computational complexity comparison between PBO and PSO.
The horizontal axis indicates the number of the residues in the
protein, and the vertical axis indicates the function evaluated
to reach the threshold. These two curves demonstrated that
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Fig. 5. Computational complexity comparison between PBO and PSO.

PBO is more suitable to be applied to the folding simulation
with complex structure. With the increasing of the number
of residues in the protein, PBO consumes lesser and lesser
computational time during the optimization.

V. CONCLUSION

This paper presents a method to evaluate the energy value
of a configuration on a folded protein. Based on this method,
optimization algorithms are able to be applied to optimise the
protein folded structure when minimizing the energy value.
Meanwhile, a novel bacteria-inspired optimization algorithm,
PBO, is adopted to solve this optimization, which has merits of
fast convergence and easy implementation. The performance
of PBO on protein folding is compared with PSO. The
experimental results have demonstrated that with the same
energy configuration of the folded protein structure, the time
consumption of the searching procedure of PBO is much less
than that of PSO.
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