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Abstract—Differential Evolution (DE) has been widely used 

as a continuous optimization technique for several problems 

like electromagnetic optimization, bioprocess system 

optimization and so on. However, during the optimization 

process, DE’s population may stagnate local optima where the 

algorithm has to spend a large number of function evaluations 

to get rid of them. This paper presents an improved DE 

algorithm (denoted as RSDE) which combines two 

Replacement Strategies (RS).The motivation of RS is that 

replacing an unimproved individual and replacing a 

premature population using RS which can enhance the DE 

exploitation performance and exploration performance 

respectively. We tested the RSDE performance using the newly 

Single Objective Real-Parameter Numerical Optimization 

problems provided by the CEC 2014 Special Session and 

Competition. Moreover, computational results, convergence 

figures and the performance of these two RS will be presented 

to discuss the feature of RSDE. 

Keywords—Differential Evolution; Replacement Strategy; 

Single Objective Real-Parameter Numerical Optimization 

problem 

I. INTRODUCTION  

Differential evolution (DE) is a popular optimization 

method proposed by Storn and Price in 1997 [1]. The 

continuous optimization algorithm DE is similar to the 

Genetic Algorithm (GA) which has been considered as the 

robust solution of discrete optimization problems. However, 

the major difference between DE and the GA is that DE 

mutates its population vectors before crossover operation 

while GA crosses the Genomes after picking up the parent 

vectors from the population vectors and finally mutates the 

offspring.  

DE consists of mutation process, crossover process and 

the selection process. In the mutation process, DE may pick 

up the random individuals or the best individual to product 

an offset vector which will be added to the target vector to 

product the mutant vector. After mutation process, crossover 

combines the mutant vectors with the target vectors so that 

the trial vectors can be generated. Finally, selection process, 

which is based on the vector function fitness, picks up the 

better vectors to be the next parents between the target 

vector and the trial vector. 

DE plays an important role in the several fields of 

engineering optimization [2-4] because of the advantage of 

DE, such as robustness and effectiveness. Some examples of 

the usage of DE to optimize the engineering problems are 

given as follows. DE was added to optimal control problems 

of a bioprocess system [2] by Chiou and Wang. Furthermore, 

a DE scheme was used to train the neural networks [3]. After 

that, a framework which is based on DE algorithm was 

designed for the electromagnetic optimization [4]. Therefore, 

the improvement of DE can make great a difference to 

several engineering fields. 

Recently, more and more researchers of meta-heuristic 

algorithm have paid their attention on the improvement of 

the DE performance. After Storn and Prince provided the DE 

algorithm,  Qin and Suganthan introduced a Self-adaptive 

DE (SaDE) [6] to improve the original DE by using a self-

adaptive parameter strategy. With such a adaptive parameter 

(crossover rate and scale factor) strategy, SaDE show its 

robustness in learning the evolution information to solve a 

new problem without user pre-defined parameter. Moreover, 

Zhang and Sanderson presented a novel DE algorithm[7] 

with a ‘DE/current-to-pbset’ mutation strategy which is a 

generalization of ‘DE/current-to-best’[8]. This pbest 

mutation strategy maintain the diversity of population well 

and provide a progress direction on the basis of the historical 

data. However, little research has been carried out on local 

optimum detection and recovery of the DE algorithm. The 

motivation of our study is to design two replacement 

strategies to ameliorate the unimproved individuals and 

improve the algorithm performance while DE’s population 

loses in the local optimum respectively. 

The aim of the paper is to carry out a performance study 

of RSDE on CEC 2014 benchmark functions. The rest of the 

paper is organized as follow. Original DE algorithm is 

introduced in Section II. The idea of Replacement Strategy 

and computational procedure of RSDE are presented in 

Section III. The result discussion is illustrated in the Section 

IV. Finally, Section V concludes the paper. 

II.  DIFFERENTTIAL EVOLUTION 

The original DE algorithm is presented in detail as follow: 

Let S be a finite subspace of the n-dimensional real domain 
nR , and let :f S R  be an n-dimensional real function. 

DE provides evolution for a population of NP n-dimensional The author marked with character * is the Corresponding author 
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individual vectors 
,1 ,( ,.., ) , 1,..,t t t

i i i DX x x S i NP   , where D is 

the objective function dimension and t is denoted as the 

iteration number of the DE algorithm. The initial population 

should be randomly distributed between the upper 

bound
max max max( ,.., )X x x  and lower parameter 

bound
min min min( ,.., )X x x . After the initialization, mutation 

process, crossover process and selection process will be 

operated from one iteration to next iteration until some 

specific stopping criteria are satisfied. According to [5], the 

three processes of DE can be summarized as follows: 

1) Mutation: 

1 2

1 ( )t t t t

i i r rv X F X X                       (1) 

Where 
1 2, , [1, ]i r r NP  are random and mutually different 

integers, 
1 2
,t t

r rX X  are different from the target vector. Scale 

factor F > 0 is a real constant factor and is often set to 0.5. 

2) Crossover 
1

,1

,

,

t

i j j randt

i j t

i j

v if rand CR or j j
u

otherwisex




  

 


 

Where CR is a crossover constant in [0,1), [1,D]j  , 

jrand  is a uniformly distributed random number and randj  

is a random integer from 1 to D, which guarantee that at 

least one dimension parameter is different from the target 

vector 
t

iX .Here, vector 
1t

iu 
 is considered as the trial 

vector. 

3) Selection 

The selection process is based on the vector function 

fitness value. The algorithm compares the target vector 

fitness value ( )t

if X  and the trial vector function value 1( )t

if u  . 

If 1( ) ( )t t

i if u f X  , the trial vector 
1t

iu 
 will be chosen for 

the next generation. Otherwise, t

iX   will be chosen.There 

are also several different mutation strategies of DE [5]: 

“DE/rand/1” [1]: 

1 2 3

1 ( )t t t t

i r r rv X F X X                         (2) 

“DE/best/1” [5]: 

1 2

1 ( )t t t t

i best r rv X F X X                        (3) 

“DE/current to best/1” [8]: 

1 2

1 ( ) ( )t t t t t t

i i best i r rv X F X X F X X                   (4) 

“DE/best/2” [9]: 
1

1 2 3 4( ) ( )t t t t t t

i best r r r rv X F X X F X X                 (5) 

“DE/rand/2” [6]: 
1

1 2 3 4 5( ) ( )t t t t t t

i r r r r rv X F X X F X X                    (6) 

Where 1, 2, 3, 4, 5r r r r r are random and mutually different 

integers picked up in the range [1,NP]. 

III. DIFFERENTIAL EVOLUTION WITH 

REPLACEMENT STRATEGY 

A. Idea of Replacement Strategy 

Much research, such as self-adaptive parameter 

optimization and mutation strategies, has been devoted to 

improve the DE algorithm performance. However, little 

research has been carried out on the strategy that would help 

DE population get rid of the local optimum. Since local 

optimums are the traps of the objective function, a large 

number of function evaluations (FEs) should be used so that 

the population would have the opportunity to get rid of local 

optimums. To improve DE performance and reduce the 

waste of the FEs while the population stagnate the local 

optimum, Replacement Strategy (RS) is presented in this 

paper. 

Firstly, an individual replacement strategy is added to 

original DE algorithm. The aim of DE algorithm is to evolve 

the population vectors and find out the best vector parameter 
*X  of the objective function. Individual replacement 

strategy will verify whether the individual has been 

improved or not. If the individual vector has not been 

improved for several iterations (denote as   iterations), it 

will be replaced by a vector which combines the best 

individual vector with a random vector parameter offset. 

With the individual replacement strategy, the convergence 

speed of DE can be accelerated. 

Secondly, a population replacement strategy is used to 

avoid the population waste a lot of FEs to search a narrow 

area where DE may not find the best vector parameter of the 

objective function. Every   iterations, the population 

replacement strategy will perform once to compare the 

function value of best vector in current population with the 

function value of the best in last population before   

iterations. If the current best fitness has not been improved, 

the population will be regenerated using the best vector of 

current population. Otherwise, the last best vector will be 

replaced by the best vector of current population and the 

population will be kept and evolved in the next generation. 

If the population replacement strategy has been successfully 

performed for   times, it can be considered that the 

population has fallen into an unrecoverable situation so 

RSDE will regenerate the population using the uniform 

distribution to cover the entire parameter space randomly. 

We introduce the above replacement strategy into the 

original DE algorithm and develop a new DE algorithm with 

replacement strategy (RSDE). DE exploitation performance 

and the exploration performance are enhanced by the RS. 

The population has more opportunities to get rid of the local 

optimum and to search for the best vector parameter of the 

objective function. In the next subsection, we will describe 

the computational procedure of RSDE. 

B. Computational procedure of RSDE 

The RSDE uses the DE/current-to-best/1 as the mutation 

strategy. The computational procedure of the RSDE pseudo-

code is presented as follow. 

Algorithm 1: DE/best to current/1/bin with RS 

{*** parameter definition ***} 

{ tP  .. population after t generations} 

{NP .. population size} 

{D .. dimension of the objective function} 

{
minx  .. lower bound of the search range} 

{
maxx  .. upper bound of the search range} 
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{
urand (0,1) .. uniformly distributed random number} 

{Gauss(0,1) .. Gauss distribute random number} 

{
iM  ..  counter for individual replacement strategy} 

{
hbestX  .. the best vector so far from the DE begin} 

{ last

bestX  .. the last best vector of population} 

{*** RSDE computational procedure ***} 

1. Initialize the generation counter 0t   

2. Initialize the population set 
1{ ,.., }t t t

NPP X X  where 

,1 ,( ,.., )t t t

i i i DX x x  

3. Initialize the population 

4. Evaluate the fitness value of the individual in tP  

respectively. Denoted as ( )t

if X  

5. while the specific stopping criteria is not satisfied do 

6.     for 1i NP   

{*** individual replacement strategy ***} 

7.         if
iM   then 

8.             1

1 2( ) ( )t t t t t t

i i best i r rv X F X X F X X         

9.             for 1j D   

10.                   if 
uCR rand or 

randj j  then 

11.                       1 1

, ,

t t

i j i ju v   

12.                   else 

13.                       1

, , j

t t

i j iu x   

14.                   end if 

15.              end for 

16.              Evaluate the fitness value of 1t

iu   

17.               if 1( ) ( )t t

i if u f X   then 

18.                           1 1, 0t t

i i iX u M    

19.                else 

20.                           1 , 1t t

i i i iX X M M     

21.                end if 

22.           else   {** if 
iM   **} 

23.                  1 ,t

i hbest randX X j j    

24.                    1 1

, , max min(0,1) ( )
rand rand

t t

i j i j tX X Gauss x x l       

25. end for{ ** terminal of for 1i NP    **} 

26.           {*** population replacement strategy***} 

27. if mod(t ,  ) == 0 then 

28.      if ( ) ( )

( )

t last

best best

last

best

f X f X

f X





 then 

29.                  1count count   

30.      end if 

31.      if count < then 

32.           for 1i NP   

33.                for 1j D   

34.                     max min
, ,(0,1)t t

i j best j

x x
x Gauss x




    

35.                end for 

36.                 0iM   

37.           end for 

38.      else 

39.           for 1i NP   

40.                for 1i NP   

41.                    1

, j max min min(0,1) ( )t

i ux rand x x x      

42.                end for 

43.           end for 

44.           0count   

45.      end if 

46. end if 

47.       last t

best bestX X  

48. end while 

 

C. Replacement Strategy for Individual vector 

Although DE algorithm has rapid convergence speed, there 

are still a few individuals can not be improved for several 

iterations. In this situation, the unimproved individual vector 

can be considered that it has stagnated local optima and it 

would waste a large number of FEs to escape from the local 

optima. The first replacement strategy in RS is aim to solve 

this problem. Compared with the function value in last 

interaction, if the function value is not be improved, the 

corresponding individual can be detect that it has not been 

improve for one interaction. Once an individual is detected 

that it has not been improved for   interactions, it will be 

replaced by the so far best individual with one dimension 

mutated using Gauss distributed random offset which is 

relative to the current interaction. Equation (6) and Equation 

(7) presented as follow shows the key idea of the individual 

replacement strategy. 
1t

j hbestX X            (6) 

1 1

, , max min(0,1) ( )
rand rand

t t

i j i j tX X Gauss x x l                (7) 

Where 
hbestX   is the so far individual, the 1t

iX    will replace 

the unimproved individual for next interaction, (0,1)Gauss  

is a Gauss random number with expectation 0 and 1 

standard deviation 1, the max bound of function domain 

maxx  and the min bound of function domain minx  . What’s 

more, tl  in (7) positively correlates to the interaction 

reflected by the function evaluations FEs. And the equation 

of tl  is present as follow. 

3

5
( )
10

t

FE
l                             (8) 

Since the tl  increases in every interaction, the offset 

weight will increase, which will provide a small offset in 

early period for better relocation and a large offset in last 

period for increasing the population diversity. Using the 

information provided by the so far individual will lead the 

unimproved individual to accelerate the convergence speed. 

D. Replacement Strategy for population vectors 

Subsection C introduces the RS for individual vector 

which is considered as an acceleration of convergence speed 

and a protection from FEs waste because the unimproved 

individual need more than   interaction to get rid of the 

local optima. And this subsection will present the other type 

of RS which is used to slow down the convergence speed. 
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Even though DE algorithm show its robustness and 

efficiency in solving most optimization problems, pre-

mature convergence may happens during the optimization 

process especially in solving the multi-modal function. DE 

probably falls into a traps of the optima and waste a large 

number of function evaluations to search such a narrow area 

around the local optima. The mutation strategy of DE 

presented in [8] is an example of avoiding the DE fall in the 

local optima with the help of an offset from two random 

selected individuals However it still needs a lot of FEs for 

DE to get rid of traps. The motivation of the RS for 

population vectors is to help the DE algorithm detect 

whether the population has fallen into the local optima or 

not and help population recover.  

Every   interactions, RS for population vectors will 

evaluate whether the best function value has been improved 

significantly. Equation (9) provides a measure to find out 

this situation. 

( ) ( )

( )

t last

best best

t

best

f X f X

f X



        (9) 

Where the 
t

bestX  is the current best individual and the 

last

bestX  is the best individual in last   interactions. In the 

(9) ,   is a constant value in the range between 0 to 1.  

Once the condition presented in (9) is achieved, the 

population will be replaced by a new population, which is 

generated by using the information provided by the current 

best individual 
t

bestX , and will be distributed around the 

current best individual since the RS for population uses a 

Gauss random number to set up the offset. The replacement 

equation (10) is the replacement strategy for every 

individual and every dimension. 

1 max min
, (0,1)t t

i j best

x x
X X Gauss



 
         (10) 

Where 
1

,

t

i jX 
 is i-th individual j-th dimension parameter in 

the new population, (0,1)Gauss is a random number with 

expectation 0 and standard deviation and   is a constant for 

locating the new population around the current best 

individual but not at the same position of it. 

The strategy present above is based on the suppose that a 

high quality individual provide a high quality information to 

regenerate a population so that it can be future exploration 

and exploitation. However, if the current best individual is 

already in the traps, the performance of the RS is weak. To 

overcome such a situation, RSDE offer another type of the 

RS for population vectors. If the RS for population vectors 

achieves  times continuously, which can be considered that 

the population has fallen into a unrecoverable trap, the 

population will be regenerated without using any historical 

information. 

The second replacement strategy is aim to slow down the 

convergence speed and relocate the population around the 

current best individual for explore the area near it. If the 

population has not been improve significantly even though 

the RS for population vector has been run, the population 

will be regenerated using uniform random offset like the DE 

initial process and it will find another optima quickly 

because DE is well perform finding the solution of the 

objective function problem. 

IV. EXPERIMENTAL RESULTS 

The RSDE algorithm was coded in Matlab 2012a and run 

on an Intel(R) Core(TM) i5-2450 CPU @ 2.50Hz with 4 GB 

TAM memory, under Windows 8.1 pro, 64 bit OS. Every 

independent run’s initialization is based on the random 

parameter which is related to the time.  

 

A. Experimental setting 

IEEE-CEC 2014 single objective real-parameter 

optimization benchmark is used to test the performance of 

the RSDE. All details of these problems will be treated as 

black-box problem for the competition. 

The experiment settings, which the RSDE test should follow, 

are carried out under the following details: 

 The dimension of test optimization problem 

(minimization problems) has 4 types (10,30,50 and 

100). All benchmark function with all dimension are 

tested in this paper. 

 Maximum number of function evaluations : 

1.0E+04*D 

 The number of repetition optimization: 51 runs. 

 Uniform random initialization within the search space. 

Random seed is based on time. As the RSDE is coded 

in Matlab, the seed is set as rand(‘state’, 

sum(100*clock)). 

 The error value is used to measure the RSDE 

performance. And the expression of error value is as 

follow 
*( ) ( )errorvalue f x f x   

Where ( )f x  is the function value of the so far best 

individual and the 
*( )f x  is the minimization of the 

objective function. All error value is considered as 0 

while it is less than 1.0E-08. 

 Once the FE reach the maximum function evaluation 

or the so far best objective function error value is less 

than 1.0E-08, the RSDE algorithm will be terminated. 

Regarding the RSDE parameter, mutation (MR) is taken 

as 0.65 and the crossover rates is taken as 0.9. The 

population was 50. The special parameter , , , ,      are 

taken as 5*D (Dimension of the problem), 10*D , 3, 10 and 

1e-4.  

The performance evaluation of RSDE is conducted as the 

requirement paper provided by the CEC 2014 Special 

Session and Competition. Each function has been run 51 

times and sort the Max FEs result from the smallest (best) to 

the largest (worst) and find out the best, worst, mean, 

median and standard variance values of the function error 

values, *( ) ( )f x f x , for 51 runs. The results are present in 

Table 1 to 4. The convergence graphs for every function are 

illustrated in Figure 1 to 20. The complexity of the 

algorithm is introduced in the Table 5. 
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B. Result data analysis 

Based on the data from Table 1 to Table 4, we can denote 

the performance of RSDE algorithm. The analysis for the 

result is as follows: 

1) 10D benchmark function 

10D dimension of CEC2014 single objective real-

parameter numerical optimization is required for the initial 

submission as well as the 30D dimension problem. In table 

1, we can denote that the RSDE successfully solve function 

1, 2, 3, 4, 5, 6, 8 (where function 1, 2, 3, Unimodal function, 

is solved perfectly). And function 7, 12, 13, 14, 15, 17, 18, 

19, 20, 21, 22, 27 is solved under the 1. Obviously, RSDE 

has great performance in low dimension function problem, 

especially in the unimodal function. 

2) 30D benchmark function 

The problem will become increasingly different to be 

solved as the dimension is increased. The result of 30D is 

obviously worse  than the 10D. However, function 2 and 

function 7 can still be solved and 5 functions (3, 4, 12, 13, 

14) is less than 210 . The performance is acceptable. 

3) 50D and 100D benchmark function 

In the problem 50D and 100D, RSDE can not solve any of 

them. However, the result show that the RSDE has great 

influence on the population which will lead them to find out 

a better position in the function search space, a better vector 

parameter. 

 

 
Table1: Best, worst, median, mean error value and Std value for RSDE 

of D = 10 

Func. Best Worst Median Mean Std 
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
4 0.00E+00 3.48E+01 0.00E+00 2.81E+00 8.24E+00 
5 0.00E+00 2.00E+01 2.00E+01 1.92E+01 3.92E+00 
6 0.00E+00 9.03E-01 3.25E-06 5.29E-02 2.13E-01 
7 1.04E-07 1.70E-01 2.47E-02 3.55E-02 3.12E-02 
8 0.00E+00 3.42E+00 2.24E-04 6.61E-01 9.31E-01 
9 1.99E+00 1.69E+01 2.99E+00 8.52E+00 3.71E+00 

10 3.54E+00 2.53E+02 1.55E+02 6.84E+01 6.65E+01 
11 1.86E+01 9.05E+02 4.14E+02 2.91E+02 1.93E+02 
12 3.06E-02 5.76E-01 1.51E-01 2.21E-01 1.37E-01 
13 6.16E-02 1.81E-01 7.36E-02 1.28E-01 3.18E-02 
14 2.26E-02 2.19E-01 1.39E-01 1.36E-01 4.36E-02 
15 3.64E-01 2.29E+00 7.05E-01 9.83E-01 3.70E-01 
16 1.08E+00 3.16E+00 2.41E+00 2.23E+00 4.32E-01 
17 2.09E-01 1.79E+02 1.59E+02 4.77E+01 5.52E+01 
18 5.33E-02 5.49E+00 1.61E+00 2.00E+00 1.10E+00 
19 1.24E-01 1.77E+00 5.40E-01 1.03E+00 3.55E-01 
20 1.91E-03 2.81E+00 5.59E-01 7.21E-01 6.22E-01 
21 5.69E-02 2.32E+01 6.60E-01 1.21E+00 3.33E+00 
22 5.83E-02 2.14E+01 1.07E+00 1.17E+01 9.74E+00 
23 3.29E+02 3.29E+02 3.29E+02 3.29E+02 2.78E-13 
24 1.09E+02 1.34E+02 1.21E+02 1.19E+02 6.59E+00 
25 1.09E+02 2.01E+02 1.45E+02 1.30E+02 1.93E+01 
26 1.00E+02 1.00E+02 1.00E+02 1.00E+02 3.65E-02 
27 7.85E-01 3.46E+02 3.00E+02 9.12E+01 1.40E+02 
28 3.57E+02 6.01E+02 3.69E+02 3.87E+02 4.88E+01 
29 1.32E+02 2.25E+02 2.23E+02 2.13E+02 2.59E+01 
30 4.55E+02 1.15E+03 4.62E+02 5.05E+02 1.06E+02 

 

 

 

Table2: Best, worst, median, mean error value and Std value for RSDE 
of D = 30 

Func. Best Worst Median Mean Std 
1 4.60E+00 6.06E+03 1.01E+03 1.50E+03 1.70E+03 
2 0.00E+00 3.34E-08 0.00E+00 0.00E+00 5.99E-09 
3 3.89E-07 5.54E-01 1.13E-01 4.74E-02 1.16E-01 
4 3.19E-07 7.35E+01 1.18E-02 3.05E+00 1.34E+01 
5 2.01E+01 2.06E+01 2.02E+01 2.03E+01 9.88E-02 
6 1.38E+00 9.83E+00 6.67E+00 5.16E+00 2.01E+00 
7 0.00E+00 8.75E-03 9.50E-04 8.46E-04 1.59E-03 
8 7.28E+00 3.93E+01 1.62E+01 2.04E+01 7.04E+00 
9 1.89E+01 1.05E+02 6.27E+01 5.80E+01 1.65E+01 

10 2.09E+01 1.07E+03 3.89E+02 3.29E+02 2.47E+02 
11 1.01E+03 4.11E+03 2.73E+03 2.74E+03 6.44E+02 
12 1.46E-01 8.84E-01 3.92E-01 4.44E-01 1.66E-01 
13 1.77E-01 4.06E-01 3.00E-01 3.05E-01 5.50E-02 
14 1.49E-01 3.07E-01 2.33E-01 2.36E-01 3.37E-02 
15 2.04E+00 1.36E+01 3.88E+00 5.92E+00 2.59E+00 
16 8.36E+00 1.21E+01 1.05E+01 1.06E+01 7.70E-01 
17 4.25E+02 2.15E+03 1.22E+03 1.24E+03 3.79E+02 
18 1.79E+01 1.89E+02 9.72E+01 9.54E+01 4.34E+01 
19 3.05E+00 1.02E+01 5.11E+00 5.65E+00 1.46E+00 
20 1.05E+01 1.65E+02 5.32E+01 3.73E+01 2.55E+01 
21 9.07E+01 1.26E+03 5.54E+02 4.71E+02 2.34E+02 
22 2.34E+01 4.50E+02 3.54E+01 1.91E+02 1.19E+02 
23 3.15E+02 3.15E+02 3.15E+02 3.15E+02 1.62E-06 
24 2.18E+02 2.27E+02 2.25E+02 2.24E+02 1.65E+00 
25 2.03E+02 2.03E+02 2.03E+02 2.03E+02 1.17E-01 
26 1.00E+02 1.00E+02 1.00E+02 1.00E+02 4.14E-02 
27 3.47E+02 7.26E+02 5.33E+02 4.69E+02 9.46E+01 
28 7.20E+02 1.30E+03 1.18E+03 9.05E+02 1.21E+02 
29 7.21E+02 1.31E+07 7.94E+02 6.52E+05 2.66E+06 
30 6.31E+02 4.46E+03 8.91E+02 1.70E+03 8.67E+02 

 

 
Table3: Best, worst, median, mean error value and Std value for RSDE 

of D = 50 

Func. Best Worst Median Mean Std 
1 2.80E+03 5.99E+04 5.99E+04 2.25E+04 1.21E+04 
2 3.66E-03 2.51E+04 2.79E+02 3.58E+03 6.56E+03 
3 2.03E-03 8.79E+00 7.09E-02 4.10E-01 1.38E+00 
4 5.24E-02 1.56E+02 7.27E+01 6.41E+01 3.62E+01 
5 2.02E+01 2.07E+01 2.05E+01 2.05E+01 9.61E-02 
6 9.32E+00 2.98E+01 2.31E+01 1.72E+01 4.33E+00 
7 2.95E-08 1.97E-02 4.36E-08 2.40E-03 4.40E-03 
8 2.94E+01 7.90E+01 4.68E+01 5.04E+01 1.24E+01 
9 8.26E+01 2.24E+02 1.12E+02 1.42E+02 3.51E+01 

10 3.90E+02 4.30E+03 1.05E+03 1.52E+03 9.46E+02 
11 3.12E+03 8.34E+03 6.85E+03 6.15E+03 1.05E+03 
12 1.44E-01 1.11E+00 5.58E-01 5.38E-01 2.02E-01 
13 3.07E-01 5.31E-01 4.21E-01 4.23E-01 6.05E-02 
14 2.27E-01 3.16E-01 3.01E-01 2.78E-01 2.25E-02 
15 4.22E+00 3.09E+01 8.32E+00 9.96E+00 6.53E+00 
16 1.77E+01 2.16E+01 2.07E+01 1.93E+01 8.42E-01 
17 1.38E+03 8.88E+03 6.11E+03 4.10E+03 1.68E+03 
18 1.10E+02 1.38E+03 3.56E+02 3.40E+02 2.38E+02 
19 1.05E+01 1.87E+01 1.49E+01 1.46E+01 2.03E+00 
20 3.84E+01 3.14E+02 6.31E+01 1.60E+02 7.30E+01 
21 5.55E+02 5.36E+03 1.32E+03 1.58E+03 6.55E+02 
22 4.18E+01 1.31E+03 9.74E+02 4.61E+02 2.34E+02 
23 3.44E+02 3.44E+02 3.44E+02 3.44E+02 1.19E-05 
24 2.71E+02 2.82E+02 2.74E+02 2.76E+02 2.38E+00 
25 2.05E+02 2.09E+02 2.07E+02 2.06E+02 7.81E-01 
26 1.00E+02 3.60E+02 1.00E+02 1.12E+02 4.97E+01 
27 6.07E+02 1.08E+03 8.74E+02 8.04E+02 1.00E+02 
28 1.15E+03 2.52E+03 2.19E+03 1.61E+03 3.90E+02 
29 8.34E+02 6.59E+07 1.77E+03 5.28E+06 1.64E+07 
30 8.57E+03 1.97E+04 1.01E+04 1.12E+04 1.75E+03 

 

 

 

1621



 

Table4: Best, worst, median, mean error value and Std value for RSDE 
of D = 100 

Func. Best Worst Median Mean Std 

1 2.72E+05 1.92E+06 9.32E+05 8.33E+05 2.89E+05 
2 1.05E-02 4.26E+04 7.34E+01 7.39E+03 9.84E+03 
3 2.64E-02 1.50E+01 2.56E-01 9.77E-01 2.21E+00 
4 9.44E+01 2.97E+02 2.27E+02 1.86E+02 4.06E+01 
5 2.06E+01 2.09E+01 2.09E+01 2.08E+01 7.85E-02 
6 4.45E+01 8.71E+01 6.06E+01 6.02E+01 7.48E+00 
7 2.15E-05 1.65E-02 1.41E-04 1.27E-03 2.71E-03 
8 1.24E+02 2.55E+02 1.53E+02 1.94E+02 3.02E+01 
9 1.90E+02 4.51E+02 3.44E+02 3.20E+02 5.41E+01 

10 4.18E+03 1.60E+04 8.72E+03 9.31E+03 2.67E+03 
11 1.25E+04 1.96E+04 1.64E+04 1.55E+04 1.54E+03 
12 4.18E-01 1.32E+00 7.72E-01 7.42E-01 1.97E-01 
13 4.17E-01 6.23E-01 5.04E-01 5.44E-01 4.09E-02 
14 1.70E-01 2.34E-01 2.18E-01 2.09E-01 1.23E-02 
15 1.99E+01 9.76E+01 3.44E+01 5.24E+01 1.82E+01 
16 3.98E+01 4.48E+01 4.17E+01 4.24E+01 1.21E+00 
17 3.07E+04 2.85E+05 1.24E+05 9.86E+04 4.60E+04 
18 4.21E+02 6.04E+03 7.44E+02 1.26E+03 1.08E+03 
19 3.25E+01 1.31E+02 1.02E+02 8.16E+01 2.58E+01 
20 2.67E+02 1.07E+03 5.22E+02 5.50E+02 1.76E+02 
21 7.87E+03 9.43E+04 7.87E+03 3.49E+04 1.90E+04 
22 6.35E+02 2.54E+03 1.92E+03 1.51E+03 4.63E+02 
23 3.48E+02 3.48E+02 3.48E+02 3.48E+02 2.12E-03 
24 3.92E+02 4.16E+02 4.15E+02 4.06E+02 5.67E+00 
25 2.28E+02 2.65E+02 2.44E+02 2.42E+02 7.50E+00 
26 1.01E+02 4.90E+02 2.00E+02 1.98E+02 4.97E+01 
27 1.61E+03 2.56E+03 2.13E+03 2.01E+03 1.65E+02 
28 2.82E+03 5.69E+03 4.87E+03 4.11E+03 7.20E+02 
29 1.23E+03 2.38E+08 2.00E+03 8.29E+07 8.20E+07 
30 8.09E+03 1.94E+04 1.94E+04 1.31E+04 2.31E+03 

 

 

Figure 1. Convergence figure of RSDE for D=10 

 
 

Figure 2. Convergence figure of RSDE for D=10 

 
 

Figure 3. Convergence figureof RSDE for D=10 

 
 

 

Figure 4. Convergence figureof RSDE for D=10 

 
 

 

 
Figure 5.Convergence figureof RSDE for D=10 

 
 

 
 

Figure 6. Convergence figureof RSDE for D=30 

 
 

 

 
Figure 7. Convergence figureof RSDE for D=30 

 
 

 
 

Figure 8. Convergence figureof RSDE for D=30 
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Figure 9. Convergence figureof RSDE for D=30 

 
 

 

 
Figure 10. Convergence figureof RSDE for D=30 

 
 

 
 

Figure 11. Convergence figureof RSDE for D=50 

 
 

 

 
Figure 12. Convergence figureof RSDE for D=50 

 
 

 
 

Figure 13. Convergence figureof RSDE for D=50 

 
 
 

 

Figure 14. Convergence figureof RSDE for D=50 

 
 

 

 
Figure 15. Convergence figureof RSDE for D=50 

 
 

 
 

Figure 16. Convergence figureof RSDE for D=100 

 
 

 

 
Figure 17. Convergence figureof RSDE for D=100 

 
 

 
 

Figure 18. Convergence figureof RSDE for D=100 
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Figure 19. Convergence figureof RSDE for D=100 

 
 

Figure 20. Convergence figureof RSDE for D=100 

 
 

Table 5: the complexity of the RSDE algorithm 

 10D 30D 50D 

T0 0.1477 0.1477 0.1477 
T1 3.9436 4.4075 4.5525 
T2 7.6931 9.1191 9.3439 

(T2 - T1) / T0 25.3880 31.9023 32.4426 

 

C. Analysis of the convergence figure 

For each figure, the X axis is denoted as the  FEs and the 

Y axis, using the exponent presentation, respect the error 

value of the responding function.  Every 0.1 maximum of 

Function evaluation, the program will mark down the error 

value in the algorithm process.  

In the convergence figure of 10D, the RSDE solve the 

Uni-modal function before the maximum function 

evaluation meet and the convergence is rapidly. Because the 

convergence figure provided in last subsection is based on 

the so far best individual,  it won’t reflect the details of the 

RSDE evolution process. The figure 21 and figure 22 is 

presented to show the detail and the feature of RSDE 

evolutionary process. It’s obvious the population has been 

regenerated several times so that the population reset in a 

better position to find out a better parameter vector solution. 

 
Figure 21. evolution process of RSDE for D=10 in function 8 

 
 

Figure 21. evolution process of RSDE for D=30 in function 7 

 

V. CONCLUSION 

In this paper, we proposed an improved DE algorithm 

with the replacement strategy denoted as RSDE. The 

individual replacement strategy and the population 

replacement strategy improve the DE exploitation 

performance and exploration performance respectively. A 

result report is presented for the CEC 2014 Special Session 

and Competition on Real-parameter Numerical 

Optimization. The result shows that RSDE performs well in 

the Uni-modal functions and most Multi-modal functions.  
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