

Abstract— The concept of algorithm portfolio has a long
history. Recently this concept draws increasing attention from
researchers, though most of the researches have concentrated
on single objective optimization problems. This paper is
intended to solve multiobjective optimization problems by
proposing a multiple evolutionary algorithm portfolio. Differing
from previous approaches, each component algorithm in our
portfolio method has an independent population and the
component algorithms do not communicate in any way with
each other. Another difference is that our algorithm introduces
no control parameters. This parameter-less characteristic is
desirable as each additional parameter requires independent
parameter tuning or control. A novel score calculation method,
based on predicted performance, is used to assess the
contributions of component algorithms during the optimization
process. Such information is used by an algorithm selector
which decides, for each generation, which algorithm to use.
Experimental results show that our portfolio method
outperforms individual algorithms in the portfolio. Moreover, it
outperforms the AMALGAM method.

I. INTRODUCTION
HE CONCEPT of algorithm portfolio has a long history.
Gomes and Selman define that a portfolio of algorithms

is “a collection of different algorithms and/or different copies
of the same algorithm running on different processors”[1].
They also point out that algorithm portfolio can also be run on
one single processor. Their target is to solve hard
combinatorial search problems. Later, researchers try
algorithm portfolios to solve traveling salesperson problem
(TSP) [2], supply chain optimization problem [3],
classification problem [4], single objective real parameter
optimization problem [5] [6], and multiobjective optimization
problem (MOP) [7].

In this paper, we intend to solve MOP by constructing an
algorithm portfolio. MOP widely exists in the real world (e.g.,
scheduling problem, data mining, chaotic system and so on).
Usually, it has at least two objectives, and the objectives are
often in conflict with each other. MOP can be formulated as
[8] [9]:

 ݉݅݊ ሻܠሺܨ ൌ ൫ ଵ݂ሺܠሻ, … , ݂ሺܠሻ൯்ݏ. .ݐ ܠ א Ω (1)

Shiu Yin Yuen and Xin Zhang are with the Department of Electronic

Engineering, City University of Hong Kong, Hong Kong, China; e-mail:,
kelviny.ee@cityu.edu.hk, xinzhang9-c@my.cityu.edu.hk.

The work described in this paper was supported by a grant from the
Research Grants Council of the Hong Kong Special Administrative Region,
China [Project No. CityU 125313].

where Ω is the decision space and ܠ is a decision vector. ܨሺܠሻ
consists of m objective functions ݂ : Ω ื ܴ, 1 ≤ i ≤ m, and
the objective space is ܴ.

In MOP, the definitions of Pareto front and Pareto set are
closely related. Without loss of generality, consider the
optimization problem as a minimization. A vector ܝ ൌܶ݉ݑ,…,1ݑ is said to weakly dominate another vector ܞ ൌ ሺݒଵ, … , ሻ்ݒ , denoted as ܝ ع ܞ , if and only if א ݅ ሼ1,2, … , ݉ሽ ݑ , ݒ ܝ . is said to dominate ܞ , denoted as ܝ ط א ݅ if and only if ,ܞ ሼ1,2, … , ݉ሽ, ݑ ݒ and ܝ ് .ܞ
A solution כܠ of problem (1) is called a Pareto optimal
solution, if and only if ܠ א Ω such that ܨሺܠሻ ط ሻ. Theכܠሺܨ
set of all Pareto optimal solutions is called Pareto set (PS)
denoted as: PS ൌ ሼכܠ א Ω|ܠ א Ω, ሻܠሺܨ ط . ሻሽכܠሺܨ
The mapping of PS in the objective vector space is called the
Pareto front (PF): PF ൌ ሼܨሺכܠሻ|כܠ א PSሽ .

Based on the definition of domination, two different
solutions ܠଵ and ܠଶ have three possible relations:
 ;ଶ࢞ ଵ dominates࢞ (1
 ;ଶ࢞ ଵ is dominated by࢞ (2
 .ଶ are non-dominated with each other࢞ ଵ and࢞ (3

Since evolutionary algorithms (EAs) are usually designed
with a population of solutions, they can find a set of Pareto
optimal solutions in a single run. EAs handling MOP are
called multiobjective evolutionary algorithms (MOEAs).
These algorithms have two targets: 1) find a set of
non-dominated solutions reaching PF as close as possible,
and 2) maintain diversity of the solutions found such that they
are uniformly spread out along the PS. Fulfilling the two
targets, MOEAs could suggest a set of solutions to a
practitioner such that he can choose the proper solution
according to his subjective preference.

It is recognized that MOEAs are often highly tuned for
particular problem domains and does not work well outside
the designated domains [1]. Algorithm portfolio approach
attempts to combine the strength of multiple MOEAs such
that the resulting portfolio approach can deal with most, if not
all of the MO problems, thus increasing the robustness of the
MOEA.

This paper proposes a novel Multiple Evolutionary
Algorithm for MO problems (MultiEA-MO). Our portfolio
approach differs from others in the sense that each MOEA is

Multiobjective Evolutionary Algorithm Portfolio: Choosing Suitable
Algorithm for Multiobjective Optimization Problem

Shiu Yin Yuen and Xin Zhang

T

1967

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

independent of others. Each MOEA has its own population
which does not communicate with others (i.e., no migration
or information sharing of solutions among populations). In
this way, the communication problems about when to
communicate and how to implement the communication are
avoided. Furthermore, with this independence, each MOEA
can keep its own evolutionary characteristic without being
influenced by others. Another difference is that our algorithm
introduces no control parameters. This parameter-less
characteristic is desirable as each additional parameter
requires independent parameter tuning or control, which is
itself a challenging problem to solve. So it would do well if
one can avoid them altogether and still obtains a good
performance. As to the selection of which MOEA to run, a
novel predictor method is used. We propose a scheme to
calculate the score of each MOEA for estimating the future
performance of MOEA. Then our predictor method could
work and decide which MOEA is to be used for the current
generation. After each generation, the predictor and the
algorithm selector is invoked again to choose either the same
or a different algorithm. Thus our MOEA can perform online
algorithm switching as a function of the computational
budget. This is desirable as the best EA to run should be a
function of the budget available.

This paper is organized as follows. Section II gives a
review about previous related works. Section III presents the
proposed method. Section IV reports experimental results.
The paper is concluded in Section V.

II. RELATED WORKS
There are several related research works. For convenience,

these works are listed in the following categories:
1) Hyper-heuristic approaches. “The definition of

hyper-heuristics has been recently extended to refer to a
search method or learning mechanism for selecting or
generating heuristics to solve computational search
problems” [10]. These approaches can be classified into:
heuristic selection and heuristic generation. The former
means combining already existing heuristics in a
higher-level search scheme, while the latter means
creating new heuristics based on basic components (e.g.,
recombination operators and mutation operators) of
existing heuristics. Cowling et al. propose an indirect
genetic algorithm for optimizing a personnel scheduling
problem [11]. Grobler et al. investigate the use of a set of
evolutionary algorithms under a hyper-heuristic
framework through different selection methods [12].
McClymont et al. employ a finite Markov chain model to
adaptively select heuristics for solving MOP [13]. A
complete and up to date survey of hyper-heuristic
approaches can be found in [10].

2) Multiple algorithm approaches. Fukunaga builds a
genetic algorithm portfolio for solving TSP [2]. Vrugt et
al. propose an AMALGAM approach for MOP by
combining four MOEAs [7]. Later they extend their
approach to single objective problem [5]. Peng et al.
propose a population-based algorithm portfolio [6]. This
approach runs each component algorithm with a part of
the predefined time budget and then encourages

interaction amongst component algorithms with a
migration scheme. Yuen et al. [14] propose an algorithm
portfolio which for each generation, uses a predictor to
estimate the performance of each component algorithm
at a common future and then choose the best predicted
performance algorithm for running the next generation.
Burke et al. classify multi-population based approaches
(e.g., multiple algorithm portfolio approach) as
hyper-heuristics [10]. Here we would like to present
them in different categories as they have different
historical origins and motivations.

Besides the above, we would like to mention ensemble
methods. Unlike constructing algorithm portfolio, ensemble
methods are comprised of multiple operators (i.e., crossover
operators and mutation operators) [15].

III. MULTIEA-MO
This section presents the proposed MultiEA-MO method

as well as the pseudo code of the method.

Fig. 1. Flow chart of MultiEA-MO method.

Given MOEAs ܣ, ݅ ൌ 1, … , which we have selected to ,ݍ

compose our portfolio, each ܣ is called a component
algorithm. It has its own independent population (e.g.,
nondominated sorting genetic algorithm II (NSGA-II) [16])
or its own archive (e.g., adaptive multiobjective simulated
annealing (AMOSA) [17]), depending on the strategy used by
the original authors, though they have similar functionality
(i.e., storing a certain number of non-dominated solutions).
Our method also keeps a population of all non-dominated

1968

solutions, which is called primary population.
Fig. 1 gives the flow chart of the proposed method.

Algorithm 1-4 shows the pseudo code of the proposed
portfolio method.

Algorithm 1: Pseudo code of MultiEA-MO method.

Input Problem ݂ሺ·ሻ, Search space Ω, ܣ, ݅ ൌ 1, … , .ݍ
Set ݁ݎܿݏ = 0, ݅ ൌ 1, … , .Set generation counter g = 0 .ݍ

Step1 Randomly initialize component algorithms.
Construct primary population (see Algorithm 2).

Step2 For i = 1 to q
Run algorithm ܣ until ݊ 0, such that ܣ has contributed to
build primary population.

Step3 Compute score of each component algorithm (see Algorithm 3).
 g := g+1.
Step4 While termination criteria are not fulfilled
Step5 Choose an algorithm ܣ (see Algorithm 4).
Step6 Algorithm ܣ evolves one generation.
Step7 Update primary population (see Algorithm 2).

Update ݁ݎܿݏ, ݅ ൌ 1, … , .(see Algorithm 3) ݍ
g := g+1.

Output Primary population

Algorithm 2: Pseudo code of constructing primary population.
Step1 Merge the population of each component algorithm into primary

population.
Step2 Use non-dominated sorting technique to choose all non-dominated

solutions to construct a primary population.
Denote ݊ as the number of solutions of algorithm ܣ going into
the primary population.

Algorithm 3: Pseudo code of score calculation of each component algorithm.
Step1 Sort ݊ (1 ≤ i ≤ q) in ascending order and denote the sorted index as ݎ.
Step2 ݁ݎܿݏൌ ݎ

Algorithm 4: pseudo code of algorithm selection.

Step1 For j = 1 to q
Construct sub-curves for ܣ.
For each sub-curve l

Least square line fit to get line parameters (a, b).
Predict score at the smallest common future point ݏሺ݃, ݈ሻ.

Use all predicted scores to construct a probability distribution.
Sample the distribution to get ݏ.

Step2 Choose the algorithm ݅ ൌ arg max ݏ .

The primary population is constructed by merging the
population of each component algorithm, and use
non-dominated sorting technique to choose all
non-dominated solutions (Algorithm 2). This makes sure that
the Pareto set is represented faithfully and fully. This has an
advantage over techniques which stores only a fixed number
of solutions (e.g. [16]) or a fixed sized archive (e.g., [17])
since no non-dominated solution is discarded. The
disadvantage is that it involves more computation and
memory.

Initially, our method needs to warm up by running each
component algorithm such that we can obtain an initial
impression about the performance of each component
algorithm. This is realized by running each component
algorithm until it contributes at least one non-dominated
solution in the primary population (steps 1 and 2 of Algorithm
1).

The performance of an algorithm is assessed by computing
a score. This is done by sorting the current number of
non-dominated solutions of each algorithm in ascending

order, which ranks the algorithms – the higher is the rank the
better. The score is then updated by adding the rank
(Algorithm 3).

For each algorithm, a curve of score vs the total number of
evaluations (by all algorithms) is plotted and the method in
[14] is used to predict its performance. The predicted
performance of component algorithms at a common future
point is then compared (step 1 of Algorithm 4). Then the
algorithm with the best predicted performance is chosen (step
2 of Algorithm 4) to run one generation and generate new
solutions (step 6 of Algorithm 1). The new solutions are then
used to update the primary population and the current scores
of all the component algorithms are updated (step 7 of
Algorithm 1). This procedure is repeated for each new
generation until the termination criteria are satisfied.

Note that our portfolio algorithm is parameter-less; it
introduces no control parameters.

IV. EXPERIMENTAL RESULTS
This section presents the experiments conducted on the

thirteen unconstrained test functions from the special session
on performance assessment of multiobjective optimization
algorithms in Congress on Evolutionary Computation 2009
(CEC 2009) [18]. In this test suite, ܨଵ െ are bi-objectiveܨ
functions, ଼ܨ , ଽܨ , and ܨଵ are tri-objective functions, and ܨଵଵ, ଵଷ are five-objective functions. These functionsܨ ଵଶ, andܨ
are designed with complicated Pareto optimal front shapes.

A. Experimental Settings
To study the effectiveness of MultiEA-MO method, we

choose five MOEAs, namely AMOSA [17], generalized
differential evolution 3 (GDE3) [19], multiobjective
differential evolution algorithm (MODEA) [20], MOEA
based on decomposition (MOEA/D) [21], and NSGA-II [16].
These algorithms are chosen because:
1) They are representatives of a diverse set of MOEAs.

AMOSA is a variant of multiobjective simulated
annealing; GDE3 and MODEA are variants of
multiobjective differential evolution (DE); MOEA/D
decomposes a multiobjective problem into a number of
single objective subproblems; NSGA-II is one of the
most famous MOEAs.

2) They excel on different problems. This is observed from
our empirical experience and also can be seen from Table
A1 in Appendix. All five algorithms except GDE3 has
rank 1 (i.e., the best performance) on some functions.

3) They have good performance as reported in associated
papers [16] [17] [19]-[21] and the authors have released
the source code.

The termination condition used in our experiment is: the
algorithm terminates after 25000 function evaluations (FEs)
for bi-objective problems (i.e., ܨଵ െ), while it terminatesܨ
after 50000 FEs for tri- and five-objective problems (i.e., ଼ܨ െ .(ଵଷܨ

The parameter setting of each component algorithm is set
to be the same as reported in the associated papers [16] [17]
[19]-[21].

The inverted generational distance (IGD) performance

1969

measure of CEC 2009 test set is used in this experiment. The
final population or archive with size Np = 100 found by an
algorithm is used to calculate the IGD value, according to
[18]. For our method, we use non-dominated sorting and
crowding distance technique to select the Np solutions. Each
test function is independently run 30 times to obtain an
average performance, according to [18]. The statistics of IGD
values are listed in Table A1 of Appendix. Mann-Whitney U
test (U test) is taken to statistically analyze the results of
algorithms. It is a non-parametric statistical hypothesis test
and a significant level 0.05 is used.

B. Comparing MultiEA-MO with Component Algorithms
B.1 Ranking Comparisons
The mean and standard deviation (std) IGD values of

MultiEA-MO and each component algorithm are reported in
Table A1 of Appendix. The rank table showing the rank of
IGD values of all algorithms is given below in Table I. In this
table, bolded values correspond to the best result amongst all
algorithms.

Table I. Rank table of tested algorithms. We use the following notations for

presenting the result: A1=AMOSA, A2=GDE3, A3=MODEA,
A4=MOEA/D, A5=NSGA-II, and A6=MultiEA-MO.
 A1 A2 A3 A4 A5 A6 ଵ݂ 5 4 3 6 1 2 ଶ݂ 5 4 3 6 2 1 ଷ݂ 4 6 5 3 1 2 ସ݂ 5 6 1 4 3 2 ହ݂ 4 5 3 6 2 1 ݂ 5 4 3 6 2 1 ݂ 5 4 1 6 3 2 ଼݂ 6 4 5 2 1 3 ଽ݂ 3 5 4 6 2 1 ଵ݂ 6 4 2 1 5 3 ଵ݂ଵ 2 5 6 3 4 1 ଵ݂ଶ 2 6 5 3 4 1 ଵ݂ଷ 6 5 2 3 4 1

sum 58 62 43 55 34 21
std 1.391 0.832 1.601 1.833 1.325 0.768

It can be seen from Table I that the proposed MultiEA-MO

method attains rank 1 in seven test functions, while NSGA-II
attains rank 1 in three test functions, MODEA has rank 1 in
two cases, MOEA/D has rank 1 in one case, AMOSA and
GDE3 do not have rank 1 cases. The second last row of Table
I sums up the ranks of each algorithm on all functions. The
last row of this table shows the std value of the ranks of each
algorithm. Clearly, MultiEA-MO obtains the lowest summed
rank and std value compared with the other five algorithms.
Note that the std value of GDE3 is lower than AMOSA,
MODEA, MOEA/D, and NSGA-II, but it is the worst
algorithm in terms of summed ranks on all functions. This
phenomenon indicates that std can measure robustness of
algorithms but it cannot assess the effectiveness of
algorithms.

B.2 Pairwise Comparisons
For a statistical pairwise comparison of algorithms, Table

II shows the p-value computed by U test between
MultiEA-MO and each of the other algorithms. In this table,
cells with dark gray background designates that MultiEA-MO
significantly outperforms another algorithm with 95%

confidence level, while cells with light gray background
means that MultiEA-MO is significantly outperformed by
another algorithm with 95% confidence level. The last row of
Table II shows the counts in “+,=,-” format, where “+” means
test functions in which MultiEA-MO attains significantly
superior performance over another algorithm; “=” indicates
test functions in which there is no significant difference
between MultiEA-MO and another algorithm; “-” indicates
functions in which MultiEA-MO displays significantly
inferior performance compared with another algorithm (95%
confidence level is used).

Table II. p-values computed by U test comparing MultiEA-MO with each of
the five algorithms (AMOSA, GDE3, MODEA, MOEA/D, and NSGA-II).

 AMOSA GDE3 MODEA MOEA/D NSGA-II ଵ݂ 7.221E-06 4.083E-05 2.510E-02 3.018E-11 4.856E-03 ଶ݂ 3.018E-11 6.687E-11 4.075E-11 3.018E-11 7.655E-05 ଷ݂ 1.698E-08 3.018E-11 3.016E-11 1.861E-06 3.352E-08 ସ݂ 3.018E-11 3.016E-11 1.334E-01 3.014E-11 1.493E-01 ହ݂ 3.020E-11 7.736E-06 3.958E-08 3.018E-11 6.524E-07 ݂ 3.690E-11 5.012E-02 4.035E-01 6.066E-11 6.843E-01 ݂ 3.352E-08 5.793E-01 8.563E-04 1.558E-08 2.519E-01 ଼݂ 9.829E-08 3.711E-01 1.858E-01 6.309E-01 3.005E-04 ଽ݂ 2.433E-05 1.070E-09 5.091E-06 3.020E-11 7.199E-05 ଵ݂ 1.028E-06 6.520E-01 2.519E-01 2.398E-01 1.413E-01 ଵ݂ଵ 5.494E-11 3.020E-11 3.020E-11 3.020E-11 3.020E-11 ଵ݂ଶ 2.959E-05 3.020E-11 3.020E-11 3.020E-11 3.020E-11 ଵ݂ଷ 3.020E-11 3.020E-11 3.018E-11 3.020E-11 3.018E-11
 13+,0=,0- 9+,4=,0- 9+,4=,0- 11+,2=,0- 6+,3=,4-

Observed from Table II, MultiEA-MO is significantly

superior to AMOSA in 13 out of 13 test functions. It is
significantly superior to GDE3, MODEA, and MOEA/D in 9,
9, and 11 out of 13 test functions, while MultiEA-MO is not
significantly outperformed by AMOSA, GDE3, MODEA,
and MOEA/D in any test case. MultiEA-MO is significantly
superior to, equal to, and inferior to NSGA-II in 6, 3, and 4
out of 13 test cases, respectively. Thus our method overall
attains slightly better performance than NSGA-II on the
chosen test functions, while it is significantly superior to
AMOSA, GDE3, MODEA, and MOEA/D.

Through the above comparison, we can conclude that our
method is able to combine the strength of component
algorithms and achieves a good and robust performance.
Furthermore, a positive synergy effect is observed from Table
I that our method has seven rank 1 test cases (i.e., ଶ݂, ହ݂, ݂,ଽ݂, ଵ݂ଵ െ ଵ݂ଷ). The synergy effect means that the use of
multiple component algorithms produces better result
(ranking in this case) than using a component algorithm alone.
This is so especially for tri- and five-objective problems.

C. Comparing MultiEA-MO with AMALGAM
To demonstrate the usefulness of the proposed method, it is

compared with AMALGAM, which is one of the successful
multiple method combinations. In this experiment,
AMALGAM is tested using the default parameter setting in
[7]. The IGD values for AMALGAM are reported in
Appendix.

1970

Table III. p-values computed by U test comparing MultiEA-MO with

AMALGAM.
 AMALGAM ଵ݂ 4.218E-03 ଶ݂ 1.438E-10 ଷ݂ 1.994E-08 ସ݂ 6.842E-01 ହ݂ 2.992E-11 ݂ 3.367E-05 ݂ 3.554E-04 ଼݂ 6.013E-07 ଽ݂ 3.159E-10 ଵ݂ 1.244E-05 ଵ݂ଵ 2.992E-11 ଵ݂ଶ 2.992E-11 ଵ݂ଷ 3.018E-11
 10+,1=,2-

The p-values computed by U test are shown in Table III.

The pattern of Table III is similar to that of Table II. In Table
III, MultiEA-MO is significantly superior to, equal to and
inferior to AMALGAM in 10, 1, and 2 test functions.
Specifically, MultiEA-MO vs. AMALGAM on bi-objective
functions ܨଵ െ is 4+, 1=, 2-; the proposed method slightlyܨ
outperforms AMALGAM on these seven functions.
MultiEA-MO vs. AMALGAM on tri- and five-objective
functions ଼ܨ െ ଵଷܨ is 6+, 0=, 0-; the proposed method
performs significantly better than AMALGAM on these six
functions. Thus MultiEA-MO performs much better than
AMALGAM on the harder problems with more objectives.

Fig. 2. Diagram of IGD versus number of function evaluations: ܨଵ.

Fig. 2 shows the curve of IGD value versus number of FEs

of ܨଵ for MultiEA-MO and AMALGAM. Since this is a
synthetic function and its Pareto optimal front is known, we
can calculate IGD values at any time of the evolutionary
process of an algorithm. Seen from Fig. 2, from the start to
about the 13000th FEs, AMALGAM (dotted line) attains
better performance than MultiEA-MO (solid line); while after
about the 13000th FEs MultiEA-MO attains smaller IGD
values than AMALGAM. As claimed in [7], AMALGAM
converges faster which is also verified in Fig. 2, however, our
method converges slower but better in later evolutionary
stages. This is reasonable since AMALGAM utilizes a
common population for component algorithms, when the

common population prematurely converges, AMALGAM
cannot escape from local optima; on the other hand, our
portfolio approach utilizes independent population for
component algorithms, the probability of convergence of
primary population is approximately equal to the product of
the probability of convergence of component algorithms. In
the case that one component algorithm converges to local
optima, the other component algorithms can continue to
search for better solutions. Therefore, our approach
converges slower but better than AMALGAM.

V. CONCLUSIONS
This paper proposes a multiple evolutionary algorithm

portfolio for multiobjective optimization problem
(MultiEA-MO). Note that the idea of algorithm portfolio is
not novel at all [22]. Many successful multiple method or
multiple operator combination techniques have been reported
recently [3]-[7]. However, comparing with these approaches,
our algorithm has the following characteristics:

1) Each component algorithm is run independently. This
avoids the difficult problem of designing effective
communication schemes between component
algorithms that work well in general. Moreover, it
preserves the search philosophy and characteristics of
each component algorithm.

2) The predicted performance at a common future point
is used to select algorithms. Thus algorithms can be
selected as a function of the computational budget
available.

3) Our approach is parameter-less; it does not introduce
any additional control parameter and has the
significant advantage of avoiding the difficult
parameter tuning and control problem [23].

Our method is instantiated by using five multiobjective

evolutionary algorithms (MOEAs), namely AMOSA, GDE3,
MODEA, MOEA/D, and NSGA-II. All unconstrained
functions from CEC 2009 multiobjective optimization
problem competition are taken as benchmarks. Experimental
results show that our method can achieve better and more
robust performance than the five individual component
algorithms both when put together in a ranking contest or
when compared pairwise. Furthermore, the effectiveness of
our algorithm is demonstrated by comparing with
AMALGAM. We also study the convergence behavior in one
case (ܨଵ). Although in this case, AMALGAM converges
faster than our method in the early stages of evolutionary
process, our method can achieve better performance than
AMALGAM in later evolutionary stages. This behavior can
be explained by the use of independent population, which
reduces the overall probability of convergence of the
portfolio.

1971

APPENDIX
Table A1. Mean and standard deviation (std) of IGD values obtained by each

algorithm tested on unconstrained functions of CEC 2009.
 AMOSA GDE3 MODEA MOEA/D ଵ݂ mean 0.1032 0.0979 0.0939 0.2465
 std 0.0151 0.0091 0.0203 0.1028 ଶ݂ mean 0.0583 0.0451 0.0450 0.0920
 std 0.0106 0.0047 0.0039 0.0531 ଷ݂ mean 0.3184 0.3795 0.3754 0.3173
 std 0.0329 0.0105 0.0117 0.0408 ସ݂ mean 0.0845 0.0902 0.0521 0.0776
 std 0.0047 0.0028 0.0033 0.0034 ହ݂ mean 0.3757 0.4408 0.3739 0.5470
 std 0.0943 0.2780 0.1649 0.0834 ݂ mean 0.4293 0.2982 0.2762 0.5890
 std 0.0998 0.1133 0.1322 0.1201 ݂ mean 0.2848 0.1582 0.0524 0.4695
 std 0.1095 0.1381 0.0182 0.1853 ଼݂ mean 0.3767 0.2498 0.2590 0.2040
 std 0.0817 0.0219 0.0290 0.0445 ଽ݂ mean 0.1965 0.2214 0.2061 0.2504
 std 0.0641 0.0345 0.0627 0.0337 ଵ݂ mean 0.5796 0.4665 0.4084 0.3869
 std 0.1105 0.2510 0.1744 0.1728 ଵ݂ଵ mean 0.5558 1.5048 1.7042 1.0757
 std 0.0857 0.1521 0.2124 0.2595 ଵ݂ଶ mean 514.03 2087.25 1690.86 1370.14
 std 178.46 208.02 123.34 270.03 ଵ݂ଷ mean 4.6229 3.4838 1.9241 2.5354
 std 0.2587 0.2594 0.0258 0.4076
 NSGA-II MultiEA-MO AMALGAM ଵ݂ mean 0.0701 0.0832 0.0941
 std 0.0175 0.0152 0.0082 ଶ݂ mean 0.0380 0.0317 0.0432
 std 0.0063 0.0047 0.0040 ଷ݂ mean 0.2218 0.2618 0.3238
 std 0.0188 0.0226 0.0405 ସ݂ mean 0.0539 0.0536 0.0543
 std 0.0020 0.0038 0.0045 ହ݂ mean 0.2622 0.2049 0.3516
 std 0.0772 0.0089 0.1236 ݂ mean 0.2524 0.2329 0.1889
 std 0.1105 0.0490 0.2102 ݂ mean 0.1279 0.1067 0.0501
 std 0.1346 0.0641 0.0117 ଼݂ mean 0.1584 0.2183 0.3049
 std 0.0438 0.0715 0.0239 ଽ݂ mean 0.1960 0.1243 0.4302
 std 0.0582 0.0509 0.1235 ଵ݂ mean 0.4845 0.4180 0.5549
 std 0.1393 0.1078 0.1074 ଵ݂ଵ mean 1.1878 0.3729 2.9390
 std 0.1887 0.0192 0.3058 ଵ݂ଶ mean 1679.72 345.1056 662.28
 std 263.91 60.0262 29.34 ଵ݂ଷ mean 3.2994 1.8136 1.8722
 std 0.1970 0.0044 0.0182

REFERENCES
[1] C. P. Gomes and B. Selman, “Algorithm portfolio design: theory vs.

practice,” in Proceedings of Thirteenth Conference on Uncertainty in
Artificial Intelligence (UAI-97), Morgan Kaufman, Publishers, 1997,
pp. 190-197.

[2] A. S. Fukunaga, “Genetic algorithm portfolios,” in Proceedings of
IEEE Congress on Evolutionary Computation, La Jolla, CA, 2000, pp.
1304-1311.

[3] S. R. Yadav, R. R. M. R. Muddada, M. K. Tiwari, and R. Shankar, “An
algorithm portfolio based solution methodology to solve supply chain
optimization problem,” Expert Systems with Applications, vol. 36, no.
4, pp. 8407-8420, 2009.

[4] S. Srikamdee, S. Rimcharoen, and K. Chinnasarn, “NeuroEAs-Based
algorithm portfolios for classification problems,” in The fourth
International Conference on Knowledge and Smart Technology (KST),
Chonburi, Thailand, 2012, pp. 62-68.

[5] J. A. Vrugt, B. A. Robinson, and J. M. Hyman, “Self-adaptive
multimethod search for global optimization in real-parameter spaces,”
IEEE Transactions on Evolutionary Computation, vol. 13, no. 2, pp.
243-259, 2009.

[6] F. Peng, K. Tang, G. Chen, and X. Yao, “Population-based algorithm
portfolios for numerical optimization,” IEEE Transactions on
Evolutionary Computation, vol. 14, no. 5, pp. 782-800, 2010.

[7] J. A. Vrugt and B. A. Robinson, “Improved evolutionary optimization
from genetically adaptive multimethod search,” Proceedings of the
National Academy of Sciences, vol. 104, no. 3, pp. 708-711, 2007.

[8] A. Zhou, B. Qu, H. Li, S. Zhao, P. N. Suganthan, and Q. Zhang,
“Multiobjective evolutionary algorithms: a survey of the state of the
art,” Swarm and Evolutionary Computation, vol. 1, no. 1, pp. 32–49,
2011.

[9] S. W. Leung, X. Zhang, and S. Y. Yuen, “Multiobjective differential
evolution algorithm with opposition-based parameter control,” in
Proceedings of IEEE Congress on Evolutionary Computation, Jun
2012, pp. 2106-2113.

[10] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan,
and R. Qu, “Hyper-heuristics: a survey of the state of the art,” Journal
of the Operational Research Society, vol. 64, no. 12, pp. 1695-1724,
2013.

[11] P. Cowling, G. Kendall, and L. Han, “An investigation of a
hyperheuristic genetic algorithm applied to a trainer scheduling
problem,” in Proceedings of IEEE Congress on Evolutionary
Computation, Hawaii, USA, 2002, pp. 1185-1190.

[12] J. Grobler, A.P. Engelbrecht, G. Kendall, and V.S.S. Yadavalli,
“Investigating the impact of alternative evolutionary selection
strategies on multi-method global optimization,” in Proceedings of
IEEE Congress on Evolutionary Computation, New Orleans, LA, 2011,
pp. 2337-2344.

[13] K. McClymont and E. C. Keedwell, “Markov chain hyper-heuristic
(MCHH): an online selective hyper-heuristic for multiobjective
continuous problems,” in Proceedings of the 13th Annual Conference
on Genetic and Evolutionary Computation (GECCO’11), 2011, pp.
2003-2010.

[14] S. Y. Yuen, C. K. Chow, and X. Zhang, “Which algorithm should I
choose at any point of the search: an evolutionary portfolio approach,”
in Proceedings of the 14th International Conference on Genetic and
Evolutionary Computation Conference (GECCO’13), Jul 2013, pp.
567-574.

[15] R. Mallipeddi, P. N. Suganthan, Q. K. Pan, and M. F. Tasgetiren,
“Differential evolution algorithm with ensemble of parameters and
mutation strategies,” Applied Soft Computing, vol. 11, no. 2, pp.
1679-1696, 2011.

[16] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[17] S. Bandyopadhyay, S. Saha, U. Maulik, and K. Deb, “A simulated
annealing-based multiobjective optimization algorithm: AMOSA,”
IEEE Transactions on Evolutionary Computation, vol. 12, no. 3, pp.
269-283, 2008.

[18] Q. Zhang, A. Zhou, S. Zhao, P. N. Suganthan, W. Liu, and S. Tiwari,
“Multiobjective optimization test instances for the cec 2009 special
session and competition,” The School of Computer Science and
Electronic Engineering, University of Essex, Tech. Rep. CES-487, Apr.
2008.

[19] S. Kukkonen and J. Lampinen, “Generalized differential evolution for
constrained multi-objective optimization,” in Multi-objective
Optimization in Computational Intelligence: Theory and Practice, L.
T. Bui and S. Alam, Eds. Hershey, New York: Information Science
Reference, 2008, ch. 3, pp. 43–75.

[20] M. Ali, P. Siarry, and M. Pant, “An efficient differential evolution
based algorithm for solving multi-objective optimization problems,”
European Journal of Operational Research, vol. 217, no. 2, pp.
404–416, 2012.

1972

[21] Q. Zhang and H. Li, “MOEA/D: a multiobjective evolutionary
algorithm based on decomposition,” IEEE Transactions Evolutionary
Computation, vol. 11, no. 6, pp. 712–731, 2007.

[22] J. A. Vrugt, B. A. Robinson, and J. M. Hyman, “Comment on paper
“multi-strategy ensemble evolutionary algorithm for dynamic
multi-objective optimization” by Wang and Li,” Memetic Computing,
vol. 2, no. 1, pp. 161-162, 2010.

[23] F. G. Lobo, C. F. Lima, and Z. Michalewicz (eds.), Parameter Setting
in Evolutionary Algorithms, Springer, Berlin, Germany, 2007.

1973

