
 
 

 

  

Abstract— The concept of algorithm portfolio has a long 
history. Recently this concept draws increasing attention from 
researchers, though most of the researches have concentrated 
on single objective optimization problems. This paper is 
intended to solve multiobjective optimization problems by 
proposing a multiple evolutionary algorithm portfolio. Differing 
from previous approaches, each component algorithm in our 
portfolio method has an independent population and the 
component algorithms do not communicate in any way with 
each other. Another difference is that our algorithm introduces 
no control parameters. This parameter-less characteristic is 
desirable as each additional parameter requires independent 
parameter tuning or control. A novel score calculation method, 
based on predicted performance, is used to assess the 
contributions of component algorithms during the optimization 
process. Such information is used by an algorithm selector 
which decides, for each generation, which algorithm to use.  
Experimental results show that our portfolio method 
outperforms individual algorithms in the portfolio. Moreover, it 
outperforms the AMALGAM method. 

I. INTRODUCTION 
HE CONCEPT of algorithm portfolio has a long history. 
Gomes and Selman define that a portfolio of algorithms 

is “a collection of different algorithms and/or different copies 
of the same algorithm running on different processors”[1]. 
They also point out that algorithm portfolio can also be run on 
one single processor. Their target is to solve hard 
combinatorial search problems. Later, researchers try 
algorithm portfolios to solve traveling salesperson problem 
(TSP) [2], supply chain optimization problem [3], 
classification problem [4], single objective real parameter 
optimization problem [5] [6], and multiobjective optimization 
problem (MOP) [7].  

In this paper, we intend to solve MOP by constructing an 
algorithm portfolio. MOP widely exists in the real world (e.g., 
scheduling problem, data mining, chaotic system and so on). 
Usually, it has at least two objectives, and the objectives are 
often in conflict with each other. MOP can be formulated as 
[8] [9]: 

  ݉݅݊ ሻܠሺܨ ൌ ൫ ଵ݂ሺܠሻ, … , ௠݂ሺܠሻ൯்ݏ. .ݐ ܠ א Ω                  (1) 
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where Ω is the decision space and ܠ is a decision vector. ܨሺܠሻ 
consists of m objective functions ௜݂ : Ω ื ܴ, 1 ≤ i ≤ m, and 
the objective space is ܴ௠. 

In MOP, the definitions of Pareto front and Pareto set are 
closely related. Without loss of generality, consider the 
optimization problem as a minimization. A vector ܝ ൌܶ݉ݑ,…,1ݑ is said to weakly dominate another vector ܞ ൌ ሺݒଵ, … , ௠ሻ்ݒ , denoted as ܝ ع ܞ , if and only if א ݅ ׊ሼ1,2, … , ݉ሽ ௜ݑ , ൑ ௜ݒ ܝ .  is said to dominate ܞ , denoted as ܝ ط א ݅ ׊ if and only if ,ܞ ሼ1,2, … , ݉ሽ, ݑ௜ ൑ ௜ݒ  and ܝ ്  .ܞ
A solution כܠ  of problem (1) is called a Pareto optimal 
solution, if and only if ܠ׍ א Ω such that ܨሺܠሻ ط  ሻ. Theכܠሺܨ
set of all Pareto optimal solutions is called Pareto set (PS) 
denoted as: PS ൌ ሼכܠ א Ω|ܠ׍ א Ω, ሻܠሺܨ ط  . ሻሽכܠሺܨ
The mapping of PS in the objective vector space is called the 
Pareto front (PF): PF ൌ ሼܨሺכܠሻ|כܠ א PSሽ . 

Based on the definition of domination, two different 
solutions ܠଵ and ܠଶ have three possible relations: 
 ;ଶ࢞ ଵ dominates࢞ (1
 ;ଶ࢞ ଵ is dominated by࢞ (2
 .ଶ are non-dominated with each other࢞ ଵ and࢞ (3

Since evolutionary algorithms (EAs) are usually designed 
with a population of solutions, they can find a set of Pareto 
optimal solutions in a single run. EAs handling MOP are 
called multiobjective evolutionary algorithms (MOEAs). 
These algorithms have two targets: 1) find a set of 
non-dominated solutions reaching PF as close as possible, 
and 2) maintain diversity of the solutions found such that they 
are uniformly spread out along the PS. Fulfilling the two 
targets, MOEAs could suggest a set of solutions to a 
practitioner such that he can choose the proper solution 
according to his subjective preference. 

It is recognized that MOEAs are often highly tuned for 
particular problem domains and does not work well outside 
the designated domains [1]. Algorithm portfolio approach 
attempts to combine the strength of multiple MOEAs such 
that the resulting portfolio approach can deal with most, if not 
all of the MO problems, thus increasing the robustness of the 
MOEA. 

This paper proposes a novel Multiple Evolutionary 
Algorithm for MO problems (MultiEA-MO). Our portfolio 
approach differs from others in the sense that each MOEA is 
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independent of others. Each MOEA has its own population 
which does not communicate with others (i.e., no migration 
or information sharing of solutions among populations). In 
this way, the communication problems about when to 
communicate and how to implement the communication are 
avoided. Furthermore, with this independence, each MOEA 
can keep its own evolutionary characteristic without being 
influenced by others. Another difference is that our algorithm 
introduces no control parameters. This parameter-less 
characteristic is desirable as each additional parameter 
requires independent parameter tuning or control, which is 
itself a challenging problem to solve. So it would do well if 
one can avoid them altogether and still obtains a good 
performance. As to the selection of which MOEA to run, a 
novel predictor method is used. We propose a scheme to 
calculate the score of each MOEA for estimating the future 
performance of MOEA. Then our predictor method could 
work and decide which MOEA is to be used for the current 
generation. After each generation, the predictor and the 
algorithm selector is invoked again to choose either the same 
or a different algorithm. Thus our MOEA can perform online 
algorithm switching as a function of the computational 
budget. This is desirable as the best EA to run should be a 
function of the budget available.  

This paper is organized as follows. Section II gives a 
review about previous related works. Section III presents the 
proposed method. Section IV reports experimental results. 
The paper is concluded in Section V. 

II. RELATED WORKS 
There are several related research works. For convenience, 

these works are listed in the following categories: 
1) Hyper-heuristic approaches. “The definition of 

hyper-heuristics has been recently extended to refer to a 
search method or learning mechanism for selecting or 
generating heuristics to solve computational search 
problems” [10]. These approaches can be classified into: 
heuristic selection and heuristic generation. The former 
means combining already existing heuristics in a 
higher-level search scheme, while the latter means 
creating new heuristics based on basic components (e.g., 
recombination operators and mutation operators) of 
existing heuristics. Cowling et al. propose an indirect 
genetic algorithm for optimizing a personnel scheduling 
problem [11]. Grobler et al. investigate the use of a set of 
evolutionary algorithms under a hyper-heuristic 
framework through different selection methods [12]. 
McClymont et al. employ a finite Markov chain model to 
adaptively select heuristics for solving MOP [13]. A 
complete and up to date survey of hyper-heuristic 
approaches can be found in [10]. 

2) Multiple algorithm approaches. Fukunaga builds a 
genetic algorithm portfolio for solving TSP [2]. Vrugt et 
al. propose an AMALGAM approach for MOP by 
combining four MOEAs [7]. Later they extend their 
approach to single objective problem [5]. Peng et al. 
propose a population-based algorithm portfolio [6]. This 
approach runs each component algorithm with a part of 
the predefined time budget and then encourages 

interaction amongst component algorithms with a 
migration scheme. Yuen et al. [14] propose an algorithm 
portfolio which for each generation, uses a predictor to 
estimate the performance of each component algorithm 
at a common future and then choose the best predicted 
performance algorithm for running the next generation. 
Burke et al. classify multi-population based approaches 
(e.g., multiple algorithm portfolio approach) as 
hyper-heuristics [10]. Here we would like to present 
them in different categories as they have different 
historical origins and motivations. 

Besides the above, we would like to mention ensemble 
methods. Unlike constructing algorithm portfolio, ensemble 
methods are comprised of multiple operators (i.e., crossover 
operators and mutation operators) [15]. 

III. MULTIEA-MO 
This section presents the proposed MultiEA-MO method 

as well as the pseudo code of the method. 
 

 
Fig. 1. Flow chart of MultiEA-MO method. 

 
Given MOEAs ܣ௜, ݅ ൌ 1, … ,  which we have selected to ,ݍ

compose our portfolio, each ܣ௜  is called a component 
algorithm. It has its own independent population (e.g., 
nondominated sorting genetic algorithm II (NSGA-II) [16]) 
or its own archive (e.g., adaptive multiobjective simulated 
annealing (AMOSA) [17]), depending on the strategy used by 
the original authors, though they have similar functionality 
(i.e., storing a certain number of non-dominated solutions). 
Our method also keeps a population of all non-dominated 
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solutions, which is called primary population.  
Fig. 1 gives the flow chart of the proposed method. 

Algorithm 1-4 shows the pseudo code of the proposed 
portfolio method.  

 
Algorithm 1: Pseudo code of MultiEA-MO method. 

Input Problem ݂ሺ·ሻ, Search space Ω, ܣ௜, ݅ ൌ 1, … ,  .ݍ
Set ݁ݎ݋ܿݏ௜ = 0, ݅ ൌ 1, … ,  .Set generation counter g = 0 .ݍ

Step1 Randomly initialize component algorithms.  
Construct primary population (see Algorithm 2). 

Step2 For i = 1 to q 
Run algorithm ܣ௜ until ݊௜ ൐ 0, such that ܣ௜ has contributed to 
build primary population. 

Step3 Compute score of each component algorithm (see Algorithm 3). 
 g := g+1. 
Step4 While termination criteria are not fulfilled 
Step5 Choose an algorithm ܣ௜ (see Algorithm 4). 
Step6 Algorithm ܣ௜ evolves one generation. 
Step7 Update primary population (see Algorithm 2). 

Update ݁ݎ݋ܿݏ௜, ݅ ൌ 1, … ,  .(see Algorithm 3) ݍ
g := g+1. 

Output Primary population 
 

Algorithm 2: Pseudo code of constructing primary population. 
Step1 Merge the population of each component algorithm into primary 

population. 
Step2 Use non-dominated sorting technique to choose all non-dominated 

solutions to construct a primary population. 
Denote ݊௜ as the number of solutions of algorithm ܣ௜ going into 
the primary population. 

 
Algorithm 3: Pseudo code of score calculation of each component algorithm. 
Step1 Sort ݊௜ (1 ≤ i ≤ q) in ascending order and denote the sorted index as ݎ௜. 
Step2 ݁ݎ݋ܿݏ௜൅ൌ  ௜ݎ

 
Algorithm 4: pseudo code of algorithm selection. 

Step1 For j = 1 to q 
Construct sub-curves for ܣ௝. 
For each sub-curve l 

Least square line fit to get line parameters (a, b). 
Predict score at the smallest common future point ݏ݌ሺ݃, ݈ሻ. 

Use all predicted scores to construct a probability distribution. 
Sample the distribution to get ݏ݌௝. 

Step2 Choose the algorithm ݅ ൌ arg max௝ ௝ݏ݌ . 
 

The primary population is constructed by merging the 
population of each component algorithm, and use 
non-dominated sorting technique to choose all 
non-dominated solutions (Algorithm 2).  This makes sure that 
the Pareto set is represented faithfully and fully. This has an 
advantage over techniques which stores only a fixed number 
of solutions (e.g. [16]) or a fixed sized archive (e.g., [17]) 
since no non-dominated solution is discarded. The 
disadvantage is that it involves more computation and 
memory. 

Initially, our method needs to warm up by running each 
component algorithm such that we can obtain an initial 
impression about the performance of each component 
algorithm. This is realized by running each component 
algorithm until it contributes at least one non-dominated 
solution in the primary population (steps 1 and 2 of Algorithm 
1). 

The performance of an algorithm is assessed by computing 
a score. This is done by sorting the current number of 
non-dominated solutions of each algorithm in ascending 

order, which ranks the algorithms – the higher is the rank the 
better. The score is then updated by adding the rank 
(Algorithm 3).   

For each algorithm, a curve of score vs the total number of 
evaluations (by all algorithms) is plotted and the method in 
[14] is used to predict its performance. The predicted 
performance of component algorithms at a common future 
point is then compared (step 1 of Algorithm 4). Then the 
algorithm with the best predicted performance is chosen (step 
2 of Algorithm 4) to run one generation and generate new 
solutions (step 6 of Algorithm 1). The new solutions are then 
used to update the primary population and the current scores 
of all the component algorithms are updated (step 7 of 
Algorithm 1). This procedure is repeated for each new 
generation until the termination criteria are satisfied.  

Note that our portfolio algorithm is parameter-less; it 
introduces no control parameters.  
 

IV. EXPERIMENTAL RESULTS 
This section presents the experiments conducted on the 

thirteen unconstrained test functions from the special session 
on performance assessment of multiobjective optimization 
algorithms in Congress on Evolutionary Computation 2009 
(CEC 2009) [18]. In this test suite, ܨଵ െ  ଻ are bi-objectiveܨ
functions, ଼ܨ , ଽܨ , and ܨଵ଴  are tri-objective functions, and ܨଵଵ,  ଵଷ are five-objective functions. These functionsܨ ଵଶ, andܨ
are designed with complicated Pareto optimal front shapes. 

A. Experimental Settings 
To study the effectiveness of MultiEA-MO method, we 

choose five MOEAs, namely AMOSA [17], generalized 
differential evolution 3 (GDE3) [19], multiobjective 
differential evolution algorithm (MODEA) [20], MOEA 
based on decomposition (MOEA/D) [21], and NSGA-II [16]. 
These algorithms are chosen because:  
1) They are representatives of a diverse set of MOEAs. 

AMOSA is a variant of multiobjective simulated 
annealing; GDE3 and MODEA are variants of 
multiobjective differential evolution (DE); MOEA/D 
decomposes a multiobjective problem into a number of 
single objective subproblems; NSGA-II is one of the 
most famous MOEAs.  

2) They excel on different problems. This is observed from 
our empirical experience and also can be seen from Table 
A1 in Appendix. All five algorithms except GDE3 has 
rank 1 (i.e., the best performance) on some functions.  

3) They have good performance as reported in associated 
papers [16] [17] [19]-[21] and the authors have released 
the source code.  

The termination condition used in our experiment is: the 
algorithm terminates after 25000 function evaluations (FEs) 
for bi-objective problems (i.e., ܨଵ െ  ଻), while it terminatesܨ
after 50000 FEs for tri- and five-objective problems (i.e., ଼ܨ െ  .(ଵଷܨ

The parameter setting of each component algorithm is set 
to be the same as reported in the associated papers [16] [17] 
[19]-[21].  

The inverted generational distance (IGD) performance 
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measure of CEC 2009 test set is used in this experiment. The 
final population or archive with size Np = 100 found by an 
algorithm is used to calculate the IGD value, according to 
[18]. For our method, we use non-dominated sorting and 
crowding distance technique to select the Np solutions. Each 
test function is independently run 30 times to obtain an 
average performance, according to [18]. The statistics of IGD 
values are listed in Table A1 of Appendix. Mann-Whitney U 
test (U test) is taken to statistically analyze the results of 
algorithms. It is a non-parametric statistical hypothesis test 
and a significant level 0.05 is used.  

B. Comparing MultiEA-MO with Component Algorithms 
B.1 Ranking Comparisons 
The mean and standard deviation (std) IGD values of 

MultiEA-MO and each component algorithm are reported in 
Table A1 of Appendix. The rank table showing the rank of 
IGD values of all algorithms is given below in Table I. In this 
table, bolded values correspond to the best result amongst all 
algorithms.  

 
Table I. Rank table of tested algorithms. We use the following notations for 

presenting the result: A1=AMOSA, A2=GDE3, A3=MODEA, 
A4=MOEA/D, A5=NSGA-II, and A6=MultiEA-MO.  
 A1 A2 A3 A4 A5 A6 ଵ݂ 5 4 3 6 1 2 ଶ݂ 5 4 3 6 2 1 ଷ݂ 4 6 5 3 1 2 ସ݂ 5 6 1 4 3 2 ହ݂ 4 5 3 6 2 1 ଺݂ 5 4 3 6 2 1 ଻݂ 5 4 1 6 3 2 ଼݂  6 4 5 2 1 3 ଽ݂ 3 5 4 6 2 1 ଵ݂଴ 6 4 2 1 5 3 ଵ݂ଵ 2 5 6 3 4 1 ଵ݂ଶ 2 6 5 3 4 1 ଵ݂ଷ 6 5 2 3 4 1 

sum 58 62 43 55 34 21 
std 1.391 0.832 1.601 1.833 1.325 0.768 

 
It can be seen from Table I that the proposed MultiEA-MO 

method attains rank 1 in seven test functions, while NSGA-II 
attains rank 1 in three test functions, MODEA has rank 1 in 
two cases, MOEA/D has rank 1 in one case, AMOSA and 
GDE3 do not have rank 1 cases. The second last row of Table 
I sums up the ranks of each algorithm on all functions. The 
last row of this table shows the std value of the ranks of each 
algorithm. Clearly, MultiEA-MO obtains the lowest summed 
rank and std value compared with the other five algorithms. 
Note that the std value of GDE3 is lower than AMOSA, 
MODEA, MOEA/D, and NSGA-II, but it is the worst 
algorithm in terms of summed ranks on all functions. This 
phenomenon indicates that std can measure robustness of 
algorithms but it cannot assess the effectiveness of 
algorithms. 

B.2 Pairwise Comparisons 
For a statistical pairwise comparison of algorithms, Table 

II shows the p-value computed by U test between 
MultiEA-MO and each of the other algorithms. In this table, 
cells with dark gray background designates that MultiEA-MO 
significantly outperforms another algorithm with 95% 

confidence level, while cells with light gray background 
means that MultiEA-MO is significantly outperformed by 
another algorithm with 95% confidence level. The last row of 
Table II shows the counts in “+,=,-” format, where “+” means 
test functions in which MultiEA-MO attains significantly 
superior performance over another algorithm; “=” indicates 
test functions in which there is no significant difference 
between MultiEA-MO and another algorithm; “-” indicates 
functions in which MultiEA-MO displays significantly 
inferior performance compared with another algorithm (95% 
confidence level is used). 

 
Table II. p-values computed by U test comparing MultiEA-MO with each of 
the five algorithms (AMOSA, GDE3, MODEA, MOEA/D, and NSGA-II). 

 AMOSA GDE3 MODEA MOEA/D NSGA-II ଵ݂ 7.221E-06 4.083E-05 2.510E-02 3.018E-11 4.856E-03 ଶ݂ 3.018E-11 6.687E-11 4.075E-11 3.018E-11 7.655E-05 ଷ݂ 1.698E-08 3.018E-11 3.016E-11 1.861E-06 3.352E-08 ସ݂ 3.018E-11 3.016E-11 1.334E-01 3.014E-11 1.493E-01 ହ݂ 3.020E-11 7.736E-06 3.958E-08 3.018E-11 6.524E-07 ଺݂ 3.690E-11 5.012E-02 4.035E-01 6.066E-11 6.843E-01 ଻݂ 3.352E-08 5.793E-01 8.563E-04 1.558E-08 2.519E-01 ଼݂ 9.829E-08 3.711E-01 1.858E-01 6.309E-01 3.005E-04 ଽ݂ 2.433E-05 1.070E-09 5.091E-06 3.020E-11 7.199E-05 ଵ݂଴ 1.028E-06 6.520E-01 2.519E-01 2.398E-01 1.413E-01 ଵ݂ଵ 5.494E-11 3.020E-11 3.020E-11 3.020E-11 3.020E-11 ଵ݂ଶ 2.959E-05 3.020E-11 3.020E-11 3.020E-11 3.020E-11 ଵ݂ଷ 3.020E-11 3.020E-11 3.018E-11 3.020E-11 3.018E-11 
 13+,0=,0- 9+,4=,0- 9+,4=,0- 11+,2=,0- 6+,3=,4- 

 
Observed from Table II, MultiEA-MO is significantly 

superior to AMOSA in 13 out of 13 test functions. It is 
significantly superior to GDE3, MODEA, and MOEA/D in 9, 
9, and 11 out of 13 test functions, while MultiEA-MO is not 
significantly outperformed by AMOSA, GDE3, MODEA, 
and MOEA/D in any test case. MultiEA-MO is significantly 
superior to, equal to, and inferior to NSGA-II in 6, 3, and 4 
out of 13 test cases, respectively. Thus our method overall 
attains slightly better performance than NSGA-II on the 
chosen test functions, while it is significantly superior to 
AMOSA, GDE3, MODEA, and MOEA/D.  

Through the above comparison, we can conclude that our 
method is able to combine the strength of component 
algorithms and achieves a good and robust performance. 
Furthermore, a positive synergy effect is observed from Table 
I that our method has seven rank 1 test cases (i.e., ଶ݂, ହ݂, ଺݂,ଽ݂, ଵ݂ଵ െ ଵ݂ଷ ). The synergy effect means that the use of 
multiple component algorithms produces better result 
(ranking in this case) than using a component algorithm alone.  
This is so especially for tri- and five-objective problems. 

C. Comparing MultiEA-MO with AMALGAM 
To demonstrate the usefulness of the proposed method, it is 

compared with AMALGAM, which is one of the successful 
multiple method combinations. In this experiment, 
AMALGAM is tested using the default parameter setting in 
[7]. The IGD values for AMALGAM are reported in 
Appendix.  
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Table III. p-values computed by U test comparing MultiEA-MO with 

AMALGAM. 
 AMALGAM ଵ݂ 4.218E-03 ଶ݂ 1.438E-10 ଷ݂ 1.994E-08 ସ݂ 6.842E-01 ହ݂ 2.992E-11 ଺݂ 3.367E-05 ଻݂ 3.554E-04 ଼݂  6.013E-07 ଽ݂ 3.159E-10 ଵ݂଴ 1.244E-05 ଵ݂ଵ 2.992E-11 ଵ݂ଶ 2.992E-11 ଵ݂ଷ 3.018E-11 
  10+,1=,2- 

 
The p-values computed by U test are shown in Table III. 

The pattern of Table III is similar to that of Table II. In Table 
III, MultiEA-MO is significantly superior to, equal to and 
inferior to AMALGAM in 10, 1, and 2 test functions. 
Specifically, MultiEA-MO vs. AMALGAM on bi-objective 
functions ܨଵ െ  ଻ is 4+, 1=, 2-; the proposed method slightlyܨ
outperforms AMALGAM on these seven functions. 
MultiEA-MO vs. AMALGAM on tri- and five-objective 
functions ଼ܨ െ ଵଷܨ  is 6+, 0=, 0-; the proposed method 
performs significantly better than AMALGAM on these six 
functions. Thus MultiEA-MO performs much better than 
AMALGAM on the harder problems with more objectives. 

 

 
Fig. 2. Diagram of IGD versus number of function evaluations: ܨଵ.  

 
Fig. 2 shows the curve of IGD value versus number of FEs 

of ܨଵ  for MultiEA-MO and AMALGAM. Since this is a 
synthetic function and its Pareto optimal front is known, we 
can calculate IGD values at any time of the evolutionary 
process of an algorithm. Seen from Fig. 2, from the start to 
about the 13000th FEs, AMALGAM (dotted line) attains 
better performance than MultiEA-MO (solid line); while after 
about the 13000th FEs MultiEA-MO attains smaller IGD 
values than AMALGAM. As claimed in [7], AMALGAM 
converges faster which is also verified in Fig. 2, however, our 
method converges slower but better in later evolutionary 
stages. This is reasonable since AMALGAM utilizes a 
common population for component algorithms, when the 

common population prematurely converges, AMALGAM 
cannot escape from local optima; on the other hand, our 
portfolio approach utilizes independent population for 
component algorithms, the probability of convergence of 
primary population is approximately equal to the product of 
the probability of convergence of component algorithms. In 
the case that one component algorithm converges to local 
optima, the other component algorithms can continue to 
search for better solutions. Therefore, our approach 
converges slower but better than AMALGAM. 

V. CONCLUSIONS 
This paper proposes a multiple evolutionary algorithm 

portfolio for multiobjective optimization problem 
(MultiEA-MO). Note that the idea of algorithm portfolio is 
not novel at all [22]. Many successful multiple method or 
multiple operator combination techniques have been reported 
recently [3]-[7]. However, comparing with these approaches, 
our algorithm has the following characteristics: 

1) Each component algorithm is run independently. This 
avoids the difficult problem of designing effective 
communication schemes between component 
algorithms that work well in general. Moreover, it 
preserves the search philosophy and characteristics of 
each component algorithm.  

2) The predicted performance at a common future point 
is used to select algorithms. Thus algorithms can be 
selected as a function of the computational budget 
available. 

3) Our approach is parameter-less; it does not introduce 
any additional control parameter and has the 
significant advantage of avoiding the difficult 
parameter tuning and control problem [23]. 

 
Our method is instantiated by using five multiobjective 

evolutionary algorithms (MOEAs), namely AMOSA, GDE3, 
MODEA, MOEA/D, and NSGA-II. All unconstrained 
functions from CEC 2009 multiobjective optimization 
problem competition are taken as benchmarks. Experimental 
results show that our method can achieve better and more 
robust performance than the five individual component 
algorithms both when put together in a ranking contest or 
when compared pairwise. Furthermore, the effectiveness of 
our algorithm is demonstrated by comparing with 
AMALGAM. We also study the convergence behavior in one 
case (ܨଵ ). Although in this case, AMALGAM converges 
faster than our method in the early stages of evolutionary 
process, our method can achieve better performance than 
AMALGAM in later evolutionary stages. This behavior can 
be explained by the use of independent population, which 
reduces the overall probability of convergence of the 
portfolio. 
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APPENDIX 
Table A1. Mean and standard deviation (std) of IGD values obtained by each 

algorithm tested on unconstrained functions of CEC 2009. 
  AMOSA GDE3 MODEA MOEA/D ଵ݂ mean 0.1032 0.0979 0.0939 0.2465 
 std 0.0151 0.0091 0.0203 0.1028 ଶ݂ mean 0.0583 0.0451 0.0450 0.0920 
 std 0.0106 0.0047 0.0039 0.0531 ଷ݂ mean 0.3184 0.3795 0.3754 0.3173 
 std 0.0329 0.0105 0.0117 0.0408 ସ݂ mean 0.0845 0.0902 0.0521 0.0776 
 std 0.0047 0.0028 0.0033 0.0034 ହ݂ mean 0.3757 0.4408 0.3739 0.5470 
 std 0.0943 0.2780 0.1649 0.0834 ଺݂ mean 0.4293 0.2982 0.2762 0.5890 
 std 0.0998 0.1133 0.1322 0.1201 ଻݂ mean 0.2848 0.1582 0.0524 0.4695 
 std 0.1095 0.1381 0.0182 0.1853 ଼݂  mean 0.3767 0.2498 0.2590 0.2040 
 std 0.0817 0.0219 0.0290 0.0445 ଽ݂ mean 0.1965 0.2214 0.2061 0.2504 
 std 0.0641 0.0345 0.0627 0.0337 ଵ݂଴ mean 0.5796 0.4665 0.4084 0.3869 
 std 0.1105 0.2510 0.1744 0.1728 ଵ݂ଵ mean 0.5558 1.5048 1.7042 1.0757 
 std 0.0857 0.1521 0.2124 0.2595 ଵ݂ଶ mean 514.03 2087.25 1690.86 1370.14 
 std 178.46 208.02 123.34 270.03 ଵ݂ଷ mean 4.6229 3.4838 1.9241 2.5354 
 std 0.2587 0.2594 0.0258 0.4076 
  NSGA-II MultiEA-MO AMALGAM  ଵ݂ mean 0.0701 0.0832 0.0941  
 std 0.0175 0.0152 0.0082  ଶ݂ mean 0.0380 0.0317 0.0432  
 std 0.0063 0.0047 0.0040  ଷ݂ mean 0.2218 0.2618 0.3238  
 std 0.0188 0.0226 0.0405  ସ݂ mean 0.0539 0.0536 0.0543  
 std 0.0020 0.0038 0.0045  ହ݂ mean 0.2622 0.2049 0.3516  
 std 0.0772 0.0089 0.1236  ଺݂ mean 0.2524 0.2329 0.1889  
 std 0.1105 0.0490 0.2102  ଻݂ mean 0.1279 0.1067 0.0501  
 std 0.1346 0.0641 0.0117  ଼݂  mean 0.1584 0.2183 0.3049  
 std 0.0438 0.0715 0.0239  ଽ݂ mean 0.1960 0.1243 0.4302  
 std 0.0582 0.0509 0.1235  ଵ݂଴ mean 0.4845 0.4180 0.5549  
 std 0.1393 0.1078 0.1074  ଵ݂ଵ mean 1.1878 0.3729 2.9390  
 std 0.1887 0.0192 0.3058  ଵ݂ଶ mean 1679.72 345.1056 662.28  
 std 263.91 60.0262 29.34  ଵ݂ଷ mean 3.2994 1.8136 1.8722  
 std 0.1970 0.0044 0.0182  
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