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Abstract—Penalty functions are widely used in constrained
optimization, but determining optimal penalty parameters or
weights turns out to be a difficult optimization problem itself.
The paper proposes a hyper-heuristic approach, which searches
the optimal penalty weight setting for low-level heuristics, taking
the performance of those heuristics with specialized penalty
weight settings as feedback to adjust the high-level search. The
proposed approach can either be used for merely improving low-
level heuristics, or be combined into a common hyper-heuristic
framework for constrained optimization. Experiments on a set of
well-known benchmark problems show that the hyper-heuristic
approach with penalty parameter adaptation is effective in both
aspects.

I. INTRODUCTION

Taking inspiration from natural evolution processes, evo-
lutionary algorithms (EAs) are a class of heuristic methods
for solving complex optimization problems which typically
have non-convex and highly nonlinear solution spaces, and
which are otherwise computationally difficult to solve by con-
ventional mathematical programming methods [1]. However,
an aspect normally disregarded when using them for opti-
mization (a rather common trend) is that these algorithms are
typically unconstrained optimization procedures, and therefore
it is necessary to find ways of incorporating the constraints
(normally existing in any real-world application) into their
fitness functions [2].

In this paper we consider the general constrained continu-
ous optimization problem formulated as follows:

min f(x) (1)
s.t. xi ≤ xi ≤ xi, i = 1, ..., n (2)

gj(x) ≤ 0, j = 1, ...,m (3)

where x ∈ ℝ
n is the decision vector, Eq. (1) defines the objec-

tive function (which is usually nonlinear), Eq. (2) defines the
lower and upper bounds of each dimension of the vector, and
Eq. (3) defines j inequality constraints (equality constraints
can be approximated by inequality constraints).

There have been different methods proposed for handling
constraints in evolutionary optimization, including penalty
functions, special representations and/or operators, repair pro-
cedures, separation of objectives and constraints, and hybrid
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methods [2]. Among them, penalty functions, due to their
simplicity, are the oldest and the most widely used approach in
constraint handling [3]. The common formulation of penalties
transforms a constrained optimization problem into an uncon-
strained one with the following new objective function:

min f(x) + w0

m∑
j=1

wj(pj(x))
α (4)

where wj are the penalty weights, pj(x) = max(0, gj(x))
are the constraint violations (0 ≤ j ≤ m), and β is the
exponent often set to 1 or 2. Typically, we denote ϕ(x) =
m∑
j=1

wj(pj(x))
α as the penalty function.

Several researchers have studied heuristics on the design of
penalty functions, and probably the most well-known of these
studies is that conducted by Richardson et al. [4] from which
the following guidelines were derived:

1) Penalties which are functions of the distance from
feasibility are better performers than those which
are merely functions of the number of violated con-
straints.

2) For a problem having few constraints and few full
solutions, penalties which are solely functions of the
number of violated constraints are not likely to find
solutions.

3) Good penalty functions can be constructed from two
quantities: the maximum completion cost and the
expected completion cost (the completion cost is the
cost of making feasible an infeasible solution).

4) Penalties should be close to the expected completion
cost, but should not frequently fall below it. The
more accurate the penalty, the better will be the
solution found. When a penalty often underestimates
the completion cost, then the search may fail to find
a solution.

However, in practice, these guidelines are often difficult to
follow [2], i.e., it is difficult to find the optimal penalty weights
to balance the objective function and constraint violations for
a given problem. As pointed out by Runarsson and Yao [5],
if the weights are too small, an infeasible solution may not
be penalized enough and hence may be evolved by EA; if
they are too large, a feasible solution is very likely to be
found, but could be of very poor quality. The critical issue
here is how much exploration of infeasible regions should be
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considered as reasonable, and the answer to this question is
problem dependent.

Hyper-heuristics are approaches “using heuristics to choose
or generate heuristics” [6]. That is, a hyper-heuristic operates
on the search space of heuristics rather than directly on the
search space of the underlying problem, using feedback of the
low-level heuristics to adjust the “hyper” search process, and
thus increasing not only the performance but also the level of
generality on a variety of problems. In recent years, hyper-
heuristics have attracted increasing attention and have been
successfully applied to many real-world optimization problems
[7]–[9].

However, until now, most research on hyper-heuristics
focuses on the selection or generation of low-level heuristics
operating on the solutions to the given problem, and few
studies have looked at heuristics operating on other com-
ponents of EAs. In this paper, we propose a novel hyper-
heuristic approach that operates on low-level heuristics on
the design of penalty functions. That is, our approach uses a
metaheuristic EA to search the optimal penalty weight setting
for low-level heuristics on constrained optimization, taking
the performance of those heuristics with specialized penalty
weight settings as feedback to adjust the high-level search.
To the best of our knowledge, this is the first study that
considers the penalty parameter adaptation in the context of
hyper-heuristics. Computational experiments indicate that the
proposed approach is very competitive on a set of well-known
benchmark problems.

The rest of this paper is organized as follows: Section
II describes some related work, Section III proposes our
hyper-heuristic approach with penalty parameter adaptation for
constrained optimization. Section IV presents the experimental
results, and Section V concludes with discussion.

II. RELATED WORK

In recent years, hyper-heuristics have been applied to
a variety of problems including bin packing [10]–[12], job
shop scheduling [13], [14] and project scheduling [15], [16],
timetabling [17], [18], etc., most of which are combinatorial
optimization problems.

Terashima-Marı́n et al. [19] presented a genetic algorithm
(GA) based hyper-heuristic for the dynamic variable ordering
in constraint satisfaction problems (CSP). The GA uses a
variable-length representation and evolves combinations of
condition-action rules (representing problem states) to go
through a learning process (including training and testing)
and produce efficient heuristics for the problem. For variable
and value ordering in binary CSP, Bittle and Fox [20] used
a symbolic cognitive architecture, augmented with constraint
based reasoning as the hyper-heuristic machine learning frame-
work. The approach seeks to minimize the number of low-level
heuristics encoded yet dramatically expand the expressiveness
of the hyper-heuristic by encoding the constituent measures of
each heuristic, thereby providing more opportunities to achieve
improved solutions.

Hyper-heuristics is used not only for producing a heuristic
for controlling other heuristics, but also for generating new

heuristics [9]. Ortiz-Bayliss et al. [21] studied the use of learn-
ing classifier systems (e.g., neural networks) to generate hyper-
heuristics for variable ordering within CSP. During a training
phase, the system constructs state-heuristic rules as it explores
the search space, and heuristics with good performance at
certain points are rewarded and become more likely to be
applied in similar situations.

Up to now, the research on hyper-heuristics for constrained
continuous optimization is relatively few. Villela Tinoco and
Coello Coello [22] proposed a differential evolution (DE) [23]
based hyper-heuristic for solving such problems. The approach
adopts twelve DE models as low-level heuristics and four
selection mechanisms for choosing the low-level heuristics. In
the approach, constraints are handled by stochastic ranking [5]
which can provide information to the mutation operator about
the most appropriate direction of movement.

Most research on hyper-heuristics focuses on the manip-
ulation of low-level heuristics for evolving the solutions to
the given problem, neglecting other adaptable components of
EAs such as initialization, parameterization, and population
topologies. Recently, observing that the parameterization of the
low-level heuristics poses great challenges to hyper-heuristics,
Ren et al. [24] developed a hyper-heuristic framework with
adaptive low-level parameters. In the framework, high-level
search consists of two modules for managing the low-level
heuristics and the low-level parameters respectively and si-
multaneously. A case study of the p-median problem shows
that the approach is able to achieve competitive results with
the state-of-the-art methods.

III. HYPER-HEURISTICS WITH LOW-LEVEL PENALTY
PARAMETER ADAPTATION

As mentioned above, in constrained optimization, deciding
an optimal set of penalty weights can be a difficult optimization
problem itself. Thus it is natural to incorporate the low-
level penalty parameter adaptation into the context of hyper-
heuristics.

The main idea of the proposed penalty-parameter-
adaptation hyper-heuristic approach (denoted by PPA-HH) is
very simple: it considers the setting of penalty weights as
an (m + 1)-dimensional continuous optimization problem,
where m is the number of constraints, and each weight vector
w = (w0, w1, ..., wm) determines a penalty function in Eq. (4)
of the underlying problem.

As illustrated in Fig. 1, suppose that hyper-heuristic e-
volves K penalty weight vectors, at each generation we can
derive K versions of unconstrained optimization problems
P1, P2, ..., PK for the underlying constrained problem, and
use up to K low-level heuristics each for solving one un-
constrained version. Typically, the best solution obtained by
each low-level heuristic for the underlying problem is used
for evaluating the fitness of the corresponding weight vector
for the hyper-heuristic.

The PPA-HH can use any metaheuristic for continuous
optimization to explore the (m + 1)-dimensional high-level
search space, taking the performance of low-level heuristics
equipped with different weight vectors as feedback. Algorithm
1 presents the generic framework of PPA-HH.
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Fig. 1. The structure of the proposed PPA-HH, which evolves a set of penalty
weight vectors used by low-level heuristics (LLH).

Without loss of generality, except for the outside penalty
coefficient w0, the search range of other m weight components
w1, ..., wm can all be bounded to [0,1]. According to empirical
tests, giving a large enough range for w0 also works; but here
we employ a more effective strategy that transforms the search
range by replacing w0 with another variable w′ such that:

w0 = w′ × gβ (5)

where g is the current generation number of the corresponding
low-level heuristic and β is a constant larger than 1. Under this
schema, we find that it is also appropriate to set the search
range of w′ to [0,1] in practice, and consequently the real
search range of w0 dynamically increases with generation, as
suggested in [25].

Algorithm 1 The generic framework of PPA-HH.
1 Randomly initialize a population W of weight vectors;
2 initialize a low-level heuristic h;
3 while stop criterion is not satisfied do
4 for each w ∈ W do
5 Assign w to h;
6 Run h evolve one or more solutions to the problem;
7 Evaluate the achievement of h as the fitness of w;
8 Use the high-level heuristic to update the weight vectors;
9 return the best known solution.

Note that Algorithm 1 is a very general framework. The
low-level heuristic h can be a population-based EA, or an
algorithm operating on a single solution (such as tabu search).
To appropriately evaluate the fitness of the weight vectors, it is
important to make each run of the low-level heuristic consume
the same computational resource, e.g., the same allowable
generations. Typically, before and after each run of h with a
specified w, we respectively record the current best solutions
of h, the objective values of which are denoted as fh and f ′h.
Then the achievement of this run of h can be evaluated as:

ah = gγ(fh − f ′h) (6)

where γ is a coefficient usually set to 1 or 0.5. The calculation
of the achievement does not need any additional evaluation of
the objective function of the underlying problem.

It should be noted that, fh and f ′h should be evaluated based
on the original objective function (1) rather than the penalized
objective function (4). That is, if a run of h does not find a
new better feasible solution, its achievement is considered as
zero.

The PPA-HH can also be combined with any common
hyper-heuristic (denoted by C-HH) that operates on a set of
solution-oriented low-level heuristics. In such a hybrid hyper-
heuristic framework, the C-HH operates in a similar way as
most of the existing hyper-heuristics, while the PPA-HH op-
timizes the penalty weight setting for each low-level heuristic
independently. Algorithm 2 presents the generic framework of
a hybrid C-HH and PPA-HH approach.

Algorithm 2 The generic framework of C-HH combined with
PPA-HH.
1 Prepare a set H of low-level heuristics to the problem;
2 Initialize a population Q of low-level heuristic sequences;
3 Initialize a population W of weight vectors;
4 while stop criterion is not satisfied do
5 for each q ∈ Q do
6 for each w ∈ W do
7 Assign w to q;
8 Run q to evolve one or more solutions to the problem;
9 Evaluate the achievement of q as the fitness of w;

10 Use the PPA-HH to update W;
11 Evaluate the performance of q;
12 Use the C-HH to update Q;
13 return the best known solution.

Note that Lines 6-11 of Algorithm 2 can be executed in
parallel for each low-level heuristic sequence q, as long as the
C-HH is parallelized. In this case, a set of PPA-HH instances
simultaneously optimize the penalty weight settings for each
q ∈ Q.

IV. NUMERICAL EXPERIMENTS

A. The Selection of PPA-HH

Generally speaking, any heuristic method for continuous
optimization can be used for the considered high-level penalty
parameter adaptation problem. However, to limit the additional
cost incurred by the high-level search, the following guidelines
are suggested for the selection of the hyper-heuristic for PPA-
HH:

∙ If the hyper-heuristic is population based, it should
perform well with a relatively small population size.
Otherwise, a large number of inner loops (Lines 5-7 in
Algorithm 1 or Lines 7-9 in Algorithm 2) can prolong
the period of penalty weight update and thus decrease
the algorithm efficiency.

∙ The exploration (global search) ability is more impor-
tant than the exploitation (local search) ability of the
hyper-heuristic, because the evaluation of the penalty
weight fitness is itself stochastic and not very accurate.

∙ The hyper-heuristic itself should not involve too many
control parameters and complex internal adjustment
mechanisms.

According to the above considerations, here we employ
the comprehensive learning particle swarm optimizer (CLPSO)
[26] as the PPA-HH for evaluating our approach. CLPSO is
one of the most prominent PSO methods, which replaces the
velocity updating equation in basic PSO [27], [28] with the
following one:

v
j
i = w ⋅ vj

i + c ⋅ rand(0, 1) ⋅ (pbestjf(i) − x
j
i ) (7)
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where xi and vi are respectively the ith particle’s position
vector and velocity vector, w and c are two parameters named
inertial weight and learning coefficient, and pbestf(i) is the
history best position of the f(i)-th particle, which is chosen
for each dimension j of xi by the following procedure [26]:

1) Generate a random number uniformly distributed in
[0,1]. If the number is less than a predefined self-
learning probability Pi, let f(i) be ı itself.

2) Otherwise, randomly choose two weight vectors from
the population, compare the fitness values of their
personal bests, and select the better one as f(i).

3) If all the exemplars of xi are its own, randomly
choose one dimension to learn from the correspond-
ing dimension of the personal best of another ran-
domly selected weight vector.

And the self-learning probability Pi of xi is calculated as
follows (where NP denotes the population size):

Pi = 0.05 + 0.45
exp

(
10k

NP−1
)

exp(10)− 1
(8)

In PPA-HH, the jth dimension of the position of ith weight
vector is denoted by w

j
i . Moreover, we simplify and improve

the CLPSO by combining its velocity updating equation and
position updating equation into the following one (inspired by
the bare bones PSO [29]):

w
j
i = N(

pbest
j
f(i) +w

j
i )

2
, ∣pbestjf(i) −w

j
i ∣)

where N(µ, σ2) is a Gaussian random number with mean µ
and standard deviation σ2.

B. Benchmark Problems and Experimental Settings

To evaluate our PPA-HH approach, we select a set of well-
known benchmark constrained optimization problems from
[30] and [5], which cover various types of objective functions:
linear, quadratic, cubic, polynomial and nonlinear, and the ratio
between the size of the feasible search space and the size
of the whole search space varies from 0% to nearly 99%.
Table I presents a summary of the benchmark problems. For
these problems, we consider a solution as a feasible one if(∑m

j=1 max(0, gj(x))
)
≤ δ, where δ is set to 10−8 in our

experiments.

The experiments are conducted on a computer of Intel Core
i5-2520M processor and 4GB DDR3 memory. For our CLPSO-
based PAA-HH, we set α = 1, β = 2 and γ = 0.5. The
population size NP is set to 10 for problems g01 and g07, and
5 for the other problems. The maximum allowable number
of generations for each run of the low-level heuristic is set
to 5. As the stop criterion, the maximum number of function
evaluations (nfe) is set to 300,000 for all the problems.

C. Evaluation of Single PPA-HH

We first evaluate the performance of the single PPA-HH
approach on the test problems. The low-level heuristic is the
basic DE algorithm [23]. At each generation, DE generates for
each individual xi in the population a mutant vector vi, and
then generates a trial vector ui is by mixing the components

TABLE I. THE SUMMARY OF THE BENCHMARK TEST PROBLEMS.

Problem n m f(x∗)

g01 13 9 -15.00000
g02 20 2 -0.803600
g03 10 1 -1.00000
g04 5 6 -30665.53900
g05 4 5 5126.49810
g06 2 2 -6961.81388
g07 9 8 24.30621
g08 2 2 -0.09583
g09 7 4 680.63006
g10 3 6 7049.33070
g11 2 1 0.75000
g12 3 1 -1.00000
g13 5 3 0.0539498

of the mutant vector and the original one, and finally selects
the fitter one between ui and xi into the next generation. Here
we equip PPA-HH with the simple DE/rand/1/bin method that
uses the following mutation operator:

vi = xr1 + F ⋅ (xr2 − xr3) (9)

where F is a scaling factor in the range [0,1], and r1, r2 and
r3 are three mutually exclusive random indexes in [1,NP].

For comparison, we implement the modified constrained
differential evolution algorithm (mCDE) [31], which uses the
global competitive ranking method [32] for constraint han-
dling. The method gives ranks to each individual xi based on
its objective function fi and constraint violation ζi, separately,
and calculates the fitness of xi as:

ΦGR(xi) = Pf
Ii,f − 1

NP− 1
+ (1− Pf )

Ii,ζ − 1

NP− 1
(10)

where Ii,f and Ii,ζ are the ranks of point xi based on fi and
ζi, respectively, and Pf is the probability that the fitness is
calculated based on fi. As suggested by [31], here we set
Pf = 0.45.

mCDE also uses self-adaptive parameter mechanisms for
the scaling factor and crossover rate, and a mixture of
DE/rand/1/bin (9) and the following DE/best/1/bin mutation
scheme:

vi = xbest + F ⋅ (xr1 − xr2) (11)

where xbest denotes the best solution vector in the population.
Based on above strategies, mCDE has shown performance
advantages over some state-of-the-art metaheuristics.

We run Both PAA-HH and mCDE 60 times on each
problem. Table II presents the experimental results of the 13
problems. As we can see, although using one of the simplest
form of DE as the low-level heuristic, our PPA-HH approach
shows obvious performance advantage over the mCDE that
employs more complex mutation operators and constraint-
handling techniques. PPA-HH reaches the best known solutions
on 7 problems, while mCDE only does so on 2 problems, i.e.,
g01 and g13. In fact, except on g01 and g13 the two methods
always reach the optimum, both the median and mean values
of PAA-HH are always better than that of mCDE on the other
11 problems.
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Moreover, we conduct nonparametric Wilcoxon rank sum
test on the results of PPA-HH and mCED, and present the p-
values in the last column of Table II. The test results show
that, except on g01 and g13 there is no statistical difference
between PPA-HH and mCED, on the remaining 11 problems
PPA-HH always has statistical performance improvement over
mCDE.

D. Evaluation of C-HH Combined with PPA-HH

Next, we evaluate the performance of the hybrid C-HH
and PPA-HH approach. Here we choose hypDE [22] as the
C-HH, which adopts twelve different DE models as low-
level heuristics, and uses the stochastic ranking method [5]
for constraint handling. The method uses a bubble-sort-like
procedure where NP individuals are ranked by comparing
adjacent individuals in at least NP sweeps, and the probability
of an adjacent individual winning a comparison is:

Pw = PfPfw + (1− Pf )Pϕw (12)

where Pfw and Pϕw are probabilities of the individual winning
according to the objective function and the penalty function,
respectively, and Pf is the probability of using only the objec-
tive function for comparison (Pf = 1 if both the individuals
are feasible).

To construct the hybrid hyper-heuristic method, we remove
the original constraint handling mechanism from hypDE,
and then embed the CLPSO-based PPA-HH into hypDE,
as described in Algorithm 2. The low-level heuristics
include DE/rand/1/bin, DE/best/1/bin, DE/rand/2/bin,
DE/best/2/bin, DE/current-to-rand/1/bin, DE/current-to-
best/1/bin, DE/rand/1/exp, DE/best/1/exp, DE/rand/2/exp,
DE/best/2/exp, DE/current-to-rand/1/exp, and DE/current-to-
best/1/exp [23].

We run the hybrid C-HH and PPA-HH method 60 times
on the 13 test problems. For the original hypDE method, the
results are directly taken from [22]. Table II compares the
results of the hypDE with and without PPA-HH.

As we can see from the results, the hybrid C-HH and PPA-
HH reaches the best known solutions on 9 problems, while
the single C-HH only does so on 6 problems, i.e., g01, g04,
g06, g08, g09, and g12. As shown by the Wilcoxon rank sum
test results, except on these 6 problems there is no statistical
difference between the two methods, on the remaining 7
problems the hybrid C-HH and PPA-HH always has significant
performance improvement over the single C-HH. Moreover, in
terms of either median or mean values, the single C-HH never
obtains a better result than the hybrid approach on any test
problem.

In summary, from the two series of experiments, we
find that our PPA-HH approach can effectively improve not
only the performance of a single metaheuristic optimization
algorithm, but also the performance of other common hyper-
heuristic methods. This demonstrates that the proposed penalty
parameter adaptation hyper-heuristic is a very useful approach
for constrained optimization problems.

V. CONCLUSIONS

Hyper-heuristics of solution-oriented low-level heuristics
have been widely investigated in the literature. However,
research on hyper-heuristics for optimizing other aspects of
low-level heuristics is very few. In this paper, we propose a
hyper-heuristic approach for penalty parameter adaptation of
low-level heuristics for constrained optimization. Our approach
uses a high-level heuristic to search the optimal penalty weight
setting, taking the performance of low-level heuristics with
different penalty weights as feedback. Computational experi-
ments demonstrate that the proposed approach is very effective
in improving either a metaheuristic or a hyper-heuristic for
constrained optimization.

In this paper, our PPA-HH is only implemented with
the CLPSO, and used for penalty parameter adaptation of
low-level DE-based heuristics. We are currently testing more
other state-of-the-art metaheuristics as the high-level search
methods, as well as integrating the PPA-HH into other common
hyper-heuristic frameworks. Our ongoing work also including
validating the solution accuracy of PPA-HH by comparing
with offline methods such as automatic algorithm configuration
methods [33].

This study focuses on the hyper-heuristic for penalty pa-
rameter adaptation. Except penalty functions, there are also
other efficient methods for constraint handling, such as special
representations and operators, repair procedures, stochastic
ranking, multiobjectivization, etc. Thus, our future work also
include developing a higher-level hyper-heuristic approach
which can adaptively choose and/or combine these different
constraint handling methods.
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TABLE II. THE EXPERIMENTAL RESULTS OF THE SINGLE PPA-HH AND THE MCDE.

mCDE PPA-HH
# best median mean std best median mean std p-value

g01 -15.00000 -15.00000 -15.00000 0.00E+00 -15.00000 -15.00000 -15.00000 0.00E+00 1
g02 -0.80360 -0.80103 -0.80083 3.10E-03 -0.80360 -0.80168 -0.80151 9.17E-04 1.92E-15†

g03 -1.0000 -0.99997 -0.99996 5.24E-05 -0.99999999 -0.99999997 -0.99999995 3.93E-08 2.09E-24†

g04 -30665.538720 -30665.53852 -30665.53869 5.02E-05 -30665.53900 -30665.53900 -30665.53900 0.00E+00 6.05E-20†

g05 5126.49826 5126.49854 5126.49863 7.29E-04 5126.49810 5126.49818 5126.49819 6.98E-05 5.05E-04†

g06 -6961.80973 6953.15337 -6950.25752 5.06E+01 -6961.81388 -6961.81388 -6961.81388 0.00E+00 1.25E-18†

g07 24.30656 24.30692 24.30687 5.81E-04 24.30628 24.30631 24.30630 3.10E-05 1.39E-09†

g08 -0.09582 -0.09582 -0.09582 1.89E-06 -0.09583 -0.09583 -0.09583 0.00E+00 2.75E-16†

g09 680.63008 680.63016 680.63021 4.80E-05 680.63006 680.63006 680.63006 0.00E+00 1.08E-18†

g10 7052.68216 7056.31318 7055.92677 8.37E+00 7049.35056 7050.00206 7050.05808 8.59E-01 3.09E-08†

g11 0.75000 0.75106 0.75093 1.60E-03 0.75000 0.75048 0.75030 7.07E-04 2.62E-06†

g12 -1.00000 -0.9999995 -0.9999993 6.96E-07 -1.00000 -1.00000 -1.00000 0.00E+00 5.25E-08†

g13 0.05395 0.05395 0.05395 0.00E+00 0.05395 0.05395 0.05395 0.00E+00 1

1‘best’ denotes the best of the objective function values obtained among all runs, ‘median’ and ‘mean’ respectively denote the a median and
average of the best objective function value over the 60 runs, ‘std’ denotes the standard deviation, and ‘p-value’ denotes the result of paired
t-test between the two method. The value in boldface indicates that the algorithm reaches the best known solution of the problem. In the last
column, † indicates that the PPA-HH has statistically significant improvement over the mCDE (at 95% confidence level).

TABLE III. THE EXPERIMENTAL RESULTS OF THE hypDE WITH AND WITHOUT PPA-HH.

hypDE hypDE with PPA-HH
Problem best median mean std best median mean std p-value
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g02 -0.80148 -0.80146 -0.80144 4.67E-03 -0.80360 -0.80338 -0.80303 5.22E-05 8.09E-12†

g03 -0.9999999 -0.9999997 -0.9999997 7.05E-07 -0.99999999 -0.99999999 -0.99999998 1.02E-08 1.03E-20†

g04 -30665.53900 30665.53900 -30665.53900 0.00E+00 -30665.53900 -30665.53900 -30665.53900 0.00E+00 1
g05 5126.49810 5151.32067 5171.09695 1.42E+02 5126.49810 5126.49810 5126.49810 0.00E+00 3.08E-03†

g06 -6961.81400 -6961.81400 -6961.81400 0.00E+00 -6961.81400 -6961.81400 -6961.81400 0.00E+00 1
g07 24.30627 24.30630 24.30649 7.54E-04 24.30622 24.30623 24.30626 3.10E-05 7.15E-05†

g08 -0.09583 -0.09583 -0.09583 0.00E+00 -0.09583 -0.09583 -0.09583 0.00E+00 1
g09 680.63006 680.63006 680.63006 0.00E+00 680.63006 680.63006 680.63006 0.00E+00 1
g10 7049.55589 7085.07333 7103.02420 8.82E+01 7049.33880 7049.35006 7049.36901 1.25E-02 1.33E-03†

g11 0.75000 0.82663 0.89979 1.18E-01 0.75000 0.75000 0.75000 0.00E+00 2.82E-12†
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2‘best’ denotes the best of the objective function values obtained among all runs, ‘median’ and ‘mean’ respectively denote the a median and
average of the best objective function value over the 60 runs, ‘std’ denotes the standard deviation, and ‘p-value’ denotes the result of paired
t-test between the two method. The value in boldface indicates that the algorithm reaches the best known solution of the problem. In the
last column, † indicates that the hypDE with PPA-HH has statistically significant improvement over the hypDE without PPA-HH (at 95%
confidence level).
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