
Comparative Analysis of Classical Multi-Objective
Evolutionary Algorithms and Seeding Strategies for

Pairwise Testing of Software Product Lines

Roberto E. Lopez-Herrejon∗, Javier Ferrer†, Francisco Chicano†,
Alexander Egyed∗ and Enrique Alba†

∗ Software Systems Engineering
Johannes Kepler University Linz, Austria

Email: {roberto.lopez, alexander.egyed}@jku.at
†Universidad de Málaga, Andalucı́a Tech, Spain

Email:{chicano, ferrer, eat}@lcc.uma.es

Abstract—Software Product Lines (SPLs) are families of
related software products, each with its own set of feature
combinations. Their commonly large number of products poses
a unique set of challenges for software testing as it might not
be technologically or economically feasible to test of all them
individually. SPL pairwise testing aims at selecting a set of
products to test such that all possible combinations of two features
are covered by at least one selected product. Most approaches for
SPL pairwise testing have focused on achieving full coverage of
all pairwise feature combinations with the minimum number of
products to test. Though useful in many contexts, this single-
objective perspective does not reflect the prevailing scenario
where software engineers do face trade-offs between the objectives
of maximizing the coverage or minimizing the number of products
to test. In contrast and to address this need, our work is the
first to propose a classical multi-objective formalisation where
both objectives are equally important. In this paper, we study
the application to SPL pairwise testing of four classical multi-
objective evolutionary algorithms. We developed three seeding
strategies – techniques that leverage problem domain knowledge
– and measured their performance impact on a large and
diverse corpus of case studies using two well-known multi-
objective quality measures. Our study identifies the performance
differences among the algorithms and corroborates that the more
domain knowledge leveraged the better the search results. Our
findings enable software engineers to select not just one solution
(as in the case of single-objective techniques) but instead to
select from an array of test suite possibilities the one that best
matches the economical and technological constraints of their
testing context.

I. INTRODUCTION

Software Product Lines (SPLs) are families of related
software products, where each product provides a unique
combination of features – increments in program functionality
[1]. Some of the proven benefits of SPLs are increased
software reuse, faster product customization, and reduced time
to market [2]. Feature Models (FMs) are the de facto standard
to represent all the valid feature combinations of an SPL [3].
The typically large number of feature combinations in a SPL
poses a unique set of challenges for software testing because
testing each individual product may not be technically or
economically feasible.

Recent surveys and mapping studies on SPL testing [4], [5],

attest the increasing relevance of the topic within the research
and industrial SPL communities. Salient among the existing
approaches are those based on Combinatorial Interaction Test-
ing (CIT), whose premise is to select a group of products where
faults due to feature interactions are more likely to occur [6].
In the SPL context, most of the focus has been on pairwise
testing, that is, on the four possible combinations between any
two features1. The pairwise feature combinations of a product
determine its coverage. Thus, pairwise SPL testing aims to
select a set of products, referred to as test suite, such that their
combined coverage contains all the possible pairwise feature
combinations of the SPL.

Many SPL pairwise testing approaches have been pro-
posed (e.g. [7], [8], [9], [10], [11], [12], [13], [14], [15]).
However, these approaches regard SPL pairwise testing as
an optimization problem where either coverage (maximize)
or test suite size (minimize) are considered the main op-
timization objective. While this single-objective perspective
might be enough for certain limited contexts, it does not
capture the more prevailing scenario where, for instance, it
might not be feasible or desirable to test all the products
of a test suite, or for example when both coverage and test
suite size are of equal importance. Thus, the multi-objective
perspective enables software developers to analyse the trade-
offs between their objectives (sometimes conflicting) and select
the test suites that best match their technical and economical
constraints. Unfortunately, those pieces of work that have
explored a multi-objective perspective in the realm of SPL
testing (i.e. [16] and [17]) do use a scalarization technique
that flattens all objectives into a single objective by assigning
them weights; an approach with proven limitations [18].

In this paper we study the application to SPL pairwise test-
ing of four classical multi-objective evolutionary algorithms:
NSGA-II [19], MOCell [20], SPEA2 [21], and PAES [22].
These four algorithms have been extensively and successfully
applied to a large number of problem domains and include
a diverse set of techniques and concepts of multi-objective
evolutionary algorithms. Thus, our first research question is
stated as follows: RQ1. What is the best algorithm among

1For A and B features: both selected, both not selected, A selected and B
not, A not selected and B selected.

387

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

these four for multi-objective SPL pairwise testing?

Furthermore, we analyze the impact of seeding, defined
by Fraser and Arcuri as any technique that exploits previous
related knowledge to help the testing problem at hand [23],
on the performance of these algorithms. We developed three
different seeding strategies that respectively exploit the knowl-
edge of: i) the size of test suites, ii) greedily-generated tests
suites, and iii) the actual test suites obtained using an existing
single-objective pairwise testing approach. Hence, our second
research question is stated as follows: RQ2. How does seeding
impact the quality of the solutions obtained by the four
algorithms?

For the evaluation we selected 19 feature models, from
diverse problem domains, from different provenance sources,
and with different structural characteristics. We compared the
performance of the four algorithms on the selected models
with the three seeding strategies using two well-known quality
indicator measures commonly employed in the multi-objective
community, Hypervolume [24] and Generational Distance [25].
In short, our statistical analysis reveals that the third seed-
ing strategy, the one that exploits more domain knowledge,
performs better for both of the comparison measures, and
identifies the performance differences among the algorithms.

In summary, in the context of SPL pairwise testing our
work is the first to: i) formalise the SPL pairwise testing
problem for classical multi-objective approaches, ii) compare
classical multi-objective evolutionary algorithms, iii) employ
well-known multi-objective quality indicators, iv) study the
impact of seeding, and v) evaluate a large and diverse corpus
of feature models.

II. BACKGROUND

In this section, we concisely layout the necessary back-
ground where the contributions of this paper take place.

A. Feature Models and Running Example

Feature models have become the de facto standard for
modelling the common and variable features of an SPL and
their relationships collectively forming a tree-like structure.
The nodes of the tree are the features which are depicted as
labelled boxes, and the edges represent the relationships among
them. Feature models denote the set of feature combinations
that the products of an SPL can have [3].

Figure 1 shows the feature model of our running example,
the Graph Product Line (GPL) [26], a standard SPL of basic
graph algorithms that has been widely used as a case study in
the product line community. In GPL, a product is a collection
of algorithms applied to directed or undirected graphs.

In a feature model, each feature (except the root) has one
parent feature and can have a set of child features. A child
feature can only be included in a feature combination of a valid
product if its parent is included as well. The root feature is
always included. There are four kinds of feature relationships:
i) Mandatory features are selected whenever their respective
parent feature is selected. They are depicted with a filled
circle. For example, features Driver and Algorithms, ii)
Optional features may or may not be selected if their respective
parent feature is selected. An example is feature Search,

Fig. 1: Graph Product Line Feature Model

iii) Exclusive-or relations indicate that exactly one of the
features in the exclusive-or group must be selected whenever
the parent feature is selected. They are depicted as empty arcs
crossing over a set of lines connecting a parent feature with
its child features. For instance, if feature Search is selected,
then either feature DFS or feature BFS must be selected, iv)
Inclusive-or relations indicate that at least one of the features
in the inclusive-or group must be selected if the parent is
selected. They are depicted as filled arcs crossing over a set
of lines connecting a parent feature with its child features. As
an example, when feature Algorithms is selected then at
least one of the features Num, CC, SCC, Cycle, Shortest,
Prim, and Kruskal must be selected.

Besides the parent-child relations, features can also relate
across different branches of the feature model with the so
called Cross-Tree Constraints (CTC). Figure 1 shows the CTCs
of our feature model in textual form. For instance, Num
requires Search means that whenever feature Num is
selected, feature Search must also be selected. These con-
straints as well as those implied by the hierarchical relations
between features are usually expressed and checked using
propositional logic, for further details refer to [27].

B. Combinatorial Interaction Testing in SPLs

Combinatorial Interaction Testing (CIT) is a testing ap-
proach that constructs samples to drive the systematic testing of
software system configurations [28], [6]. When applied to SPL
testing, the idea is to select a representative subset of products
where interaction errors are more likely to occur rather than
testing the complete product family [28]. In this section we
provide the basic terminology of CIT for SPLs2.

Definition 1: Feature list. A feature list (FL) is the list of
features in a feature model.

Definition 2: Feature set. A feature set fs is a 2-tuple
[sel,sel] where fs.sel and fs.sel are respectively the
set of selected and not-selected features of a SPL product.
Let FL be a feature list, thus sel,sel ⊆FL, sel∩sel = ∅,
and sel∪sel=FL. Wherever unambiguous we use the term
product as a synonym of feature set.

Definition 3: Valid feature set. A feature set fs is valid
with respect to a feature model fm iff fs.sel and fs.sel
do not violate any constraints described by fm. The set of all
valid feature sets represented by fm is denoted as FSfm.

2Definitions based on [27] and [12].

388

GPL has 73 distinct feature sets. An example of
valid feature set fs1 is one that computes the algorithm
Number, on Directed graphs using BFS search. Thus,
the selected features are fs1.sel={GPL, Driver,
Benchmark, GraphType, Directed, Search,
BFS, Algorithms, Number}3. Consider now another
feature set fs2 with selected features BFS and Cycle,
meaning {BFS,Cycle} ⊆ fs2.sel. This feature set is
invalid because these two features violate the CTC that
establishes that whenever Cycle feature is selected then
feature DFS must be selected, i.e. Cycle requires DFS.

The focus of our paper is pairwise testing, thus our concern
is on the combinations between two features. The coming
definitions are consequently presented with that perspective;
however, the generalization to combinations of any number of
features is straightforward.

Definition 4: Pair. A pair ps is a 2-tuple [sel,sel]
involving two features from a feature list FL, that is, ps.sel∪
ps.sel ⊆ FL ∧ ps.sel∩ps.sel = ∅ ∧ |ps.sel∪ps.sel| = 2. We
say pair ps is covered by feature set fs iff ps.sel ⊆ fs.sel
∧ ps.sel ⊆ fs.sel.

Definition 5: Valid pair. A pair ps is valid in a feature
model fm if there exists a valid feature set fs that covers ps.
The set of all valid pairs of a feature model fm is denoted
with VPSfm.

Let us illustrate pairwise testing with GPL. Some exam-
ples of pairs are: GPL and Search selected, Weight and
Undirected not selected, CC not selected and Driver
selected. An example of invalid pair, i.e. not denoted by the
feature model, is features Directed and Undirected both
selected. Notice that this pair is not valid because they are part
of an exclusive-or relation.

Definition 6: Pairwise test suite. A pairwise test suite
pts for a feature model fm is a set of valid feature sets of
fm. A pairwise test suite is complete if it covers all the valid
pairs in VPSfm, that is:
{fs|∀ps ∈ VPSfm ⇒ ∃fs ∈ FSfm such that fs covers ps}.

In GPL there is a total of 418 valid pairs, so a complete
pairwise test suite for GPL must have all these pairs covered
by at least one feature set. Henceforth, because of our focus
and for sake of brevity we will refer to pairwise test suites
simply as test suites.

C. Multi-Objective Optimization

There exists a wealth of literature in the context of Evolu-
tionary Multi-Objective Optimization [29] and the application
of Search-Based Software Engineering (SBSE) to software
testing [30]. Our work is the first to cast CIT SPL pairwise
testing as a multi-objective optimization problem and use
multi-objective classical algorithms. Our definitions are based
on [31], [32], [33], which we adapt to our context of pairwise
testing for two objectives.

Definition 7: Decision space. The decision space is the
set of possible solutions to an optimization problem. In our
context, it corresponds to the set of all possible sets of valid

3Unselected features omitted for brevity.

feature sets represented by a feature model fm, denoted as
DSfm = P(FSfm). A decision vector is an element
of the decision space, that is x ∈ DSfm.

Definition 8: Objective functions. An objective function
is a function that represents a goal to optimize. In our context
we consider two functions:

• Coverage function. Recall that we want to maximize
the number of pairs covered by a test suite. For
simplicity, we use the alternative of minimizing the
number of pairs not covered which is defined as
follows:

ffm
1 : DSfm → N,
ffm
1 (x) = |VPSfm\covers(x)|,

where covers computes the pairs covered by the
feature sets of test suite x.

• Test suite size function. Recall that we want to mini-
mize the number of feature sets in the test suite. We
define this function as follows:

ffm
2 : DSfm → N,
ffm
2 (x) = |x|.

Definition 9: Vector function. A vector function associ-
ated to a feature model fm is defined as4:

F fm : DSfm → OSfm
F fm(x) = (ffm

1 (x), ffm
2 (x))

where OS is the corresponding objective space which
in our context is OSfm = N× N.

Definition 10: Objective vector. An objective vector is the
result of applying the vector function to an element of the
decision space. Let x ∈ DSfm, its objective vector u is defined
as: u = F fm(x) = (ffm

1 (x), ffm
2 (x)).

Pareto dominance is the most commonly accepted notion
of superiority in multi-objective optimization because it is the
canonical generalization of the single-objective case [31].

Definition 11: Pareto dominance. Let x, y ∈ DSfm,
u = F fm(x) = (u1, u2), and v = F fm(y) = (v1, v2)
for a feature model fm. We say that objective vector u
Pareto-dominates objective vector v iff u 4 v and
v � u. Intuitively u 4 v means that u is better than v

if there is at least one objective i for which ffm
i (x) is

better than ffm
i (y), and there are no objectives for which it

is worse. More formally, for the two functions we want to
minimize in our context: u 4 v iff (u1 < v1 ∧ u2 < v2) or
(u1 < v1 ∧ u2 = v2) or (u1 = v1 ∧ u2 < v2).

Definition 12: Multi-Objective SPL pairwise testing
problem. A multi-objective pairwise SPL testing problem for a
feature model fm is a 4-tuple (DSfm,OSfm, F fm,4) whose
goal is to find a decision vector x∗ ∈ DSfm such that it
minimizes vector function F fm.

Definition 13: Pareto optimal decision vector. A decision
vector x ∈ DSfm is Pareto optimal iff it does not exist another
y ∈ DSfm such that Pareto-dominates it, that is F (y) 4 F (x).

Definition 14: Pareto optimal set. The Pareto optimal set
P fm
∗ of a multi-objective pairwise SPL testing problem for

4For notational brevity we omit on the vector function and the objective
vectors the T that denotes the transpose on vectors.

389

feature model fm and its vector function F fm is:
P fm
∗ = {x ∈ DSfm|¬∃x′ ∈ DSfmsuch that F (x′) 4

F (X)}.
Definition 15: Pareto front. For a given multi-objective

pairwise SPL testing problem for feature model fm and
a Pareto optimal set P fm

∗ , the Pareto front is defined as:
PF fm
∗ = F fm(P fm

∗).

III. MULTI-OBJECTIVE ALGORITHMS

In this section we describe the four multi-objective algo-
rithms our analysis compares and sketch their representation
and operators used.

A. Algorithms Analyzed

We selected the following four algorithms because they
have been extensively and successfully applied to a large
number of problem domains and represent a diverse set of
techniques and concepts of multi-objective evolutionary algo-
rithms:

• Non-dominated Sorting Genetic Algorithm (NSGA-
II), builds a population of individuals which are ranked
and sorted according to nondomination level. It was
proposed in [19], and has become a reference algo-
rithm in multi-objective optimization.

• Multi-Objective Cellular Genetic Algorithm (MOCell)
introduced by Nebro et al. [20], is a cellular genetic
algorithm (cGA). In cGAs, the concept of (small)
neighbourhood is paramount. This means that an
individual may only cooperate with its nearby neigh-
bours in the breeding loop. Some studies have shown
MOCell to outperform NSGA-II in concrete domains
e.g. [34], [20].

• Strength Pareto Evolutionary Algorithm (SPEA2)was
proposed by Zitler et al. in [21]. SPEA2 uses a popu-
lation and an archive simultaneously in its operation.

• Pareto Archived Evolution Strategy (PAES) is a meta-
heuristic proposed in [22] by Knowles and Corne.
The algorithm is based on a simple (1+1) evolution
strategy. To find diverse solutions in the Pareto optimal
set, PAES uses an external archive of non-dominated
solutions, which is also used to make decisions about
new candidate solutions.

B. Notes on Representation and Operators

The multi-objective algorithms have been implemented
using jMetal [35], a Java framework aimed at the development,
experimentation, and study of metaheuristics for solving multi-
objective optimization problems. All algorithms use the same
representation for an individual, which is a set of products,
and also the same variation operators. We have used binary
tournament as the selection scheme. This operator works by
randomly choosing two individuals from the population and the
one dominating the other is selected; if both solutions are non-
dominated one of them is randomly selected. The crossover
operator, which is executed with probability 0.8, takes two
solutions, S1 and S2, then one cross-point is randomly selected
in both solutions generating two parts per solution S1a -

S1b and S2a - S2b. Finally, two new individuals are created
S1′(S1a − S2b) and S2′(S2a − S1b). The mutation operator is
executed with probability 0.1. It generates ten valid products,
then the product that adds more coverage to the solution is
added. The product that adds more coverage to the solution
is known because we apply the mutation before applying the
recombination. This order of the variation operators allow us
to take advantage of the information collected in the evaluation
of the individual. If the resulting individual has the same
coverage and more test products, at the end of the iteration, the
algorithms delete it from the population because this solution
is dominated.

IV. SEEDING STRATEGIES

The impact that seeding strategies have on the performance
of evolutionary algorithms has been documented for instance
in Paul et al. [36]. Recall that the ultimate goal of a seeding
strategy is to embed domain knowledge into the individuals
of the population such that this knowledge is exploited when
searching for solutions. Consequently, the strategies are also
domain dependent. There are seeding strategies for engineering
problems [37], positioning problems [38], timetabling prob-
lems [39], to cite a few examples.

In the field of software testing, seeding has also been used.
For example, Alba and Chicano [40] used seeding in order
to provide some individuals that were able to execute the
predicates of the branches they should cover. In a recent work,
Fraser and Arcuri [23] compare different seeding strategies and
conclude that an improvement in the performance is achieved
with statistical significance when a seeding strategies is used.
It should be noted though that none of these pieces of work
addresses seeding in the realm of SPL testing. To the best
of our knowledge, our work is the first to explore this issue.
Our focus is on measuring the impact of seeding the initial
population (the first solution in PAES) of the four classical
algorithms described in Section III. Next we explain the three
seeding strategies that we study.

A. Size-Based Random Seeding

The size-based random seeding strategy (SB) leverages the
knowledge of the size of known complete test suites. In our
case, we used solutions generated by the algorithm CASA [9],
at the core of the third seeding strategy which we explain
shortly in Section IV-C. We must stress that this strategy
uses from the known complete test suites only their size. We
summarize this strategy with the following code snippet, where
fm is a feature model and n is the size of the population to
seed:

seed := CASA(fm)

population := sizeBasedRandom(size(seed), n, fm)

Algorithm 1 sketches how this strategy works. It receives
as input the size of the test suite to generate as seed (the
number of features sets of a known complete test suite), the
size of the population to generate, and a feature model. The
core of the algorithm is a loop (Lines 5-8) that constructs a
seed test suite (of the size of a known test suite) by randomly
selecting valid feature sets from a feature model (Line 6). Once
the seed test suite is computed, it is passed to algorithm

390

seedPopulation (Line 9), sketched on Algorithm 2, to
generate a population of the desired size which is returned.

Algorithm 1 Size-Based Random Seeding Strategy.
1: proc sizeBasedRandom
2: Input: seedSize:int, populationSize:int, fm:feature model
3: Output: population: set of test suite
4: seed← ∅
5: for i ← 1 ... seedSize do
6: featureSet←RandomFeatureSets(fm)
7: seed←seed ∪ featureSet
8: end for
9: population←seedPopulation(seed, populationSize)

10: return population

Algorithm 2 uses the seed test suite that it receives as
input to generate a population of a given size. It creates the
new test suites by randomly removing feature sets from the
population seed (Line 6). This algorithm is also used by the
other two seeding strategies.

Algorithm 2 Seed Population.
1: proc seedPopulation
2: Input: seed:test suite, populationSize:int
3: Output: population:set of test suite
4: population← ∅
5: for i ← 1 ... populationSize do
6: testSuite← RemoveFeatureSets(seed)
7: population← population ∪ testSuite
8: end for
9: return population

B. Greedy Seeding

The greedy seeding strategy (GS), Algorithm 3, generates
of a single seed test suite with complete coverage from
which it seeds a population. Thus, this strategy leverages the
knowledge of the feature sets that are part of a complete test
suite. To create a seed, we use a constructive approach that
selects on each iteration the best feature set (Line 9) out of 100
randomly generated ones (Lines 7-10) until complete coverage
is reached (Line 6). Once the seed test suite is computed, it is
passed to algorithm seedPopulation (Line 13), sketched
on Algorithm 2, to generate a population of the desired size
which is then returned. We summarize this strategy with the
following code snippet, where fm is a feature model and n is
the size of the population to seed:

population := greedySeeding(n, fm)

Algorithm 3 Greedy Seeding Strategy.
1: proc greedySeeding
2: Input: populationSize:int, fm:feature model
3: Output: population:set of test suite
4: seed← ∅
5: bestFS← ∅
6: while not Total Coverage(seed) do
7: for i ← 1 100 do
8: newFS←RandomFeatureSets(fm)
9: bestFS← ChooseBest(bestFS, newFS)

10: end for
11: seed← seed ∪ bestFS
12: end while
13: population←seedPopulation(seed, populationSize)
14: return population

C. Single-objective Based Seeding

The single-objective based seeding strategy (SO) consists
in using a complete test suite computed by a single-objective
algorithm to seed a population. Thus, this strategy leverages
knowledge of test suites computed by existing single-objective
SPL testing approaches. For the task of generating test suites
we chose CASA, a simulated annealing algorithm that was
designed to generate n-wise covering arrays for SPLs [9].
CASA relies on three nested search strategies. The outermost
search performs one-sided narrowing, pruning the potential
size of the test suite to be generated by only decreasing the
upper bound. The mid-level search performs a binary search
for the test suite size. The innermost search strategy is the
actual simulated annealing procedure, which tries to find a
pairwise test suite of size N for feature model FM. We selected
CASA because in our previous work it performed better than
other techniques and it is well-known in both search-based and
SPL research communities. For more details on CASA and its
comparison with other approaches please refer to [9], [41].

First, we performed 30 independent runs per feature model
because CASA is a non-deterministic algorithm. Then, we
randomly chose one of the solutions for seeding the population.
Do notice that we used the same solution of CASA for seeding
all the multi-objective algorithms in order to make a fair
comparison among them. We summarize this strategy with the
following code snippet, where fm is a feature model and n is
the size of the population to seed:

population := seedPopulation(CASA(fm), n)

V. EVALUATION

In this section we describe how the evaluation was carried
out, the quality indicators used, the description of the study
corpus, and the results obtained and analysis performed.

A. Feature Models Corpus

The experimental corpus of our evaluation is formed with
19 feature models. These models have two important charac-
teristics to make our results directly applicable by software
engineers. First, that the feature models are associated to
actual SPLs whose code is publicly available or can be made
accessible by request to the corresponding authors. This is
important so that testing can be carried out on the SPL code.
Second, that the feature models are explicitly and directly
provided by the SPL authors, rather than, for instance, reverse-
engineered from other artefacts. This is important because
it guarantees that all the feature combinations are correctly
captured in the feature models. We searched into three main
SPL related websites: SPL Conqueror [42], FeatureHouse [43],
and SPL2go [44]. In addition, we looked at recently published
articles within the SPL community. For the management and
analysis of feature models, we relied on three frameworks:
SPLAR [45], FAMA [46], and SPLCA [47]. These tools
in turn, imposed additional constraints to the selection of
our corpus5. Table I summarizes the feature models used in
our evaluation. It shows the number of features, number of
products, and their application domain with the source where

5For example, the type of CTCs that FAMA can analyze.

391

TABLE I: Feature Models Summary

Feature Model NF NP PF Domain
Apache 10 256 6 web server [42]
argo-uml-spl 11 192 6 UML tool [49]
BDB* 117 32 NA database [43]
BDBFootprint 9 256 6 database [42]
BDBMemory 19 3,840 NA database [42]
BDBPerformance 27 1,440 NA database [42]
Curl 14 1024 NA data trasfer [42]
DesktopSearcher 22 462 8 file search [44]
fame dbms fm 20 320 6 database [44]
gpl 18 73 12 graph algorithms [26]
LinkedList 27 1,344 NA data structures [42]
LLVM 12 1,024 NA compiler library [42]
PKJab 12 72 6 messenger [42]
Prevayler 6 32 6 object persistence [42]
SensorNetwork 27 16,704 NA networking [42]
TankWar 37 1,741,824 NA game [43]
Wget 17 8,192 NA file retrieval [42]
x264 17 2,048 NA video encoding [42]
ZipMe 8 64 6 data compression [42]

NF: Number of Features, NP:Number of Products,
PF: Pareto Front size, NA if not available.
*BDB prefix stands for Berkeley database.

we obtained them from. Additionally, we provide the size of
the Pareto front6, if known.

B. Experimental Setting

This section describes how the evaluation was carried
out. The four algorithms we analyzed are heuristic, thus we
performed 30 independent runs for a meaningful statistical
analysis. In order to measure the performance of the multi-
objective algorithms used here, the quality of their resulting
nondominated set of solutions has to be considered. In addition
to the two objective functions defined in Section II-C, coverage
and products, we selected two well-known quality indicators
that are commonly used in the multi-objective community to
compare the approximated Pareto fronts of several algorithms7

Hypervolume (HV) [24] and Generational Distance (GD) [25].
In addition to these quality measures, we have also analyzed
the time required to run the multi-objective algorithms and
obtain the Pareto front, since we want the algorithms to be
as fast as possible. All the executions were run in a cluster
of 16 machines with Intel Core2 Quad processors Q9400 (4
cores per processor) at 2.66 GHz and 4 GB memory running
Ubuntu 12.04.1 LTS and managed by the HT Condor 7.8.4
cluster manager. Since we have 4 algorithms, 3 different
seeding strategies, and 19 feature models the total number of
independent runs is 4 × 3 × 19 × 30 = 6, 840. The stopping
criterion was 1,000 evaluations. The sources and data of our
work are available at [41].

C. Experimental Results

This section presents the statistical analysis performed and
the results obtained.

1) Wilcoxon Test: In order to check if the differences
between the algorithms are statistically significant or just a
matter of chance, we applied the non-parametric Wilcoxon
rank-sum test [50]. The confidence level used is 95% (p-value
under 0.05).

6Computed with algorithm presented in [48].
7We used a reference front whenever the true Pareto front was unknown.

We first analyze the behaviour of the multi-objective
algorithms with the aim of highlighting which algorithm
works better. In Table II we show the average values of the
quality indicators grouped by algorithm and the execution
time. Regarding the significant differences, they exist only
between PAES and the rest of the algorithms for both quality
indicators and performance measure. We must point out that
even though PAES seems to be the worst algorithm, the
average generational distance value obtained by PAES is better
than the obtained by NSGA-II. This high value of generational
distance requires a further analysis (addressed shortly) because
NSGA-II obtains the best values for the rest of the indicators,
HV and time. SPEA2 is the best in generational distance. Our
evaluation indicates there is not an algorithm which is the best
for all quality indicators, nonetheless NSGA-II performs best
in 2 out 3 indicators.

TABLE II: Comparison of multi-objective algorithms using the
proposed quality indicators and performance time.

Algorithms HV GD Time(ms)
NSGA-II 0.6583 0.0396 70523
MOCell 0.6553 0.0293 74325
SPEA2 0.6533 0.0289 71349
PAES 0.6390 0.0351 101246

In Table III we summarize the average results obtained
grouped by seeding strategy. In this case there are clear
significant differences among all the seeding strategies. We
have highlighted the best value per quality indicator and
performance measure, which is always obtained with the SO
seeding strategy. First, we analyze the hypervolume, the higher
the value, the better the quality of the obtained results. The
best value is obtained with the SO seeding strategy. There are
statistical significant differences between SB and GS, and also
between SB and SO. Thus, it can be concluded that the quality
of solutions obtained with SB are worse than those obtained
with the other strategies. Second, we analyze the generational
distance, the lower the value, the better the quality of the
results. The best value is obtained with the SO seeding strategy
again. In addition, there are significant differences with the
other seeding strategies for the generational distance indicator.
Finally, we analyze the time spent in the generation of the
Pareto front. The results are clear, the SO strategy is the fastest.
Recall that the execution of the CASA algorithm for seeding
is included, which on average is 2905 milliseconds.

TABLE III: Comparison of seeding strategies using the pro-
posed quality indicators and performance time.

Seeding Strategy HV GD Time(ms)
SizeBased Random (SB) 0.6421 0.0427 138404
Greedy (GS) 0.6556 0.0447 76783
SingleObjective (SO) 0.6568 0.0123 25800

2) Â12 Statistic: Statistical difference has been measured
with the Wilcoxon test. In order to properly interpret the
results of statistical tests, it is always advisable to report
effect size measures. For that purpose, we have also used
the non-parametric effect size measure Â12 statistic proposed
by Vargha and Delaney [51], as recommended by Arcuri and
Briand [52]. Given a performance measure M , Â12 measures
the probability that running algorithm A yields higher M

392

values than running another algorithm B. If the two algorithms
are equivalent, then Â12 = 0.5. If Â12 = 0.3 entails one would
obtain higher values for M with algorithm A, 30% of the time.

Table IV shows the Â12 statistic to assess the practical
significance of the results. We have highlighted the largest
distance from 0.5 (equality) per quality indicator, note that 0.5
indicates no difference in the comparison. Regarding HV, there
are no big differences between the algorithms. The highest
difference occurs between NSGA-II and PAES. Regarding GD,
the highest difference is between MOCell and PAES. There,
the generational distance is larger in 41.94% of the times.
In addition, notice that NSGA-II obtains smaller values than
PAES with probability 0.544 (1-0.4560). This result indicates
a tendency contrary to the deduced from the previous average
value of GD of NSGA-II, in most of the comparisons it
achieves a lower value than PAES. Regarding time, NSGA-
II is faster with more probability than the other algorithms.
In general, this statistic confirms again that NSGA-II obtains
better Pareto fronts than the other algorithms, according to the
selected quality indicators, and faster.

TABLE IV: Â12 statistical test results for all algorithms.
NSGA-II yields better results for HV and time measures.

Algorithms HV GD Time
NSGAII-SPEA2 0.5182 0.5172 0.4904
NSGAII-MOCell 0.5112 0.5202 0.4816
NSGAII-PAES 0.5626 0.4560 0.2839
SPEA2-MOCell 0.4932 0.5039 0.4910
SPEA2-PAES 0.5447 0.4205 0.3019
MOCell-PAES 0.5521 0.4194 0.3027

We now comment on the Â12 statistic values shown in
Table V that compares the seeding strategies. The SO strategy
obtains higher values of HV than the other strategies, it obtains
better values of HV than SB and GS strategies in a 54.42%
(probability 1-0.4558) and a 50.23% (probability 1-0.4977),
respectively. For GD, the SO strategy obtains better values
(lower values) than SB and GS in a 85.62% and in a 78.39%,
respectively. Therefore, SO is widely best for the generational
distance indicator. Finally, SO spends less time than SB and
GS in 86.19% and 82.27%, respectively. Thus, the SO strategy
is the fastest without any doubt.

TABLE V: Â12 statistical test results for seeding strategies.
SO yields better quality indicators and time values.

Seeding Strategy HV GD Time
SizedBased(SB) – Greedy(GS) 0.4568 0.4795 0.6377
SizedBased(SB) – SingleObjective(SO) 0.4558 0.8562 0.8619
Greedy(GS) – SingleObjective(SO) 0.4977 0.7839 0.8227

D. Analysis

With the results presented in the previous section we are
now able to answer our research questions. Regarding RQ1,
we didn’t observe in our results a clear winner algorithm. We
can claim, however, that PAES seems to provide approximated
Pareto fronts of lower quality than the ones of the other
algorithms. PAES is a trajectory-based algorithm (works with
one solution and not a population), and probably this makes
it less competitive in this problem, in which having a diverse
population seems to be beneficial.

From the point of view of the testing engineer that faces
this problem, our recommendation is to use any of the three
best algorithms, NSGA-II, SPEA2 or MOCell, with the SO
seeding strategy. The results obtained are approximated Pareto
fronts like the one in Figure 2. Each point in that front
represents a test suite for the SPL, that is, a set of products.
The number of products and the coverage are given by the
coordinates of the point. Thus, the multi-objective approach
offers the engineer a set of test suites of different size having
(almost) optimal coverage. The engineer can, then, select the
most appropriate test suite depending on the resources s/he has
to test the SPL or the level of coverage s/he has to satisfy. It
is important to note that this selection of the most appropriate
test suite can be done after the algorithms did their job. This
contrasts with the scalarization technique used in the related
work (i.e. [16] and [17]) that transform the multi-objective
problem in a single-objective one. In that case, only one
solution is provided and the testing engineer has to provide
a weight for each objective function to indicate the relative
importance of the objectives. Thus, s/he is somehow selecting
the solution beforehand, without the possibility of taking a
look to all other, probably interesting, solutions.

Regarding RQ2, we can say that the seeding strategy has an
impact on the performance of the search algorithm. Seeding the
multi-objective algorithm with good quality solutions obtained
using CASA reduces the time required in the search and finds
the approximated Pareto front that is nearer to the Pareto
front. These initial “seeds” include some desirable building
blocks (i.e. feature sets) of the optimal solutions that help the
algorithm in its search.

ææ

ææ

ææ

ææ

ææ

ææ

ææ

ææ

ææ

ææ

ææ

ææ

ææ

0 200 400 600 800 1000 1200 1400
0

2

4

6

8

10

12

14

Uncovered pairs

N
u

m
b

er
o

f
p

ro
d

u
ct

s

Fig. 2: Approximated Pareto front obtained by NSGA-II in
TankWar.

E. Threats to Validity

We have taken special care to address the validity threats
highlighted by Ali et al. [53] that are applicable to our work.
Adequate parameter setting is a common internal validity
threat. In this paper we used standard parameter values for
the four algorithms we analyzed. Extensive evidence provided
by the work of Arcuri and Fraser [54] suggest that default
values might be good enough for assessing some search based
testing techniques. However, how their findings map to the
context of SPL pairwise testing is an open question that we
plan to address in our future work.

393

We identified two external threats: the selection of the
feature models corpus and the selection of the multi-objective
algorithms. To address the first of these threats, we searched on
all the website repositories of the SPL community and confer-
ences with SPL related topics for examples of feature models
with the characteristics mentioned in Section V-A and include
as many as possible within the feasibility of the current tool
support. Certainly other case studies may emerge that would
be worth including and might yield different results. Currently
our next target is to analyze the so-called feature models in the
wild [55]. This set of case studies are perhaps the largest and
most complex collection of feature models, most of them stem
from the operating systems domain. Coping with their level of
complexity does demand significant tool improvement beyond
the scope of the current work. For instance, improvements
are needed to effectively represent larger individuals and to
efficiently implement the required evolutionary operators in
combination with the underlying feature modelling reasoning
tools. To address the second external threat, we included four
distinct algorithms that represent a diverse array of multi-
objective techniques and concepts. Certainly, there might be
other algorithms that could potentially yield better results. We
plan to explore other alternatives (i.e. [31], [32], [35]) as part
of our future work.

VI. RELATED WORK

Recent surveys and mapping studies on SPL testing [4],
[5], attest not only the increasing relevance of the topic within
the SPL community but also confirm that exploiting multi-
objective optimization approaches for SPL testing remains an
area largely unexplored. In this section we briefly summarize
those pieces of work closest to ours.

Multi-Objective Optimization for SPL. The work by Wang
et al. present an approach to minimize test suites using weights
in the fitness function [17], that is, it uses a scalarizing function
that transforms a multi-objective problem to a single-objective
one [33]. Their work uses three objectives: test minimization
percentage, pairwise coverage, and fault detection capability.
Recent work by Henard et al. [16] presents an ad-hoc multi-
objective algorithm whose fitness function is also scalarized.
Their work focuses also on maximizing coverage, minimizing
test suite size, and minimizing cost. They perform a basic
comparison against random solutions for 8 feature models.

Undoubtedly, there is a clear and sharp contrast with our
work. First, none of these pieces of work analyses clas-
sical multi-objective evolutionary algorithms. Second, both
approaches use scalarizing functions so they are not pure multi-
objective algorithms. Incidentally we should point out there is
an extensive body of work on the downsides of scalarization in
multi-objective optimization [18]. Among the shortcomings are
the fact that weights may show a preference of one objective
over the other and, most importantly, the impossibility of
reaching some parts of the Pareto front when dealing with
convex fronts. Third, their evaluation does not consider the
impact of seeding. Fourth, they do not employ well-established
and well-accepted multi-objective quality indicators in their
comparisons. Fifth, the number and diversity (i.e. number of
features, number of products, domain) of the feature models
they analysed is more restricted than our feature model cor-

pus8.

Work by Lopez-Herrejon et al. proposed an exact algo-
rithm that computes the true Pareto fronts of a feature model
using SAT solvers [48]. However, this approach suffers from
scalability issues. The Pareto front could be computed only 10
out of the 19 feature models studied in this work. In contrasts,
this paper studies the use classical multi-objective algorithms
to address this limitation. We believe both approaches could
be complementary, like we did for instance use the true Pareto
front to compute the quality indicators.

Search-Based Software Testing for SPL. Search-Based
Software Engineering (SBSE) focuses on the application of
search-based optimization techniques to problems in software
engineering [56]. Among the techniques SBSE relies on
are evolutionary computation techniques and basic searches
such as hill climbing or simulated annealing. Within SBSE
a major research focus has been software testing [56]. A
recent overview by McMinn highlights the major achievements
made in Search-Based Software Testing and some of the
open questions and challenges [57]. Except for a few efforts,
summarized next, the application of search based techniques to
SPL testing remains largely unexplored. Garvin et al. applied
simulated annealing to combinatorial interaction testing for
computing n-wise coverage for SPLs [9]. Ensan et al. propose
a genetic algorithm approach for test case generation for
SPLs that uses as fitness function a variation of cyclomatic
complexity metric adapted to feature models [8]. Henard et
al. propose an approach that uses a dissimilarity metric that
favours individuals whose n-wise coverage varies the most
from the current population thus increasing the chances of
wider coverage [10]. In clear contrast with our work, these
last two approaches are single-objective. Recent work by Xu
et al. uses a genetic algorithm for continuous test augmentation
[15]. Their CONTESA tool incrementally generates test cases
employing static analysis techniques for achieving coverage
more effectively. It is in our future work to study how to
leverage such static analysis techniques and use them as other
objectives to consider in the multi-objective optimization.

Combinatorial Testing for SPL. Perrouin et al. propose
an approach that translates t-wise coverage problems into
Alloy programs and rely on its automatic instance generation
to obtain covering arrays [14]. Oster et al. propose MoSo-
PoLiTe [13], an approach that translates feature models and
their constraints into binary constraint solver problems (CSP)
from which they compute pairwise covering arrays. MoSo-
PoLiTe can also include pre-selected products as part of the
covering arrays. These two approaches were subsequently
analysed by Perrouin et al. with a framework they propose
to compare t-wise SPL testing [58]. Similarly, Hervieu et
al. developed a tool called PACOGEN that also relies on
constraint programming for computing pairwise coverage from
feature models [11]. This tool has been recently included as
part of a framework for practical pairwise testing in industrial
settings [59]. Johansen et. al propose a greedy approach to
generate n-wise test suites that adapts of Chvátal’s algorithm
to solve the set cover problem [12]. None of these approaches
use multi-objective evolutionary algorithms.

8We do not to include the feature models of those papers because, to
the best of our knowledge, they do not have the characteristics described
in Section V-A.

394

VII. CONCLUSIONS AND FUTURE WORK

This paper is the first study of classical multi-objective
evolutionary techniques applied to SPL pairwise testing. The
group of algorithms were selected to cover a diverse array
of techniques and concepts of multi-objective evolutionary
computing. In addition, we study the impact of seeding in per-
formance. Our evaluation unequivocally showed that seeding
with knowledge from a single-objective technique produces
significantly better results in less time. It also suggests that
using this seeding strategy with either of NSGA-II, SPEA2 or
MOCell yields results of similar quality. Our findings enable
software engineers facing SPL combinatorial testing challenges
to select not just one solution (as in the case of single-
objective techniques) but instead to select from an array of
test suite possibilities that can better match their economical
or technological constraints.

Our work opens up several research venues which we
plan to address as part of our future work. As mentioned
before, we plan to extend the feature model corpus and the
group of multi-objective algorithms analyzed and study the
impact of parameter setting. Besides these objectives, our goal
is to expand our study beyond pairwise, to integrate domain
knowledge such as control flow information as an optimization
objective for test code generation, and to characterize when a
particular multi-objective algorithm performs better based, for
example, on structural metrics of the feature models [60].

ACKNOWLEDGEMENTS

Funded by Austrian Science Fund (FWF) project P25289-
N15 and Lise Meitner Fellowship M1421-N15, the Spanish
Ministry of Economy and Competitiveness and FEDER under
contract TIN2011-28194 and fellowship BES-2012-055967. It
is also partially founded by project 8.06/5.47.4142 in collab-
oration with the VSB-Tech. Univ. of Ostrava and Universidad
de Málaga, Andalucı́a Tech.

REFERENCES

[1] P. Zave, “Faq sheet on feature interaction,”
http://www.research.att.com/ pamela/faq.html.

[2] K. Pohl, G. Bockle, and F. J. van der Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Springer, 2005.

[3] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, “Feature-
Oriented Domain Analysis (FODA) Feasibility Study,” Software Engi-
neering Institute, Carnegie Mellon University, Tech. Rep. CMU/SEI-
90-TR-21, 1990.

[4] P. A. da Mota Silveira Neto, I. do Carmo Machado, J. D. McGregor,
E. S. de Almeida, and S. R. de Lemos Meira, “A systematic mapping
study of software product lines testing,” Information & Software Tech-
nology, vol. 53, no. 5, pp. 407–423, 2011.

[5] E. Engström and P. Runeson, “Software product line testing - a
systematic mapping study,” Information & Software Technology, vol. 53,
no. 1, pp. 2–13, 2011.

[6] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Comput. Surv., vol. 43, no. 2, pp. 11:1–11:29, Feb. 2011. [Online].
Available: http://doi.acm.org/10.1145/1883612.1883618

[7] H. Cichos, S. Oster, M. Lochau, and A. Schürr, “Model-based coverage-
driven test suite generation for software product lines,” in MoDELS, ser.
Lecture Notes in Computer Science, J. Whittle, T. Clark, and T. Kühne,
Eds., vol. 6981. Springer, 2011, pp. 425–439.

[8] F. Ensan, E. Bagheri, and D. Gasevic, “Evolutionary search-based test
generation for software product line feature models,” in CAiSE, ser. Lec-
ture Notes in Computer Science, J. Ralyté, X. Franch, S. Brinkkemper,
and S. Wrycza, Eds., vol. 7328. Springer, 2012, pp. 613–628.

[9] B. J. Garvin, M. B. Cohen, and M. B. Dwyer, “Evaluating improvements
to a meta-heuristic search for constrained interaction testing,” Empirical
Software Engineering, vol. 16, no. 1, pp. 61–102, 2011.

[10] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, and
Y. L. Traon, “Bypassing the combinatorial explosion: Using similarity
to generate and prioritize t-wise test suites for large software product
lines,” CoRR, vol. abs/1211.5451, 2012.

[11] A. Hervieu, B. Baudry, and A. Gotlieb, “Pacogen: Automatic generation
of pairwise test configurations from feature models,” in ISSRE, T. Dohi
and B. Cukic, Eds. IEEE, 2011, pp. 120–129.

[12] M. F. Johansen, Ø. Haugen, and F. Fleurey, “An algorithm for generating
t-wise covering arrays from large feature models,” in SPLC (1), E. S.
de Almeida, C. Schwanninger, and D. Benavides, Eds. ACM, 2012,
pp. 46–55.

[13] S. Oster, F. Markert, and P. Ritter, “Automated incremental pairwise
testing of software product lines,” in SPLC, ser. Lecture Notes in
Computer Science, J. Bosch and J. Lee, Eds., vol. 6287. Springer,
2010, pp. 196–210.

[14] G. Perrouin, S. Sen, J. Klein, B. Baudry, and Y. L. Traon, “Automated
and scalable t-wise test case generation strategies for software product
lines,” in ICST. IEEE Computer Society, 2010, pp. 459–468.

[15] Z. Xu, M. B. Cohen, W. Motycka, and G. Rothermel, “Continuous
test suite augmentation in software product lines,” in SPLC, T. Kishi,
S. Jarzabek, and S. Gnesi, Eds. ACM, 2013, pp. 52–61.

[16] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and Y. L. Traon, “Multi-
objective test generation for software product lines,” in SPLC, T. Kishi,
S. Jarzabek, and S. Gnesi, Eds. ACM, 2013, pp. 62–71.

[17] S. Wang, S. Ali, and A. Gotlieb, “Minimizing test suites in software
product lines using weight-based genetic algorithms,” in GECCO,
C. Blum and E. Alba, Eds. ACM, 2013, pp. 1493–1500.

[18] R. Marler and J. Arora, “Survey of multi-objective optimization
methods for engineering,” Structural and Multidisciplinary
Optimization, vol. 26, no. 6, pp. 369–395, 2004. [Online]. Available:
http://dx.doi.org/10.1007/s00158-003-0368-6

[19] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm : {NSGA-II},” Evolutionary Compu-
tation, IEEE Transactions on, vol. 6, no. 2, pp. 182–197, 2002.

[20] A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, and E. Alba,
“MOCell: A cellular genetic algorithm for multiobjective optimization,”
Int. J. Intell. Syst., vol. 24, no. 7, pp. 726–746, 2009.

[21] E. Zitzler, M. Laumanns, and L. Thiele, “{SPEA2}: Improving the
Strength Pareto Evolutionary Algorithm,” Gloria\-strasse 35, CH-8092
Zurich, Switzerland, Tech. Rep. 103, 2001.

[22] P. J. Angeline, Z. Michalewicz, M. Schoenauer, X. Yao, and A. Za-
lzala, Eds., The Pareto Archived Evolution Strategy: A New Baseline
Algorithm for Pareto Multiobjective Optimisation, vol. 1. Mayflower
Hotel, Washington D.C., USA: IEEE Press, 1999.

[23] G. Fraser and A. Arcuri, “The seed is strong: Seeding strategies
in search-based software testing,” in Proceedings of the 2012
IEEE Fifth International Conference on Software Testing, Verification
and Validation, ser. ICST ’12. Washington, DC, USA: IEEE
Computer Society, 2012, pp. 121–130. [Online]. Available: http:
//dx.doi.org/10.1109/ICST.2012.92

[24] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms:
a comparative case study and the strength pareto approach,” IEEE
Transactions on Evolutionary Computation, vol. 3, no. 4, pp. 257–271,
1999.

[25] D. A. Van Veldhuizen, “Multiobjective evolutionary algorithms: clas-
sifications, analyses, and new innovations,” Ph.D. dissertation, Wright
Patterson AFB, OH, USA, 1999, aAI9928483.

[26] R. E. Lopez-Herrejon and D. S. Batory, “A standard problem for
evaluating product-line methodologies,” in GCSE, ser. Lecture Notes
in Computer Science, J. Bosch, Ed., vol. 2186. Springer, 2001, pp.
10–24.

[27] D. Benavides, S. Segura, and A. R. Cortés, “Automated analysis of
feature models 20 years later: A literature review,” Inf. Syst., vol. 35,
no. 6, pp. 615–636, 2010.

[28] M. B. Cohen, M. B. Dwyer, and J. Shi, “Constructing interaction test
suites for highly-configurable systems in the presence of constraints:

395

A greedy approach,” IEEE Trans. Software Eng., vol. 34, no. 5, pp.
633–650, 2008.

[29] C. C. Coello, “Evolutionary multi-objective optimization website,” http:
//delta.cs.cinvestav.mx/∼ccoello/EMOO/.

[30] Y. Zhang, “Search based software engineering repository,” http://
crestweb.cs.ucl.ac.uk/resources/sbse repository/.

[31] C. C. Coello, G. B. Lamont, and D. A. Veldhuizen, Evolutionary
Algorithms for Solving Multi-Objective Problems, 2nd ed., ser. Genetic
and Evolutionary Computation. Springer, 2007.

[32] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms,
1st ed. Wiley, June 2001.

[33] E. Zitzler, “Evolutionary multiobjective optimization,” in Handbook
of Natural Computing, G. Rozenberg, T. Bäck, and J. N. Kok, Eds.
Springer, 2012, pp. 871–904.

[34] A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, and E. Alba, “Design
Issues in a Multiobjective Cellular Genetic Algorithm,” in Evolutionary
Multi-Criterion Optimization. 4th International Conference, EMO 2007,
ser. Lecture Notes in Computer Science, S. Obayashi, K. Deb, C. Poloni,
T. Hiroyasu, and T. Murata, Eds., vol. 4403. Springer, 2007, pp. 126–
140.

[35] J. J. Durillo, A. J. Nebro, F. Luna, B. Dorronsoro, and E. Alba, “jMetal:
A Java Framework for Developing Multi-Objective Optimization Meta-
heuristics,” Departamento de Lenguajes y Ciencias de la Computación,
University of Málaga, E.T.S.I. Informática, Campus de Teatinos, Tech.
Rep. ITI-2006-10, December 2006.

[36] P. V. Paul, A. Ramalingam, R. Baskaran, P. Dhavachelvan,
K.Vivekanandan, R. Subramanian, and V. Venkatachalapathy, “Perfor-
mance analyses on population seeding techniques for genetic algo-
rithms,” International Journal of Engineering and Technology, vol. 5,
no. 3, pp. 2993–3000, 2013.

[37] P. Ponterosso and D. S. J. Fox, “Heuristically seeded genetic
algorithms applied to truss optimisation,” Engineering with Computers,
vol. 15, no. 4, pp. 345–355, 1999. [Online]. Available: http:
//dx.doi.org/10.1007/s003660050029

[38] B. Saavedra-Moreno, S. Salcedo-Sanz, A. Paniagua-Tineo, L. Prieto,
and A. Portilla-Figueras, “Seeding evolutionary algorithms with
heuristics for optimal wind turbines positioning in wind farms,”
Renewable Energy, vol. 36, no. 11, pp. 2838 – 2844, 2011.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S096014811100190X

[39] E. K. Burke, J. P. Newall, and R. F. Weare, “Initialization
strategies and diversity in evolutionary timetabling,” Evol. Comput.,
vol. 6, no. 1, pp. 81–103, Mar. 1998. [Online]. Available:
http://dx.doi.org/10.1162/evco.1998.6.1.81

[40] E. Alba and F. Chicano, “Observations in using parallel and sequential
evolutionary algorithms for automatic software testing,” Computers &
Operations Research, vol. 35, no. 10, pp. 3161 – 3183, 2008, part
Special Issue: Search-based Software Engineering. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0305054807000378

[41] “Paper code and data repository,” 2014,
http://neo.lcc.uma.es/staff/javi/resources.html.

[42] N. Siegmund, M. Rosenmüller, C. Kästner, P. G. Giarrusso, S. Apel,
and S. S. Kolesnikov, “Scalable prediction of non-functional properties
in software product lines: Footprint and memory consumption,” Infor-
mation & Software Technology, vol. 55, no. 3, pp. 491–507, 2013.

[43] “FeatureHouse website,” 2013, http://www.fosd.de/fh.
[44] “SPL2go website,” 2013, http://spl2go.cs.ovgu.de/.
[45] “SPLAR library,” 2013, https://code.google.com/p/splar/.
[46] P. Trinidad, D. Benavides, A. Ruiz-Cortes, S. Segura, and A. Jimenez,

“Fama framework,” in Software Product Line Conference, 2008. SPLC
’08. 12th International, Sept., pp. 359–359.

[47] “PLCA Tool,” 2012, http://heim.ifi.uio.no/martifag/models2012/.
[48] R. E. R. Lopez-Herrejon, F. Chicano, J. Ferrer, A. Egyed, and E. Alba,

“Multi-objective Optimal Test Suite Computation for Software Product
Line Pairwise Testing,” in IEEE International Conference on Software
Maintenance, Sep. 2013, pp. 404–407.

[49] “Argouml-spl project,” 2013, http://argouml-spl.tigris.org/.
[50] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical

Procedures. Chapman & Hall/CRC; 4 edition, 2007.

[51] A. Vargha and H. D. Delaney., “A critique and improvement of the cl
common language effect size statistics of mcgraw and wong.” Journal
of Educational and Behavioral Statistics, vol. 25(2), pp. 101–132, 2000.

[52] A. Arcuri and L. Briand, “A hitchhiker’s guide to statistical tests for
assessing randomized algorithms in software engineering.” Softw. Test.
Verif. Reliab, 2012.

[53] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, “A
systematic review of the application and empirical investigation of
search-based test case generation,” IEEE Trans. Software Eng., vol. 36,
no. 6, pp. 742–762, 2010.

[54] A. Arcuri and G. Fraser, “Parameter tuning or default values? an em-
pirical investigation in search-based software engineering,” Empirical
Software Engineering, vol. 18, no. 3, pp. 594–623, 2013.

[55] T. Berger, “Variability modeling in the wild,” in SPLC (2), E. S.
de Almeida, C. Schwanninger, and D. Benavides, Eds. ACM, 2012,
pp. 233–241.

[56] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software
engineering: Trends, techniques and applications,” ACM Comput. Surv.,
vol. 45, no. 1, p. 11, 2012.

[57] P. McMinn, “Search-based software testing: Past, present and future,”
in ICST Workshops. IEEE Computer Society, 2011, pp. 153–163.

[58] G. Perrouin, S. Oster, S. Sen, J. Klein, B. Baudry, and Y. L. Traon, “Pair-
wise testing for software product lines: comparison of two approaches,”
Software Quality Journal, vol. 20, no. 3-4, pp. 605–643, 2012.

[59] D. Marijan, A. Gotlieb, S. Sen, and A. Hervieu, “Practical pairwise
testing for software product lines,” in SPLC, T. Kishi, S. Jarzabek, and
S. Gnesi, Eds. ACM, 2013, pp. 227–235.

[60] E. Bagheri and D. Gasevic, “Assessing the maintainability of software
product line feature models using structural metrics,” Software Quality
Journal, 2010.

[61] T. Kishi, S. Jarzabek, and S. Gnesi, Eds., 17th International Software
Product Line Conference, SPLC 2013, Tokyo, Japan - August 26 - 30,
2013. ACM, 2013.

396

