

Abstract— in the literature, a considerable number of
mutation operators have been proposed, which are the key
search operators in differential evolution algorithm for
solving optimization problems. Although those operators
were developed in the context of unconstrained
optimization, they were widely used in constrained
optimization. However, those operators did not contain
any mechanism that would reduce the constraint violation
in the search process. Therefore, in this paper, a new
mutation operator based on the constraint consensus
method is proposed, which can help infeasible points reach
the feasible region quickly. The algorithm is tested on the
CEC2010 constrained benchmark problems. The
experimental results show that the proposed algorithm is
able to obtain better solutions in comparison with the
state-of-the-art algorithms.

Index Terms—Constrained optimization, constraint
consensus, differential evolution

I. INTRODUCTION

HERE are many real-world decision processes that
require solving constrained optimization problems
(COPs). In COPs, an acceptable solution is the one that is

feasible and either optimal or near optimal. An optimal
solution in a COP may exist either on the surface (/boundary)
of the feasible region or well-inside the feasible space. The
constraints in COPs are usually handled using one of two
approaches: (i) converting the constrained problem into an
equivalent unconstrained problem and then solving it using an
appropriate search algorithm, and (ii) dealing the constraints
separately where the search approach optimizes the objective
function, while satisfying the constraint set. One serious
drawback of the first approach is that it may produce a high
quality objective value without satisfying one or more
constraints. For this reason, the second approach is popular in
practice however the approaches are much more complex.
Note that, in this paper, all analysis and discussions are in the
context of the second approach mentioned above.

Over the last few decades, population based stochastic
algorithms, such as genetic algorithm (GA) [1], particle swarm
optimization (PSO) [2], differential evolution (DE) [3],
evolutionary strategies (ES) [4], and evolutionary
programming [5], have shown their ability in solving

The authors are with School of Engineering and Information Technology,
University of New South Wales at Canberra, 2600, Australia, emails:
noha.hamza@student.adfa.edu.au, {d.essam and r.sarker}@adfa.edu.au.

constrained optimization problems. In this research, we would
like to deal with one of such algorithms that is DE. From the
literature, DE has shown a tremendous success in solving
continuous optimization problems. However, the algorithm
converges prematurely when dealing with those problems that
contain multiple local optima by losing diversity [6-9].

There have been numerous studies that were proposed to
improve DE’s performance. Such improvements lie in
proposing new mutation strategies, ensemble of DE operators,
and ensemble of constraint handling techniques. The search
operators are designed mainly to improve the fitness value,
while maintaining the diversity of the population. Such
operators are well-suited with the unconstrained optimization
problems. To solve the constrained optimization problems,
researchers implemented the same search operators with an
additional mechanism, known as constraint handling
technique. However, in almost all cases, the constraint
handling technique contributes to the evolution process,
indirectly, via the ranking and selection methods. In other
words, the search operators in DE do not play any direct role
in reducing the constraint violations. It is expected that the
introduction of a new mutation operator, that can improve the
fitness value and reduce the constraint violation, will
significantly improve the performance of the algorithm.

The constraint consensus (CC) method, which uses different
types of projection algorithms, are used for solving feasibility
problems with nonlinear and non-convex constraints. This
method assists the infeasible solution vector to quickly move
towards the feasible region by making a consensus among the
currently violated constraints to determine the direction and
distance that are required to achieve feasibility [28]. Although
the CC methods can improve the feasibility of individuals in
the population, in our earlier work, we applied them as an
additional step with EAs (see for details in [10-12]). However,
no research reported in the literature on a DE mutation that
combines the usual movement operator with the concept of
CC for improving the performance of the algorithm. In this
paper, we propose a new mutation operator that combines the
search technique with a method of reducing constraint
violation. The performance of the proposed algorithm has
been tested by solving a set of constrained benchmark
problems (from CEC2010 competition) [13]. The results show
that the proposed algorithm is able to obtain better solutions in
comparison with a state-of-the-art algorithm.

This paper is organized as follows. After the introduction,
section II describes the DE algorithm. Section III discusses an
overview of constraint consensus methods. Section IV

Differential Evolution with a Constraint
Consensus Mutation for Solving Optimization

Problems
Noha M. Hamza, Daryl L. Essam, and Ruhul A. Sarker

T

991

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

demonstrates the design of the proposed algorithm, while the
experimental results and the analysis are presented in section
V. Finally, the conclusions are given in section VI.

II. DIFFERENTIAL EVOLUTION

 Differential Evolution is a popular evolutionary algorithm
(EA) for solving optimization problems [3, 14]. DE has two
main search operators: mutation and crossover operators.

In the traditional DE mutation operator, a mutant vector, ሬܸԦ,
is generated by multiplying the difference of two random
vectors by a scaling factor ܨ and the result is then added to
another third random vector. For an individual ݖ, ሬܸԦ௭ is
calculated as follows: ሬܸԦ௭ ൌ Ԧ௥భݔ ൅ .ܨ ൫ݔԦ௥మ െ Ԧ௥య൯, (1)ݔ

where, ݎଵ, ,ଶݎ ,... ,1,2} א ଷ are random integer numbersݎ
NP}\{ݖ}, ݎଵ ് ଶݎ ് is a decision vector, NP is the ݔ ଷݎ
population size, F is a positive control parameter.

Similar to other EAs, there are many strategies for mutation
in DE, such as:

• DE/best/1 ([15]): ሬܸԦ௭,௧ ൌ Ԧ௕௘௦௧,௧ݔ ൅ ܨ ൈ ൫ݔԦ௥మ,௧ െ Ԧ௥య,௧൯ (2)ݔ

where ݔԦ௕௘௦௧,௧ is the best individual vector at generation t.

• DE/rand-to-best/1 ([16]): ሬܸԦ௭,௧ ൌ Ԧ௥భ,௧ݔ ൅ ܨ ൈ ൫ݔԦ௕௘௦௧,௧ െ Ԧ௥మ,௧൯ݔ ൅ ܨ ൈ ൫ݔԦ௥య,௧ െ Ԧ௥ర,௧൯ (3)ݔ

• DE/rand/2/dir ([17]): ሬܸԦ௭,௧ ൌ Ԧଵ,௧ݒ ൅ ிଶ ൈ ቀ൫ݒԦଵ,௧ െ Ԧଶ,௧൯ݒ ൅ ൫ݒԦଷ,௧ െ Ԧସ,௧൯ቁ (4)ݒ

where ݂ሺݒԦଵ,௧ሻ ൑ ݂ሺݒԦଶ,௧ሻ and ݂൫ݒԦଷ,௧൯ ൑ ݂൫ݒԦସ,௧൯.
• DE/current-to-rand/1 ([18]): ሬܸԦ௭,௧ ൌ Ԧ௥భ,௧ݔ ൅ ܨ ൈ ൫ݔԦ௥మ,௧ െ Ԧ௭,௧൯ݔ ൅ ܨ ൈ ൫ݔԦ௥య,௧ െ Ԧ௥ర,௧൯ (5)ݔ

• DE/current-to-best/1([19]): ሬܸԦ௭,௧ ൌ Ԧ௥భ,௧ݔ ൅ ܨ ൈ ൫ݔԦ௕௘௦௧,௧ െ Ԧ௭,௧൯ݔ ൅ ܨ ൈ ൫ݔԦ௥య,௧ െ Ԧ௥ర,௧൯ (6)ݔ

• DE/current-to-best ([20]): ሬܸԦ௭,௧ ൌ Ԧ௭,௧ݔ ൅ ܨ ൈ ቀ൫ݔԦ௕௘௦௧,௧ట െ Ԧ௭,௧൯ݔ ൅ ൫ݔԦ௥భ,௧ െ Ԧ௥మ,௧൯ቁ (7)ݔ

where ݔԦ௕௘௦௧,௧ట is randomly chosen as one of the top 100 ൈ߰% individuals in the current generation.

In DE, the well known crossover operator is the Binomial
crossover, which used in this paper. In it, for each of the ݆௧௛variables, whenever a randomly picked number (݀݊ܽݎ ݀݊ܽݎ݆ ሾ0,1ሿ) is less than or equal to Cr value, or it is a randomא א ሾ1 െ ሿ variable, the ݆௧௛ variable is inherited fromܦ
the mutant vector, such as: ݑ௜௝,௧ ൌ ൜ݒ௜,௝,௧, ݂݅ ሺ݀݊ܽݎ ൑ ൌ ݆ ݎ݋ ݎܥ ݁ݏ݅ݓݎ݄݁ݐ݋ ,௜,௝,௧ݔሻ݀݊ܽݎ݆ (8)

Over the last two decades, DE was successfully applied to
solve different COPs. A few such examples are discussed
here. Takahama and Sakai [21], introduced an ε constrained
DE with an archive and a gradient-based mutation (εDEag) for
solving the CEC2010 competition on constrained real-
parameter optimization [13]. The εDEag utilized an archive to
maintain the diversity of individuals and adopted a new way
of selecting the ε-level control parameter in εDEg. Elsayed et
al. [8], proposed a multi-operator based DE (SAMO-DE)
algorithm for solving two different sets of COPs. The
feasibility rule was used to handle the constraints. SAMO-DE
was found to be better than other state-of-the-art algorithms.
Elsayed et al. [22] proposed a DE algorithm that used multiple
search operators, and two constraint handling techniques (the
feasibility rule and the epsilon constraint methods) were
adopted to handle constraints. The results showed that the
proposed algorithm was superior to the-state-of-the-art
algorithms. Brest et al. [23], employed the epsilon constraint
method to handle the constraints in their proposed differential
evolution algorithm. The algorithm has shown competitive
performance over a set of test problems.

III. CONSTRAINT CONSENSUS METHODS

Constraint Consensus (CC) methods [24-26] use different
types of projection algorithms, as a heuristic, for solving the
feasibility problems with nonlinear and non-convex
constraints. The key idea is to help a currently infeasible
solution to quickly move towards the feasible region by
making a consensus among the currently violated constraints
[10-12, 25]. More precisely, CC starts from an initial
infeasible solution and then constructs a feasibility vector for
each violated constraint at the existing solution. The feasibility
vector approximates the move from the current infeasible
point to the closest feasible solution for each violated
constraint.

 The calculation of the feasibility vectors is exact for linear
constraints, however a linear approximation is generated
(known as linear feasibility vectors) for nonlinear constraints.
The linear feasibility vector moves the infeasible solution in a
parallel direction to the gradient of the violated constraint and
the step size of the movement is calculated by using a first
order Taylor series expansion of the constraint function
around the current solution [12, 25, 27], such as: ሺݔ௞ାଵ െ ݔ௞ሻ ൌ ି௚೔ሺ௫ೖሻฮఇ௚೔ሺ௫ೖሻ೅ฮమ ௞ሻ்ݔ௜ሺ݃ߘ (9)

where

• ݃௜ሺݔ௞ሻ ׷ ܴ௡ ՜ ܴ is the ith constraint, ݃ߘ௜ሺݔ௞ሻ்is the
transposition of its gradient, and || ߘ ௜݃ሺݔ௞ሻ்|| is its length.

• ݇: Number of steps.
 .௞: Current infeasible point at kth stepݔ •
 ௞ାଵ: Estimated feasible point for each violated constraintݔ •

at k+1th step.
• To accommodate the non-differential and discontinuous

functions, an approximate gradient ൫݃ߘ௜ሺݔ௞ሻ൯ is
calculated numerically for our algorithm as follows

992

(௚೔ሺ௫ା∆ሻି௚೔ሺ௫ሻ∆), where ∆ represents a small change in x
(here it is equal to 0.0001).

The feasibility vectors for all violated constraints are joined
into a consensus vector which is then used to update the
current point. The CC steps are repeated until satisfying
predefined stopping conditions [25, 28], such as: (1) the length
of every feasibility vector is less than a predefined feasibility
distance threshold (α) (e.g.10ି଺), (2) the length of the
consensus vector is less than a movement tolerance (ߚ), in
which the consensus vector becomes too short, or (3) more ߤ
generations have been completed.

Over the last few decades, many variants of CC method
have been proposed such as traditional CC, Direction Based
maximum (DBmax) algorithm and the Feasibility Distance far
(FDfar) algorithm. They differ by the method of constructing
the consensus vector. In this paper, we use the traditional CC
method, in which all eligible feasibility vectors are treated
equally and the movement is created by averaging the non-
zero components of the feasibility vectors.

Recently, CC was employed with differential evolution as
an additional mechanism to deal with the infeasible solutions.
Hamza et al. [10] proposed different variants of DE with
multiple CC methods. The proposed algorithms were tested
and analyzed by solving the CEC2006 test problems. The
performance of the algorithms was further improved by
incorporating a local search approach. The algorithm showed
competitive performance while using significantly lower
computational time. The algorithm was also applied to solve a
complex real-world problem [11].

IV. DE WITH CONSTRAINT CONSENSUS BASED MUTATION

In this section, the proposed algorithm is described,
followed by the description of constraint handling method
used in this research. We introduced the algorithm as
DEwCCM (Differential Algorithm with Constraint Consensus
Mutation).

A. DEwCCM

As indicated earlier, the CC methods were used as an
additional step within EAs to deal with infeasibility [10] [11].
In this section, our goal is to propose a new mutation operator
that combines the concept of CC method with a traditional
mutation operator. It is expected that a such mutation operator
will not only improve the quality of fitness value but also help
the infeasible solutions to reach the feasible region quickly.
That means, this mutation will be beneficial for infeasible
solutions only, which is introduced below. The main steps of
the proposed algorithm are shown in Algorithm 1.

Firstly, the initial population is generated within the
boundary based on the following equation: ݔ௭௝ ൌ ௝ܮ ൅ ൈ ݀݊ܽݎ ሺ ௝ܷ െ ௝ሻ (10)ܮ

where ܮ௝, ௝ܷ are the lower and upper bound for decision
variable ݔ௜௝ and ݀݊ܽݎ is a random number, ݀݊ܽݎ א ሾ0,1ሿ.
Then, for some of the infeasible solutions, say P individuals,
new offspring are generated based on:

ALGORITHM 1: DEWCCM
STEP 1: In generation ݐ ൌ 0, generate an initial random population of

size ܲܵ. The variables in each individual (z) must be within the
range using (11).

STEP 2 : for each (ݖ) in NP, randomly generate its ܨ௭, ݎܥ௭ and ߮௭

STEP 3: At each generation (ݐ): If there are infeasible solutions then:
Randomly Select P individuals of the infeasible solutions, , and
generated new offspring using (12)-(14)

STEP 4: For each individual in the remaining ሺܲܵ െ ܲሻ individuals, a
new offspring is generated using (15).

STEP 5: if ሬܷሬԦ௜ is better than ݔԦ௜, based on the fitness function and/or
constraint violation, accept it for the next generation. Sort the
entire population based on the objective value and/or constraint
violation.

STEP 6: Apply an expansion mechanism on the successful offspring,
using (16), and update the number of fitness evaluations. then,
Sort the entire population based on the objective value and/or
constraint violation.

STEP 7: Stop if the termination criterion is met; else set ݐ ൌ ݐ ൅ 1, and
go to STEP 3. ݑ௭,௝ ൌቊݔఝ೥,௝ ൅ .௭ܨ ൫ݔ௕௘௦௧,௝ െ ,஼஼,௝൯ݔ ݂݅ ሺ݀݊ܽݎ ൑ ൌ ݆ ݎ݋ ௭ݎܥ ݆௥௔௡ௗሻݔ௭,௝ (11) ݁ݏ݅ݓݎ݄݁ݐ݋

where ߮ א ሾ0 െ ே௉ଶ ሿ which aim at maintaining a balance
between two DE mutation strategies (DE/rand and DE/best)
஼஼ݔ .[29] ൌ ௫ೖశభ,಴௡௖ (12) ݊ܿ is the total number of the violated constraints for each
infeasible solution, (ݔ௞ାଵ,஼ሻ the new point considering each
violated constraint (C) and

௞ାଵ,஼ݔ ൌ ି௚೔ሺ௫ೖሻԡఇ௚೔ሺ௫ೖሻԡమ ௞ሻ்ݔ௜ሺ݃ߘ ൅ ௞ݔ (13)

This mutation is not applied to all infeasible individuals, but
to some of them. This is to minimize the additional
computational time required for computing them as well as
maintaining the diversity in the population. So, for the
remaining NP-P individuals (either feasible or infeasible), a
new offspring is generated according to: ݑ௭,௝,௧ൌ ൞ ఝ೥,௝,௧ݔ ൅ ሺ׎. .௭ሻܨ ൫ݔ௥೥భ,௝,௧ െ ௥೥మ,௝,௧൯ݔ ൅ ሺሺ1 െ .ሻ׎ .௭ሻܨ ൫ݔ௕௘௦௧,௝,௧ െ ݀݊ܽݎ௥೥య,௝,௧൯ ݂݅ ሺݔ ൑ ൌ ݆ ݎ݋ ௭ݎܥ ݆௥௔௡ௗሻݔ௭,௝ ݁ݏ݅ݓݎ݄݁ݐ݋

 (14)
where ߮ is a random integer number within a range [a, b], ܽ ൌ 1, ܾ ൌ ܰܲ/2 [30], and ׎ ൌ 0.75. In (10), a bit more
emphasis on the diversity appears from using 0.75ܨ௭ for the
first difference vector. For each new generated individual, if it
is better than its parent, it survives for the next generation, and
the entire population is sorted based on the fitness function
and/or constraint violation.

C. Expansion Mechanism

For a better convergence pattern, at each generation, we
employ a stretching mechanism on the successful offspring
generated by (15). This is done by using following mutation:

993

௭,௝,௧ൌݑ ൞ݔఝ೥,௝,௧ ൅ ሺሺ1 െ .ሻ׎ .௭ሻܨ ൫ݔ௥ݖభ,௝,௧ െ ௥౰మ,௝,௧൯ݔ ൅ ሺ׎. .௭ሻܨ ൫ݔ௕௘௦௧,௝,௧ െ ݀݊ܽݎ௭,௝,௧൯ ݂݅ ሺݔ ൑ ൌ ݆ ݎ݋ ௭ݎܥ ݆௥௔௡ௗሻݔ௭,௝ ݁ݏ݅ݓݎ݄݁ݐ݋

 (15)

The key idea of this expansion mechanism is that using the
same ݔԦ௥౰భ,௧ and ݔԦ௥౰మ,௧ along with ܨ௭ and ݎܥ௭ used in (15), may
be a good seed to generate a new offspring using information
gained from the offspring generated by (15) , ݔԦ௭,௧, and the new
best individual in the population. Note that (16) employs a
more exploitation mechanism in comparison with (15) as
shown by using ׎, instead of (1-׎) in (15), in the second
difference vector.

C. Constraint Handling Method

In this paper, the superiority of feasible solutions technique
is used to select individuals [31], in which: 1) between two
feasible solutions, the fittest one (according to fitness
function) is better, i.e. f(ݔԦଵ) < f(ݔԦଶሻ, 2) a feasible solution is
always better than an infeasible one, 3) between two infeasible
solutions, the one having the smaller sum of its constraint
violation is preferred, i.e. vio(ݔԦଵ) < vio(ݔԦଶሻ. Equality
constraints are transformed into inequalities of the following
form, where ߝ is a small tolerance, i.e. 0.0001, and E is the
number of equality constraints: |݄௘ሺݔԦሻ| െ ൑ ߝ 0, ݁ ݎ݋݂ ൌ 1, … , (16) ܧ

V. EXPERIMENTAL RESULTS

In this section, we present and analyze the experimental
results of the proposed algorithm by solving a set of
benchmark problems introduced in the CEC2010 constrained
problems [13]. These problems contain different properties,
such as the objective function and/or the constraints are either
linear or non-linear. The constraint signs may be equality or
inequality. The objective function may be multi-modal or
unimodal. Moreover, the optimal solution may lie on the
boundary and the feasible space may be very tiny.

The algorithm has been coded using Matlab, and has been
run on a PC with a 2.8 GHz Core (TM) i7 processor, 8G RAM
and Windows 7. For the parameters settings, NP is set to 100
individuals; P = 10% of the infeasible solutions, this value was
based on those discussed in [10]. ܨ௭ was a random number אሾ0.4 െ 0.9ሿ. In regard to ݎܥ, for each individual in the
population at generation ݐ, if ݀݊ܽݎ௭,௧ ൑ 0.75 then ݎܥ௭,௧ ൌ0.95; else ݎܥ௭,௧ ൌ 0.4 [29], ߮ א ሾ1 െ ே௉ଶ ሿ the total Fitness
Function evaluations (FEs) were 20000D, 25 runs were used,
In regard to CC parameters, α ൌ 10ି଺; β=0.0001 and 1=ߤ.

A. The Effect of the CC based Mutation

Here, all the test problems are solved by DE with and
without the CC based mutation, known as DEwCCM and DE,
respectively. In this paper, DE used is that shown in (15).
Appendix A shows the detailed results of both algorithms.
Note that the "*" shown in Appendix A means that the value is

TABLE I. COMPARISON AMONG DEwCCM, DE AND ߝDEAG

D Comparison Results Better Equal Worse Dec.

10D

DEwCCM
 – to –

DE

Best 4 14 0 ൎ
Average 14 4 0 ൅

DEwCCM
– to – ࢿDEag

Best 4 13 1 ൎ

Average 7 8 3 ൎ

30D

DEwCCM
 – to –

DE

Best 14 3 1 +

Average 16 1 1 +
DEwCCM

– to – ࢿDEag

Best 16 1 1 ൅

Average 16 0 2 ൅

of an infeasible point.

To start with, in regard to the best values obtained in 10D,
DEwCCM obtained better results for four problems, and both
were similar for 14 problems. Based on the average results,
DEwCCM was superior to DE for 13 test problems instances,
and was able to obtain better results in five problems.

For the 30D test problems, DEwCCM was found superior
to DE for 14 and 16 test problems, based on the best and
average results obtained, respectively, while it was inferior to
DE for only one test problem, and similar to DE for three and
one test problem(s), considering the best and average results,
respectively.

In addition to the quality of solutions obtained, we have
compared the computational time required to obtain the
optimal solution with an error of 0.0001, i.e. the stopping
criteria is ሾ݂ሺݔԦሻ െ ݂ሺכݔሬሬሬሬԦሻ ൑ 0.0001ሿ, where ݂ሺכݔሬሬሬሬԦሻ was the
best known solutions. We found that DEwCCM requires 2.0%
lower execution time in comparison with DE to reach the
optimal solutions for the 30D test problems. This saving in
time, although it is small, is a great advantage, especially
when using gradient calculations, which normally consume
time.

Furthermore, a statistical significance testing is performed.
A non-parametric test, the Wilcoxon Signed Rank Test [8, 32]
is performed. The Wilcoxon decision results regarding the best
and average fitness values are presented in Table I. As a null
hypothesis, it is assumed that there is no significant difference
between the best and/or mean values of two samples, while the
alternative hypothesis is that there is a significant difference in
the best and/or average fitness values of the two samples,
using the 5% significance level. Based on the test
results/rankings, we have assigned one of three signs (+, -, and
≈) for the comparison of any two algorithms (shown in the last
column), where the “+” sign means that the first algorithm is
significantly better than the second, the “-” sign means that the
first algorithm is significantly worse, and the “≈” sign means
that there is no significant difference between the two
algorithms. From Table I, it is clear that DEwCCM was
significantly better than DE.

To this end, as an example, a convergence plot is depicted
in figure 1, which shows that using the proposed algorithm
converges faster than DE.

994

Fig.1. Convergence plots for both DEwCCM and DE for C14 (30D)

B. Comparison to State-of-the-art Algorithms

Here the computational results of DEwCCM are
compared with a state-of-the-art algorithm, εDEag [21], which
won the CEC2010 constrained optimization competition. The
detailed results are shown in Appendix A.

Considering the quality of the solutions obtained, a
summary is reported in Table I. From this table, for the 10D
test problems, DEwCCM was found superior to εDEag for 4
and 7 test problems, based on the best and average results,
respectively. However, εDEag was better for one problem
based on the best results obtained, and 3 test problems
considering the mean results reached.

In regard to the 30D test instances, DEwCCM was clearly
better than to the majority of the test problems.

Finally, based on the Wilcoxon test, DEwCCM was
significantly better than εDEag.

VI. CONCLUSION AND FUTURE WORK

Differential Evolution is known as a good performing
algorithm in solving optimization problems. In the literature,
many DE mutation strategies were proposed. However, none
of them contained any mechanism that can guide the infeasible
individuals to move towards the feasible region. Although
Constraint Consensus methods can do this task, it was not
combined with the search approach of any mutation strategy.

In this research, a differential evolution algorithm with a
new mutation strategy, based on a concept of constraint
consensus method, was introduced. To add to this, a
mechanism, to stretch successful points based on their parents,
those points used to get them generated, was employed.

The algorithm was analysed by solving a set of well-known
test problems where it showed good performance, in terms of
the computational results and time, in comparison to the same
algorithm without the new mutation. To add to this, the
algorithm was superior to the CECE2010's competition
winner.

For future work, we wish to analyze all components of the
algorithm and apply it on real-world applications.

REFERENCES

[1] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning: Addison-Wesley Publishing Corporation,
1989.

[2] J. Kennedy and R. Eberhart, "Particle swarm optimisation," in the
IEEE International Conference on Neural Network, 1995, pp.
1942–1948.

[3] R. Storn and K. Price, "Differential Evolution - A simple and
efficient adaptive scheme for global optimization over continuous
spaces," International Computer Science Institute Technichal
Report TR-95-012, 1995.

[4] I. Rechenberg, Evolutions strategie: Optimierung Technischer
Systeme nach Prinzipien der biologischen Evolution. Stuttgart:
Fromman-Holzboog, 1973.

[5] L. Fogel, J. Owens, and M. Walsh, Artificial Intelligence Through
Simulated Evolution. New York: John Wiley & Sons, 1966.

[6] J. Lampinen and I. Zelinka, "On stagnation of the differential
evolution algorithm," in 6th Int. Mendel Conference on Soft
Computing, Brno, Czech Republic, 2000, pp. 76–83.

[7] J. Vesterstrom and R. Thomsen, "A comparative study of
differential evolution, particle swarm optimization, and
evolutionary algorithms on numerical benchmark problems," in
IEEE Congress on Evolutionary Computation, 2004, pp. 980-1987.

[8] S. M. Elsayed, R. A. Sarker, and D. L. Essam, "Multi-operator
based evolutionary algorithms for solving constrained optimization
Problems," Computers and Operations Research, vol. 38, pp.
1877-1896, 2011.

[9] N. Hamza, R. Sarker, and D. Essam, "Hybridizing constraint
consensus methods with evolutionary algorithms for constrained
optimization," Engineering & Information Technology, UNSW
Canberra, Canberra, 2012.

[10] N. Hamza, R. Sarker, and D. Essam, "Differential evolution with
multi-constraint consensus methods for constrained optimization,"
Journal of Global Optimization, pp. 1-29, 2012/10/01 2012.

[11] N. M. Hamza, R. A. Sarker, and D. L. Essam, "Differential
evolution with a mix of Constraint Consenus methods for solving a
real-world Optimization Problem," in Evolutionary Computation
(CEC), 2012 IEEE Congress on, 2012, pp. 1-7.

[12] N. M. Hamza, S. M. Elsayed, D. L. Essam, and R. A. Sarker,
"Differential evolution combined with constraint consensus for
constrained optimization," in IEEE Congress on Evolutionary
Computation 2011, pp. 865-872.

[13] R. Mallipeddi and P. N. Suganthan, "Problem definitions and
evaluation criteria for the CEC 2010 competition and special
session on single objective constrained real-parameter
optimization," Technical Report, Nangyang Technological
University, Singapore2010.

[14] R. Storn and K. Price, "Differential Evolution – A Simple and
Efficient Heuristic for global Optimization over Continuous
Spaces," Journal of Global Optimization, vol. 11, pp. 341-359,
1997.

[15] R. Storn, "On the usage of differential evolution for function
optimization," in Biennial Conference of the North American
Fuzzy Information Processing Society (NAFIPS), 1996, pp. 519–
523.

[16] A. K. Qin, V. L. Huang, and P. N. Suganthan, "Differential
Evolution Algorithm With Strategy Adaptation for Global
Numerical Optimization," IEEE Transactions on Evolutionary
Computation, vol. 13, pp. 398-417, 2009.

[17] E. Mezura-Montes, J. V. Reyes, and C. A. Coello Coello, "A
comparative study of differential evolution variants for global
optimization," in the 8th annual conference on Genetic and
evolutionary computation, Seattle, Washington, USA, 2006, pp.
485-492.

[18] A. Iorio and X. Li, "Solving rotated multi-objective optimization
problems using differential evolution," in Australian Conference
on Artificial Intelligence, 2004, pp. 861–872.

[19] K. V. Price, R. M. Storn, and J. A. Lampinen, Differential
evolution: a practical approach to global optimization. Berlin:
Springer, 2005.

995

[20] Z. Jingqiao and A. C. Sanderson, "JADE: Adaptive Differential
Evolution With Optional External Archive," IEEE Transactions on
Evolutionary Computation, vol. 13, pp. 945-958, 2009.

[21] T. Takahama and S. Sakai, "Constrained optimization by the ε
constrained differential evolution with an archive and gradient-
based mutation," in IEEE Congress on Evolutionary Computation,
2010, pp. 1-9.

[22] S. M. Elsayed, R. A. Sarker, and D. L. Essam, "Integrated
strategies differential evolution algorithm with a local search for
constrained optimization," in IEEE Congress on Evolutionary
Computation, 2011, pp. 2618-2625.

[23] J. Brest, B. Bos�kovic�, and V. Z�umer, "An improved self-
adaptive differential evolution algorithm in single objective
constrained real-parameter optimization," in IEEE Congress on
Evolutionary Computation 2010, pp. 1-8.

[24] Y. Censor and S. Zenios, Parallel Optimization: theory,
algorithms, and applications. New York: Oxford University Press,
1997.

[25] W. Ibrahim and J. W. Chinneck, "Improving solver success in
reaching feasibility for sets of nonlinear constraints," Comput.
Oper. Res., vol. 35, pp. 1394-1411, 2008.

[26] J. W. Chinneck, "Feasibility and Infeasibility in optimization," in
Algorithms and computational methods. vol. 118, ed: Springer,
International Series in Operation Research and Management
Sciences, 2008.

[27] L. Smith, "Improved Placement of Local Solver Launch Points for
Large-scale Global Optimization," Doctor of Philosophy,
Electrical and Computer Engineering, Carleton University, Ottawa,
Ontario, Canada, 2011.

[28] J. W. Chinneck, "The Constraint Consensus Method for Finding
Approximately Feasible Points in Nonlinear Programs," INFORMS
J. on Computing, vol. 16, pp. 255-265, 2004.

[29] S. Elsayed and R. Sarker, "Differential Evolution with Automatic
Population Injection Scheme," in IEEE Symposium Series on
Computational Intelligence, Singapore, accepted, 2013.

[30] R. Sarker, S. Elsayed, and T. Ray, "Differential Evolution with
Dynamic Parameters Selection for Optimization Problems,"
Evolutionary Computation, IEEE Transactions on, vol. PP, pp. 1-
1, 2013.

[31] K. Deb, "An Efficient Constraint Handling Method for Genetic
Algorithms," Computer Methods in Applied Mechanics and
Engineering, vol. 186, pp. 311-338, 2000.

[32] G. W. Corder and D. I. Foreman, Nonparametric Statistics for
Non-Statisticians: A Step-by-Step Approach. Hoboken, NJ: John
Wiley, 2009.

996

Appendix A
FUNCTION VALUES OBTAINED BY DE, DEWCCM AND ߝDEAG FOR THE CEC2010 TEST PROBLEMS

Prob. Alg. 10D 30D
Best Mean St. d Best Mean St. d

C01 DE -7.473104E-01 -7.462299E-01 2.526793E-03 -8.218843E-01 -8.179309E-01 4.061502E-03
DEwCCM -7.473104E-01 -7.467701E-01 1.869859E-03 -8.218840E-01 -8.148481E-01 5.533345E-03
εDEag -7.473104E-01 -7.467701E-01 1.869859E-03 -8.218255E-01 -8.208687E-01 7.103893E-04

C02 DE -2.277711E+00 -2.068396E+00 2.670116E-01 -2.277661E+00 -2.260020E+00 3.283637E-02
DEwCCM -2.277711E+00 -2.261483E+00 1.9696915E-02 -2.280970E+00 -2.272595E+00 7.532632E-03
εDEag -2.277702E+00 -2.269502E+00 2.3897790E-02 -2.169248E+00 -2.151424E+00 1.197582E-02

C03 DE 0.000000E+00 2.770176E+00 1.031351E+01 2.0172674E-21 2.231244E+00 7.722545E+00
DEwCCM 0.000000E+00 0.000000E+00 0.0000000E+00 1.198614E-24 1.339530E-23 2.465790E-23
εDEag 0.000000E+00 0.000000E+00 0.0000000E+00 2.867347E+01 2.883785E+01 8.047159E-01

C04 DE -1.000000E-05 -1.000000E-05 0.0000000E+00 -3.316939E-06 4.024828E-02 2.012574E-01
DEwCCM -1.000000E-05 -1.000000E-05 0.0000000E+00 -3.330669E-06 -3.313301E-06 1.355266E-08
εDEag -9.992345E-06 -9.918452E-06 1.5467300E-07 4.698111E-03 8.162973E-03 3.067785E-03

C05 DE 1.337876E+02* 2.561201E+02* 1.069543E+02* -4.836106E+02 -4.836076E+02 4.638421E-03
DEwCCM -4.836106E+02 -4.836106E+02 0.0000000E+00 -4.836106E+02 -4.836106E+02 5.301109E-06
εDEag -4.836106E+02 -4.836106E+02 3.89035E-13 -4.531307E+02 -4.495460E+02 2.899105E+00

C06 DE -5.786624E+02 -5.786624E+02 3.462902E-06 -5.306368E+02 -5.304791E+02 6.862122E-01
DEwCCM -5.786624E+02 -5.786624E+02 1.8945738E-07 -5.306378E+02 -5.306342E+02 2.492397E-03
εDEag -5.786581E+02 -5.786528E+02 3.6271690E-03 -5.285750E+02 -5.279068E+02 4.748378E-01

C07 DE 0.000000E+00 0.000000E+00 0.0000000E+00 1.296277E-25 1.707400E-13 5.737914E-13
DEwCCM 0.000000E+00 0.000000E+00 0.0000000E+00 3.893502E-26 5.987239E-24 1.359775E-23
εDEag 0.000000E+00 0.000000E+00 0.0000000E+00 1.147112E-15 2.603632E-15 1.233430E-15

C08 DE 0.000000E+00 5.523709E+00 5.006128E+00 9.284612E-20 1.318268E+02 5.930584E+02
DEwCCM 0.000000E+00 4.562059E+00 5.052990E+00 8.206303E-26 1.617573E-20 4.713931E-20
εDEag 0.000000E+00 6.727528E+00 5.560648E+00 2.518693E-14 7.831464E-14 4.855177E-14

C09 DE 0.000000E+00 2.231778E+02 1.115889E+03 6.588174E-17 1.578058E+01 5.465172E+01
DEwCCM 0.000000E+00 0.000000E+00 0.0000000E+00 9.024904E-26 3.396387E-24 5.737653E-24
εDEag 0.000000E+00 0.000000E+00 0.0000000E+00 2.770665E-16 1.072140E+01 2.821923E+01

C10 DE 0.000000E+00 1.009288E-26 3.904391E-26 1.780825E-21 5.954761E-03 2.977380E-02
DEwCCM 0.000000E+00 0.000000E+00 0.0000000E+00 6.721095E-26 6.008938E-24 2.303748E-23
εDEag 0.000000E+00 0.000000E+00 0.0000000E+00 3.252002E+01 3.326175E+01 4.545577E-01

C11 DE -1.52271E-03 -1.52271E-03 2.933590E-13 -3.923434E-04 -3.923318E-04 1.123230E-08
DEwCCM -1.52271E-03 -1.52271E-03 2.6859647E-14 -3.923439E-04 -3.923428E-04 7.757013E-10
εDEag -1.52271E-03 -1.52271E-03 6.3410350E-11 -3.268462E-04 -2.863882E-04 2.707605E-05

C12 DE -1.992458E-01 -1.992458E-01 1.415862E-08 -1.992635E-01 -1.992634E-01 1.613874E-08
DEwCCM -3.054888E+02 -6.105263E+01 1.2421703E+02 -1.992635E-01 -1.992634E-01 1.731444E-08
εDEag -5.700899E+02 -3.367349E+02 1.7821660E+02 -1.991453E-01 3.562330E+02* 2.889253E+02

C13 DE -6.842937E+01 -6.818071E+01 5.910213E-01 -6.842903E+01 -5.444431E+01 3.534682E+00
DEwCCM -6.842937E+01 -6.836890E+01 2.082451E-01 -6.842917E+01 -5.936727E+01 4.615222E+00
εDEag -6.842937E+01 -6.842936E+01 1.0259600E-06 -6.642473E+01 -6.535310E+01 5.733005E-01

C14 DE 0.000000E+00 5.659025E-12 2.829513E-11 1.090058E-20 3.189299E-01 1.103846E+00
DEwCCM 0.000000E+00 0.000000E+00 0.0000000E+00 1.991953E-26 5.953745E-20 2.926103E-19
εDEag 0.000000E+00 0.000000E+00 0.0000000E+00 5.015863E-14 3.089407E-13 5.608409E-13

C15 DE 0.000000E+00 3.599233E-01 1.245728E+00 1.366993E-19 3.372009E-01 1.167084E+00
DEwCCM 0.000000E+00 0.000000E+00 0.0000000E+00 6.771582E-27 1.571328E-21 7.502248E-21
εDEag 0.000000E+00 1.798980E-01 8.8131560E-01 2.160345E+01 2.160376E+01 1.104834E-04

C16 DE 0.000000E+00 1.409414E-02 7.047069E-02 0.000000E+00 0.000000E+00 0.0000000E+00
DEwCCM 0.000000E+00 0.000000E+00 0.0000000E+00 0.000000E+00 0.000000E+00 0.0000000E+00
εDEag 0.000000E+00 3.702054E-01 3.7104790E-01 0.000000E+00 2.168404E-21 1.062297E-20

C17 DE 1.047706E-31 7.879282E-23 2.650742E-22 2.628795E-07 1.486175E-01 1.659793E-01
DEwCCM 0.00000E+00 1.573716E-27 3.0757252E-27 6.757731E-15 1.932266E-02 1.252069E-02
εDEag 1.463180E-17 1.249561E-01 1.9371970E-01 2.165719E-01 6.326487E+00 4.986691E+00

C18 DE 6.626432E-29 2.025350E-22 7.193852E-22 3.974207E-09 1.404993E+01 5.828927E+01
DEwCCM 0.000000E+00 2.435457E-26 4.8599586E-26 1.679787E-09 1.491371E-01 5.998427E-01
εDEag 3.731440E-20 9.678765E-19 1.8112340E-18 1.226054E+00 8.754569E+01 1.664753E+02

997

