
 

  

Abstract— in the literature, a considerable number of 
mutation operators have been proposed, which are the key 
search operators in differential evolution algorithm for 
solving optimization problems. Although those operators 
were developed in the context of unconstrained 
optimization, they were widely used in constrained 
optimization. However, those operators did not contain 
any mechanism that would reduce the constraint violation 
in the search process. Therefore, in this paper, a new 
mutation operator based on the constraint consensus 
method is proposed, which can help infeasible points reach 
the feasible region quickly. The algorithm is tested on the 
CEC2010 constrained benchmark problems. The 
experimental results show that the proposed algorithm is 
able to obtain better solutions in comparison with the 
state-of-the-art algorithms.   

Index Terms—Constrained optimization, constraint 
consensus, differential evolution  

I. INTRODUCTION 

HERE are many real-world decision processes that 
require solving constrained optimization problems 
(COPs). In COPs, an acceptable solution is the one that is 

feasible and either optimal or near optimal. An optimal 
solution in a COP may exist either on the surface (/boundary) 
of the feasible region or well-inside the feasible space. The 
constraints in COPs are usually handled using one of two 
approaches: (i) converting the constrained problem into an 
equivalent unconstrained problem and then solving it using an 
appropriate search algorithm, and (ii) dealing the constraints 
separately where the search approach optimizes the objective 
function, while satisfying the constraint set. One serious 
drawback of the first approach is that it may produce a high 
quality objective value without satisfying one or more 
constraints. For this reason, the second approach is popular in 
practice however the approaches are much more complex. 
Note that, in this paper, all analysis and discussions are in the 
context of the second approach mentioned above. 

Over the last few decades, population based stochastic 
algorithms, such as genetic algorithm (GA) [1], particle swarm 
optimization (PSO) [2], differential evolution (DE) [3], 
evolutionary strategies (ES) [4], and evolutionary 
programming [5], have shown their ability in solving 
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constrained optimization problems. In this research, we would 
like to deal with one of such algorithms that is DE. From the 
literature, DE has shown a tremendous success in solving 
continuous optimization problems. However, the algorithm 
converges prematurely when dealing with those problems that 
contain multiple local optima by losing diversity [6-9].  

There have been numerous studies that were proposed to 
improve DE’s performance. Such improvements lie in 
proposing new mutation strategies, ensemble of DE operators, 
and ensemble of constraint handling techniques. The search 
operators are designed mainly to improve the fitness value, 
while maintaining the diversity of the population. Such 
operators are well-suited with the unconstrained optimization 
problems. To solve the constrained optimization problems, 
researchers implemented the same search operators with an 
additional mechanism, known as constraint handling 
technique. However, in almost all cases, the constraint 
handling technique contributes to the evolution process, 
indirectly, via the ranking and selection methods. In other 
words, the search operators in DE do not play any direct role 
in reducing the constraint violations. It is expected that the 
introduction of a new mutation operator, that can improve the 
fitness value and reduce the constraint violation, will 
significantly improve the performance of the algorithm.  

The constraint consensus (CC) method, which uses different 
types of projection algorithms, are used for solving feasibility 
problems with nonlinear and non-convex constraints. This 
method assists the infeasible solution vector to quickly move 
towards the feasible region by making a consensus among the 
currently violated constraints to determine the direction and 
distance that are required to achieve feasibility [28]. Although 
the CC methods can improve the feasibility of individuals in 
the population, in our earlier work, we applied them as an 
additional step with EAs (see for details in [10-12]). However, 
no research reported in the literature on a DE mutation that 
combines the usual movement operator with the concept of 
CC for improving the performance of the algorithm. In this 
paper, we propose a new mutation operator that combines the 
search technique with a method of reducing constraint 
violation. The performance of the proposed algorithm has 
been tested by solving a set of constrained benchmark 
problems (from CEC2010 competition) [13]. The results show 
that the proposed algorithm is able to obtain better solutions in 
comparison with a state-of-the-art algorithm.  

This paper is organized as follows. After the introduction, 
section II describes the DE algorithm.  Section III discusses an 
overview of constraint consensus methods. Section IV 
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demonstrates the design of the proposed algorithm, while the 
experimental results and the analysis are presented in section 
V. Finally, the conclusions are given in section VI. 

II. DIFFERENTIAL EVOLUTION  

 Differential Evolution is a popular evolutionary algorithm 
(EA) for solving optimization problems [3, 14]. DE has two 
main search operators: mutation and crossover operators. 

In the traditional DE mutation operator, a mutant vector, ሬܸԦ, 
is generated by multiplying the difference of two random 
vectors  by a scaling factor ܨ and the result is then added to 
another third random vector. For an individual ݖ, ሬܸԦ௭  is 
calculated as follows: ሬܸԦ௭ ൌ Ԧ௥భݔ ൅ .ܨ ൫ݔԦ௥మ െ  Ԧ௥య൯,                             (1)ݔ

where, ݎଵ, ,ଶݎ  ,... ,1,2} א ଷ are random integer numbersݎ
NP}\{ݖ}, ݎଵ ് ଶݎ ്  is a decision vector, NP is the ݔ ଷݎ
population size, F is a positive control parameter.  

Similar to other EAs, there are many strategies for mutation 
in DE, such as:  

• DE/best/1 ([15]): ሬܸԦ௭,௧ ൌ Ԧ௕௘௦௧,௧ݔ ൅ ܨ ൈ ൫ݔԦ௥మ,௧ െ  Ԧ௥య,௧൯                                   (2)ݔ

where ݔԦ௕௘௦௧,௧ is the best individual vector at generation t. 

• DE/rand-to-best/1 ([16]): ሬܸԦ௭,௧ ൌ Ԧ௥భ,௧ݔ ൅ ܨ ൈ ൫ݔԦ௕௘௦௧,௧ െ Ԧ௥మ,௧൯ݔ ൅ ܨ ൈ ൫ݔԦ௥య,௧ െ  Ԧ௥ర,௧൯ (3)ݔ

• DE/rand/2/dir ([17]): ሬܸԦ௭,௧ ൌ Ԧଵ,௧ݒ ൅ ிଶ ൈ ቀ൫ݒԦଵ,௧ െ Ԧଶ,௧൯ݒ ൅ ൫ݒԦଷ,௧ െ  Ԧସ,௧൯ቁ              (4)ݒ

where ݂ሺݒԦଵ,௧ሻ ൑ ݂ሺݒԦଶ,௧ሻ and ݂൫ݒԦଷ,௧൯ ൑ ݂൫ݒԦସ,௧൯. 
• DE/current-to-rand/1 ([18]): ሬܸԦ௭,௧ ൌ Ԧ௥భ,௧ݔ ൅ ܨ ൈ ൫ݔԦ௥మ,௧ െ Ԧ௭,௧൯ݔ ൅ ܨ ൈ ൫ݔԦ௥య,௧ െ  Ԧ௥ర,௧൯    (5)ݔ

• DE/current-to-best/1([19]): ሬܸԦ௭,௧ ൌ Ԧ௥భ,௧ݔ ൅ ܨ ൈ ൫ݔԦ௕௘௦௧,௧ െ Ԧ௭,௧൯ݔ ൅ ܨ ൈ ൫ݔԦ௥య,௧ െ  Ԧ௥ర,௧൯  (6)ݔ

• DE/current-to-best ([20]):  ሬܸԦ௭,௧ ൌ Ԧ௭,௧ݔ ൅ ܨ ൈ ቀ൫ݔԦ௕௘௦௧,௧ట െ Ԧ௭,௧൯ݔ ൅ ൫ݔԦ௥భ,௧ െ  Ԧ௥మ,௧൯ቁ      (7)ݔ

where ݔԦ௕௘௦௧,௧ట  is randomly chosen as one of the top 100 ൈ߰% individuals in the current generation. 

In DE, the well known crossover operator is the Binomial 
crossover, which used in this paper. In it, for each of the ݆௧௛variables, whenever a randomly picked number (݀݊ܽݎ ݀݊ܽݎ݆ ሾ0,1ሿ) is less than or equal to Cr value, or it is a randomא א ሾ1 െ  ሿ variable, the ݆௧௛  variable is inherited fromܦ
the mutant vector, such as: ݑ௜௝,௧ ൌ ൜ݒ௜,௝,௧, ݂݅ ሺ݀݊ܽݎ ൑ ൌ ݆ ݎ݋ ݎܥ ݁ݏ݅ݓݎ݄݁ݐ݋                                   ,௜,௝,௧ݔሻ݀݊ܽݎ݆              (8) 

Over the last two decades, DE was successfully applied to 
solve different COPs. A few such examples are discussed 
here. Takahama and Sakai [21], introduced an ε constrained 
DE with an archive and a gradient-based mutation (εDEag) for 
solving the CEC2010 competition on constrained real-
parameter optimization [13]. The εDEag utilized an archive to 
maintain the diversity of individuals and adopted a new way 
of selecting the ε-level control parameter in εDEg. Elsayed et 
al. [8], proposed a multi-operator based DE (SAMO-DE) 
algorithm for solving two different sets of COPs. The 
feasibility rule was used to handle the constraints. SAMO-DE 
was found to be better than other state-of-the-art algorithms. 
Elsayed et al. [22] proposed a DE algorithm that used multiple 
search operators, and two constraint handling techniques (the 
feasibility rule and the epsilon constraint methods) were 
adopted to handle constraints. The results showed that the 
proposed algorithm was superior to the-state-of-the-art 
algorithms. Brest et al. [23], employed the epsilon constraint 
method to handle the constraints in their proposed differential 
evolution algorithm. The algorithm has shown competitive 
performance over a set of test problems. 

III. CONSTRAINT CONSENSUS METHODS 

Constraint Consensus (CC) methods [24-26] use different 
types of projection algorithms, as a heuristic, for solving the 
feasibility problems with nonlinear and non-convex 
constraints. The key idea is to help a currently infeasible 
solution to quickly move towards the feasible region by 
making a consensus among the currently violated constraints 
[10-12, 25]. More precisely, CC starts from an initial 
infeasible solution and then constructs a feasibility vector for 
each violated constraint at the existing solution. The feasibility 
vector approximates the move from the current infeasible 
point to the closest feasible solution for each violated 
constraint. 

 The calculation of the feasibility vectors is exact for linear 
constraints, however a linear approximation is generated 
(known as linear feasibility vectors) for nonlinear constraints. 
The linear feasibility vector moves the infeasible solution in a 
parallel direction to the gradient of the violated constraint and 
the step size of the movement is calculated by using a first 
order Taylor series expansion of the constraint function 
around the current solution [12, 25, 27], such as: ሺݔ௞ାଵ െ ݔ௞ሻ ൌ  ି௚೔ሺ௫ೖሻฮఇ௚೔ሺ௫ೖሻ೅ฮమ ௞ሻ்ݔ௜ሺ݃ߘ                  (9) 

where 

• ݃௜ሺݔ௞ሻ ׷ ܴ௡ ՜ ܴ is the ith constraint, ݃ߘ௜ሺݔ௞ሻ்is the 
transposition of its gradient, and || ߘ ௜݃ሺݔ௞ሻ்|| is its length. 

• ݇: Number of steps.  
 .௞: Current infeasible point at kth stepݔ •
 ௞ାଵ: Estimated feasible point for each violated constraintݔ •

at k+1th step. 
• To accommodate the non-differential and discontinuous 

functions, an approximate gradient ൫݃ߘ௜ሺݔ௞ሻ൯ is 
calculated numerically for our algorithm as follows 
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(௚೔ሺ௫ା∆ሻି௚೔ሺ௫ሻ∆ ), where ∆ represents a small change in x 
(here it is equal to 0.0001). 

The feasibility vectors for all violated constraints are joined 
into a consensus vector which is then used to update the 
current point. The CC steps are repeated until satisfying 
predefined stopping conditions [25, 28], such as: (1) the length 
of every feasibility vector is less than a predefined feasibility 
distance threshold (α) (e.g.10ି଺), (2) the length of the 
consensus vector is less than a movement tolerance (ߚ), in 
which the consensus vector becomes too short, or (3) more ߤ 
generations have been completed. 

Over the last few decades, many variants of CC method 
have been proposed such as traditional CC, Direction Based 
maximum (DBmax) algorithm and the Feasibility Distance far 
(FDfar) algorithm. They differ by the method of constructing 
the consensus vector. In this paper, we use the traditional CC 
method, in which all eligible feasibility vectors are treated 
equally and the movement is created by averaging the non-
zero components of the feasibility vectors.  

Recently, CC was employed with differential evolution as 
an additional mechanism to deal with the infeasible solutions. 
Hamza et al. [10] proposed different variants of DE with 
multiple CC methods. The proposed algorithms were tested 
and analyzed by solving the CEC2006 test problems. The 
performance of the algorithms was further improved by 
incorporating a local search approach. The algorithm showed 
competitive performance while using significantly lower 
computational time. The algorithm was also applied to solve a 
complex real-world problem [11]. 

IV. DE WITH CONSTRAINT CONSENSUS BASED MUTATION 

In this section, the proposed algorithm is described, 
followed by the description of constraint handling method 
used in this research. We introduced the algorithm as 
DEwCCM (Differential Algorithm with Constraint Consensus 
Mutation). 

A. DEwCCM 

As indicated earlier, the CC methods were used as an 
additional step within EAs to deal with infeasibility [10] [11]. 
In this section, our goal is to propose a new mutation operator 
that combines the concept of CC method with a traditional 
mutation operator. It is expected that a such mutation operator 
will not only improve the quality of fitness value but also help 
the infeasible solutions to reach the feasible region quickly. 
That means, this mutation will be beneficial for infeasible 
solutions only, which is introduced below.  The main steps of 
the proposed algorithm are shown in Algorithm 1. 

Firstly, the initial population is generated within the 
boundary based on the following equation: ݔ௭௝ ൌ ௝ܮ   ൅ ൈ ݀݊ܽݎ  ሺ ௝ܷ െ  ௝ሻ                  (10)ܮ 

where  ܮ௝,  ௝ܷ are the lower and upper bound for decision 
variable ݔ௜௝ and ݀݊ܽݎ is a random number, ݀݊ܽݎ א ሾ0,1ሿ. 
Then, for some of the infeasible solutions, say P individuals, 
new offspring are generated based on: 

ALGORITHM 1: DEWCCM 
STEP 1: In generation ݐ ൌ 0, generate an initial random population of 

size ܲܵ. The variables in each individual (z) must be within the 
range using (11).  

STEP 2 : for each (ݖ) in NP, randomly generate its ܨ௭, ݎܥ௭ and ߮௭ 

STEP 3: At each generation (ݐ): If there are infeasible solutions then: 
Randomly Select P individuals of the infeasible solutions, , and 
generated new offspring using (12)-(14) 

STEP 4:  For each individual in the remaining ሺܲܵ െ ܲሻ individuals, a 
new offspring is generated using (15). 

STEP 5: if ሬܷሬԦ௜ is better than ݔԦ௜, based on the fitness function and/or 
constraint violation, accept it for the next generation. Sort the 
entire population based on the objective value and/or constraint 
violation. 

STEP 6: Apply an expansion mechanism on the successful offspring, 
using (16), and update the number of fitness evaluations. then, 
Sort the entire population based on the objective value and/or 
constraint violation. 

STEP 7: Stop if the termination criterion is met; else set ݐ ൌ ݐ ൅ 1, and 
go to STEP 3. ݑ௭,௝ ൌቊݔఝ೥,௝ ൅ .௭ܨ ൫ݔ௕௘௦௧,௝ െ ,஼஼,௝൯ݔ ݂݅ ሺ݀݊ܽݎ ൑ ൌ ݆ ݎ݋ ௭ݎܥ  ݆௥௔௡ௗሻݔ௭,௝                                                                                 (11)  ݁ݏ݅ݓݎ݄݁ݐ݋ 

where ߮ א ሾ0 െ ே௉ଶ ሿ which aim at maintaining a balance 
between two DE mutation strategies (DE/rand and DE/best) 
஼஼ݔ  .[29] ൌ ௫ೖశభ,಴௡௖                                         (12) ݊ܿ is the total number of the violated constraints for each 
infeasible solution, (ݔ௞ାଵ,஼ሻ the new point considering each 
violated constraint (C) and 

௞ାଵ,஼ݔ  ൌ  ି௚೔ሺ௫ೖሻԡఇ௚೔ሺ௫ೖሻԡమ ௞ሻ்ݔ௜ሺ݃ߘ  ൅ ௞ݔ           (13) 

This mutation is not applied to all infeasible individuals, but 
to some of them. This is to minimize the additional 
computational time required for computing them as well as 
maintaining the diversity in the population. So, for the 
remaining NP-P individuals (either feasible or infeasible), a 
new offspring is generated according to:  ݑ௭,௝,௧ൌ ൞ ఝ೥,௝,௧ݔ ൅ ሺ׎. .௭ሻܨ ൫ݔ௥೥భ,௝,௧ െ ௥೥మ,௝,௧൯ݔ ൅                                                   ሺሺ1 െ .ሻ׎ .௭ሻܨ ൫ݔ௕௘௦௧,௝,௧ െ ݀݊ܽݎ௥೥య,௝,௧൯  ݂݅ ሺݔ ൑ ൌ ݆ ݎ݋ ௭ݎܥ  ݆௥௔௡ௗሻݔ௭,௝                                                                                 ݁ݏ݅ݓݎ݄݁ݐ݋  

                                                                                              (14) 
where ߮ is a random integer number within a range [a, b], ܽ ൌ 1, ܾ ൌ ܰܲ/2 [30], and ׎ ൌ 0.75. In (10), a bit more 
emphasis on the diversity appears from using 0.75ܨ௭  for the 
first difference vector. For each new generated individual, if it 
is better than its parent, it survives for the next generation, and 
the entire population is sorted based on the fitness function 
and/or constraint violation. 

C. Expansion Mechanism 

For a better convergence pattern, at each generation, we 
employ a stretching mechanism on the successful offspring 
generated by (15). This is done by using following mutation: 
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௭,௝,௧ൌݑ ൞ݔఝ೥,௝,௧ ൅ ሺሺ1 െ .ሻ׎ .௭ሻܨ ൫ݔ௥ݖభ,௝,௧ െ ௥౰మ,௝,௧൯ݔ ൅                                 ሺ׎. .௭ሻܨ ൫ݔ௕௘௦௧,௝,௧ െ ݀݊ܽݎ௭,௝,௧൯    ݂݅ ሺݔ ൑ ൌ ݆ ݎ݋ ௭ݎܥ  ݆௥௔௡ௗሻݔ௭,௝                                                                         ݁ݏ݅ݓݎ݄݁ݐ݋  

                                                                                              (15) 

The key idea of this expansion mechanism is that using the 
same ݔԦ௥౰భ,௧ and ݔԦ௥౰మ,௧ along with ܨ௭ and ݎܥ௭ used in (15), may 
be a good seed to generate a new offspring using information 
gained from the offspring generated by (15) , ݔԦ௭,௧, and the new 
best individual in the population. Note that (16) employs a 
more exploitation mechanism in comparison with (15) as 
shown by using ׎, instead of (1-׎) in (15), in the second 
difference vector.  

C. Constraint Handling Method 

In this paper, the superiority of feasible solutions technique 
is used to select individuals [31], in which: 1) between two 
feasible solutions, the fittest one (according to fitness 
function) is better, i.e. f(ݔԦଵ) < f(ݔԦଶሻ, 2) a feasible solution is 
always better than an infeasible one, 3) between two infeasible 
solutions, the one having the smaller sum of its constraint 
violation is preferred, i.e. vio(ݔԦଵ) < vio(ݔԦଶሻ. Equality 
constraints are transformed into inequalities of the following 
form, where ߝ is a small tolerance, i.e. 0.0001, and E is the 
number of equality constraints:  |݄௘ሺݔԦሻ| െ ൑ ߝ 0, ݁ ݎ݋݂ ൌ 1, … ,  (16)                 ܧ

V. EXPERIMENTAL RESULTS 

In this section, we present and analyze the experimental 
results of the proposed algorithm by solving a set of 
benchmark problems introduced in the CEC2010 constrained 
problems [13]. These problems contain different properties, 
such as the objective function and/or the constraints are either 
linear or non-linear. The constraint signs may be equality or 
inequality. The objective function may be multi-modal or 
unimodal. Moreover, the optimal solution may lie on the 
boundary and the feasible space may be very tiny. 

The algorithm has been coded using Matlab, and has been 
run on a PC with a 2.8 GHz Core (TM) i7 processor, 8G RAM 
and Windows 7. For the parameters settings, NP is set to 100 
individuals; P = 10% of the infeasible solutions, this value was 
based on those discussed in [10]. ܨ௭ was a random number אሾ0.4 െ 0.9ሿ. In regard to ݎܥ, for each individual in the 
population at generation ݐ, if ݀݊ܽݎ௭,௧ ൑ 0.75 then ݎܥ௭,௧ ൌ0.95; else ݎܥ௭,௧ ൌ 0.4 [29], ߮ א ሾ1 െ ே௉ଶ ሿ  the total Fitness 
Function evaluations (FEs) were 20000D, 25 runs were used, 
In regard to CC parameters, α ൌ 10ି଺; β=0.0001 and  1=ߤ. 

A. The Effect of the CC based Mutation 

Here, all the test problems are solved by DE with and 
without the CC based mutation, known as DEwCCM and DE, 
respectively. In this paper, DE used is that shown in (15). 
Appendix A shows the detailed results of both algorithms.  
Note that the "*" shown in Appendix A means that the value is  

TABLE I. COMPARISON AMONG DEwCCM, DE AND ߝDEAG  

D Comparison Results  Better Equal Worse Dec. 

10D 

DEwCCM 
 – to – 

DE 

Best 4 14 0 ൎ
Average 14 4 0 ൅ 

DEwCCM 
– to – ࢿDEag 

Best 4 13 1 ൎ 

Average 7 8 3 ൎ 

30D 

DEwCCM 
 – to – 

DE 

Best 14 3 1 + 

Average 16 1 1 + 
DEwCCM 

– to – ࢿDEag 

Best 16 1 1 ൅ 

Average 16 0 2 ൅ 

of an infeasible point. 

To start with, in regard to the best values obtained in 10D, 
DEwCCM obtained better results for four problems, and both 
were similar for 14 problems. Based on the average results, 
DEwCCM was superior to DE for 13 test problems instances, 
and was able to obtain better results in five problems. 

For the 30D test problems, DEwCCM was found superior 
to DE for 14 and 16 test problems, based on the best and 
average results obtained, respectively, while it was inferior to 
DE for only one test problem, and similar to DE for three and 
one test problem(s), considering the best and average results, 
respectively. 

In addition to the quality of solutions obtained, we have 
compared the computational time required to obtain the 
optimal solution with an error of 0.0001, i.e. the stopping 
criteria is ሾ݂ሺݔԦሻ െ  ݂ሺכݔሬሬሬሬԦሻ ൑ 0.0001ሿ, where ݂ሺכݔሬሬሬሬԦሻ was the 
best known solutions. We found that DEwCCM requires 2.0% 
lower execution time in comparison with DE to reach the 
optimal solutions for the 30D test problems. This saving in 
time, although it is small, is a great advantage, especially 
when using gradient calculations, which normally consume 
time. 

Furthermore, a statistical significance testing is performed. 
A non-parametric test, the Wilcoxon Signed Rank Test [8, 32]  
is performed. The Wilcoxon decision results regarding the best 
and average fitness values are presented in Table I.  As a null 
hypothesis, it is assumed that there is no significant difference 
between the best and/or mean values of two samples, while the 
alternative hypothesis is that there is a significant difference in 
the best and/or average fitness values of the two samples, 
using the 5% significance level. Based on the test 
results/rankings, we have assigned one of three signs (+, -, and 
≈) for the comparison of any two algorithms (shown in the last 
column), where the “+” sign means that the first algorithm is 
significantly better than the second, the “-” sign means that the 
first algorithm is significantly worse, and the “≈” sign means 
that there is no significant difference between the two 
algorithms. From Table I, it is clear that DEwCCM was 
significantly better than DE. 

To this end, as an example, a convergence plot is depicted 
in figure 1, which shows that using the proposed algorithm 
converges faster than DE. 

994



 

Fig.1. Convergence plots for both DEwCCM and DE for C14 (30D)

B. Comparison to State-of-the-art Algorithms 

Here the computational results of DEwCCM  are 
compared with a state-of-the-art algorithm, εDEag [21], which 
won the CEC2010 constrained optimization competition. The 
detailed results are shown in Appendix A. 

Considering the quality of the solutions obtained, a 
summary is reported in Table I.  From this table, for the 10D 
test problems, DEwCCM was found superior to εDEag for  4 
and 7 test problems, based on the best and average results, 
respectively. However, εDEag was better for one problem 
based on the best results obtained, and 3 test problems 
considering the mean results reached. 

In regard to the 30D test instances,  DEwCCM was clearly 
better than to the majority of the test problems. 

Finally, based on the Wilcoxon test, DEwCCM was 
significantly better than εDEag. 

VI. CONCLUSION AND FUTURE WORK 

Differential Evolution is known as a good performing 
algorithm in solving optimization problems. In the literature, 
many DE mutation strategies were proposed. However, none 
of them contained any mechanism that can guide the infeasible 
individuals to move towards the feasible region. Although 
Constraint Consensus methods can do this task, it was not 
combined with the search approach of any mutation strategy.  

In this research, a differential evolution algorithm with a 
new mutation strategy, based on a concept of constraint 
consensus method, was introduced. To add to this, a 
mechanism, to stretch successful points based on their parents, 
those points used to get them generated, was employed. 

The algorithm was analysed by solving a set of well-known 
test problems where it showed good performance, in terms of 
the computational results and time, in comparison to the same 
algorithm without the new mutation. To add to this, the 
algorithm was superior to the CECE2010's competition 
winner.   

For future work, we wish to analyze all components of the 
algorithm and apply it on real-world applications. 
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Appendix A 
FUNCTION VALUES OBTAINED BY DE, DEWCCM AND ߝDEAG FOR THE CEC2010 TEST PROBLEMS 

Prob. Alg. 10D 30D 
Best Mean St. d Best Mean St. d 

C01 DE -7.473104E-01 -7.462299E-01 2.526793E-03 -8.218843E-01 -8.179309E-01 4.061502E-03 
DEwCCM -7.473104E-01 -7.467701E-01 1.869859E-03 -8.218840E-01 -8.148481E-01 5.533345E-03 
εDEag -7.473104E-01 -7.467701E-01 1.869859E-03 -8.218255E-01 -8.208687E-01 7.103893E-04 

C02 DE -2.277711E+00 -2.068396E+00 2.670116E-01 -2.277661E+00 -2.260020E+00 3.283637E-02 
DEwCCM -2.277711E+00 -2.261483E+00 1.9696915E-02 -2.280970E+00 -2.272595E+00 7.532632E-03 
εDEag -2.277702E+00 -2.269502E+00 2.3897790E-02 -2.169248E+00 -2.151424E+00 1.197582E-02 

C03 DE 0.000000E+00 2.770176E+00 1.031351E+01 2.0172674E-21 2.231244E+00 7.722545E+00 
DEwCCM 0.000000E+00 0.000000E+00 0.0000000E+00 1.198614E-24 1.339530E-23 2.465790E-23 
εDEag 0.000000E+00 0.000000E+00 0.0000000E+00 2.867347E+01 2.883785E+01 8.047159E-01 

C04 DE -1.000000E-05 -1.000000E-05 0.0000000E+00 -3.316939E-06 4.024828E-02 2.012574E-01 
DEwCCM -1.000000E-05 -1.000000E-05 0.0000000E+00 -3.330669E-06 -3.313301E-06 1.355266E-08 
εDEag -9.992345E-06 -9.918452E-06 1.5467300E-07 4.698111E-03 8.162973E-03 3.067785E-03 

C05 DE 1.337876E+02* 2.561201E+02* 1.069543E+02* -4.836106E+02 -4.836076E+02 4.638421E-03 
DEwCCM -4.836106E+02 -4.836106E+02 0.0000000E+00 -4.836106E+02 -4.836106E+02 5.301109E-06 
εDEag -4.836106E+02 -4.836106E+02 3.89035E-13 -4.531307E+02 -4.495460E+02 2.899105E+00 

C06 DE -5.786624E+02 -5.786624E+02 3.462902E-06 -5.306368E+02 -5.304791E+02 6.862122E-01 
DEwCCM -5.786624E+02 -5.786624E+02 1.8945738E-07 -5.306378E+02 -5.306342E+02 2.492397E-03 
εDEag -5.786581E+02 -5.786528E+02 3.6271690E-03 -5.285750E+02 -5.279068E+02 4.748378E-01 

C07 DE 0.000000E+00 0.000000E+00 0.0000000E+00 1.296277E-25 1.707400E-13 5.737914E-13 
DEwCCM 0.000000E+00 0.000000E+00 0.0000000E+00 3.893502E-26 5.987239E-24 1.359775E-23 
εDEag 0.000000E+00 0.000000E+00 0.0000000E+00 1.147112E-15 2.603632E-15 1.233430E-15 

C08 DE 0.000000E+00 5.523709E+00 5.006128E+00 9.284612E-20 1.318268E+02 5.930584E+02 
DEwCCM 0.000000E+00 4.562059E+00 5.052990E+00 8.206303E-26 1.617573E-20 4.713931E-20 
εDEag 0.000000E+00 6.727528E+00 5.560648E+00 2.518693E-14 7.831464E-14 4.855177E-14 

C09 DE 0.000000E+00 2.231778E+02 1.115889E+03 6.588174E-17 1.578058E+01 5.465172E+01 
DEwCCM 0.000000E+00 0.000000E+00 0.0000000E+00 9.024904E-26 3.396387E-24 5.737653E-24 
εDEag 0.000000E+00 0.000000E+00 0.0000000E+00 2.770665E-16 1.072140E+01 2.821923E+01 

C10 DE 0.000000E+00 1.009288E-26 3.904391E-26 1.780825E-21 5.954761E-03 2.977380E-02 
DEwCCM 0.000000E+00 0.000000E+00 0.0000000E+00 6.721095E-26 6.008938E-24 2.303748E-23 
εDEag 0.000000E+00 0.000000E+00 0.0000000E+00 3.252002E+01 3.326175E+01 4.545577E-01 

C11 DE -1.52271E-03 -1.52271E-03 2.933590E-13 -3.923434E-04 -3.923318E-04 1.123230E-08 
DEwCCM -1.52271E-03 -1.52271E-03 2.6859647E-14 -3.923439E-04 -3.923428E-04 7.757013E-10 
εDEag -1.52271E-03 -1.52271E-03 6.3410350E-11 -3.268462E-04 -2.863882E-04 2.707605E-05 

C12 DE -1.992458E-01 -1.992458E-01 1.415862E-08 -1.992635E-01 -1.992634E-01 1.613874E-08 
DEwCCM -3.054888E+02 -6.105263E+01 1.2421703E+02 -1.992635E-01 -1.992634E-01 1.731444E-08 
εDEag -5.700899E+02 -3.367349E+02 1.7821660E+02 -1.991453E-01 3.562330E+02* 2.889253E+02 

C13 DE -6.842937E+01 -6.818071E+01 5.910213E-01 -6.842903E+01 -5.444431E+01 3.534682E+00 
DEwCCM -6.842937E+01 -6.836890E+01 2.082451E-01 -6.842917E+01 -5.936727E+01 4.615222E+00 
εDEag -6.842937E+01 -6.842936E+01 1.0259600E-06 -6.642473E+01 -6.535310E+01 5.733005E-01 

C14 DE 0.000000E+00 5.659025E-12 2.829513E-11 1.090058E-20 3.189299E-01 1.103846E+00 
DEwCCM 0.000000E+00 0.000000E+00 0.0000000E+00 1.991953E-26 5.953745E-20 2.926103E-19 
εDEag 0.000000E+00 0.000000E+00 0.0000000E+00 5.015863E-14 3.089407E-13 5.608409E-13 

C15 DE 0.000000E+00 3.599233E-01 1.245728E+00 1.366993E-19 3.372009E-01 1.167084E+00 
DEwCCM 0.000000E+00 0.000000E+00 0.0000000E+00 6.771582E-27 1.571328E-21 7.502248E-21 
εDEag 0.000000E+00 1.798980E-01 8.8131560E-01 2.160345E+01 2.160376E+01 1.104834E-04 

C16 DE 0.000000E+00 1.409414E-02 7.047069E-02 0.000000E+00 0.000000E+00 0.0000000E+00 
DEwCCM 0.000000E+00 0.000000E+00 0.0000000E+00 0.000000E+00 0.000000E+00 0.0000000E+00 
εDEag 0.000000E+00 3.702054E-01 3.7104790E-01 0.000000E+00 2.168404E-21 1.062297E-20 

C17 DE 1.047706E-31 7.879282E-23 2.650742E-22 2.628795E-07 1.486175E-01 1.659793E-01 
DEwCCM 0.00000E+00 1.573716E-27 3.0757252E-27 6.757731E-15 1.932266E-02 1.252069E-02 
εDEag 1.463180E-17 1.249561E-01 1.9371970E-01 2.165719E-01 6.326487E+00 4.986691E+00 

C18 DE 6.626432E-29 2.025350E-22 7.193852E-22 3.974207E-09 1.404993E+01 5.828927E+01 
DEwCCM 0.000000E+00 2.435457E-26 4.8599586E-26 1.679787E-09 1.491371E-01 5.998427E-01 
εDEag 3.731440E-20 9.678765E-19 1.8112340E-18 1.226054E+00 8.754569E+01 1.664753E+02 
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