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Abstract— Query spotting in document images is a subclass of
Content-Based Image Retrieval (CBIR) algorithms concerned
with detecting occurrences of a query in a document image.
Due to noise and complexity of document images, spotting
can be a challenging task and easily prone to false positives
and partially incorrect matches, thereby reducing the overall
precision of the algorithm. A robust and accurate spotting
algorithm is essential to our current research on sketch-
based retrieval of digitized lecture materials. We have recently
proposed a modular spotting algorithm in [1]. Compared to
existing methods, our algorithm is both application-independent
and segmentation-free. However, it faces the same challenges
of noise and complexity of images. In this paper, inspired
by our earlier research on optimizing parameter settings for
CBIR using an evolutionary algorithm [2][3], we introduce
a Genetic Algorithm-based optimization step in our spotting
algorithm to improve each spotting result. Experiments using an
image dataset of journal pages reveal promising performance,
in that the precision is significantly improved but without
compromising the recall of the overall spotting result.

I. INTRODUCTION

Content-Based Image Retrieval (CBIR) is the area of
research concerned with designing image search systems
that use the image visual content instead of text keywords
[4]. The exponential growth in the scale of image databases
and the progress achieved in Pattern Recognition and Image
Processing paved the way for many applications of CBIR
such as in medical imaging [5][6], copyright protection [7],
cultural heritage analysis [8][9], trademark retrieval [10][11],
Sketch-Based Image Retrieval [12][13], query spotting in
document images [14], etc.

In order to improve CBIR systems performances, Evo-
lutionary Algorithms (EA) have been utilized. Particularly,
Genetic Algorithms (GA) [15] and Particle Swarm Optimiza-
tion (PSO) [16] have been explored to make CBIR systems
adaptive to the class of images they use [2] and to allow a
highly semantic retrieval [17].

We focus in this work on the area of query spotting, that
is finding occurrences of a query, in a document image. This
area of research has gained attention as early as digital li-
braries started to become popular [14][18]. In case of printed
documents with standard fonts and high resolutions, spotting
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can be implemented using Optical Character Recognition
(OCR) by recognize-then-retrieve approaches [19][20]. How-
ever, when documents are old, handwritten, or multilingual,
more sophisticated and recognition-free approaches become
needed [21][22]. Such methods usually extract features from
the query and match them in the document image. It is also
common that spotting methods deal with particular classes
of queries such as words [23] or mathematical expressions
[24]. In these cases, regions of interest that are identical to
the query class are usually extracted to facilitate the spotting
process.

Due to noise and complexity of document images, spotting
systems are prone to errors [25][26]. Particularly, in case of
recognition and segmentation free approaches, false positive
or partially incorrect matches containing residuals (Sec. III-
B, Fig. 5) (i.e. irrelevant parts of the query detected occur-
rences that have been matched positively) can be detected.
This issue affects the precision of the system and it is a
challenge for subsequent applications after spotting. There-
fore, a post-processing that reduces the number of residuals
in spotting results is critically important.

In this work, we introduce a spotting approach that op-
erates in two stages: First, a modular framework based on
pruning and voting detects candidate occurrences of the
query. Second, a Genetic Algorithm (GA) is used to optimize
each spotting result. Compared to the state-of-the-art, our
approach is recognition and segmentation free. In addition,
no existing method has tried involving GA in spotting queries
in document images.

The remainder of this paper is organized as follows: Sec.
IT overviews the state-of-the-art of using EAs in optimizing
CBIR systems, and references on query spotting in docu-
ment images. The proposed approach for spotting and result
optimization using GA is explained in detail in Sec. IIL
Experimental results are presented and discussed in Sec. IV.
Sec. V announces our conclusions and future directions.

II. RELATED WORK

A. Use of EA in CBIR

EA have been used to optimize CBIR systems in various
aspects. For the purpose of optimizing feature extraction,
Torres et al. used GA to determine an optimal combination
function of multiple feature descriptors and proved that it
outperforms conventional weighting combination [27]. In
[28], Kiranyaz et al. presented an approach for feature
distinctiveness optimization using PSO.
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In [29], Jadhav and Patil aimed to optimize feature match-
ing, and used a GA to find query similar images using low
level features such as color, texture, and shape. They proved
that GA can be used as a matching mechanism in CBIR.

In our previous work [2], we used PSO to improve image
similarity evaluation by automatically optimizing the CBIR
system parameters using the suitability of the result. First,
image similarity is calculated using Relaxation Matching
[30]. Then, a PSO-based optimization scheme uses a measure
for query-result-discrepancy to optimize the system parame-
ters. In another similar work, we used PSO to tune the system
using relevance feedback provided by users [3].

EA have been used to optimize CBIR systems in other as-
pects such as large database indexing [31] and user intention
inference [32].

B. Recognition free spotting methods

As stated above, methods for spotting can be categorized
as OCR-based or recognition-free. In this section, we review
references of recognition-free methods, as our contribution is
of this category. We refer the reader to references [18, 32-34]
for information on OCR-based methods.

In order to account for noise and complexity of document
images, spotting methods usually rely on a priori knowledge
to perform image segmentation, regions of interest extraction,
and to use domain-specific features.

In [18], Manmatha et al. introduced an early work on
spotting that starts by segmenting the document image into
words using a priori knowledge about the distance between
characters and words. After segmentation, word query spot-
ting is done by applying one of two algorithms which
estimate the shift between the query and the words in the
document image using the Euclidean distance and Scott and
Longuet Higgins’ algorithm.

Another segmentation-based method has been presented
by Rath and Manmatha [33]. The authors tackled the problem
of word spotting in historical documents. After segmenting
the document image into words, the ink pixel distribution
is used for word feature extraction. Matching is done using
Dynamic Time Warping [34].

In [24], Zanibbi and Yu introduced an approach for
mathematical expression spotting using handwritten queries,
that works as follows: Recursive X-Y cutting [35] is used to
segment the query and document image and index them by
X-Y trees, and pruning is used to discard irrelevant regions
such as text. Then, spotting is done by looking up the query
in the document image index using features of its X-Y tree,
producing a set of candidates. Candidate ranking is done
using Dynamic Time Warping.

Other word spotting methods use a priori knowledge about
the document’s language. For instance, Lu and Tan presented
a method for word spotting in Chinese documents where
they use a modified Hausdorff distance tuned for Chinese
characters [25]. Likewise, Sari and Kefali presented a method
for word spotting in Arabic documents, based on specific
features of Arabic characters (e.g. diacritics, loops, etc.) [36].
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Fig. 1. Overview of the proposed approach.

C. Direction of this research

Our earlier work on using EA in optimizing CBIR systems
[2][3], and the above state-of-the-art review on spotting
methods lead us to make the following observations:

o EA can facilitate the optimization of CBIR systems in
different aspects.

o Most existing spotting methods rely on segmentation in
order to extract regions of interest from the document
image, and use a priori knowledge such as the query
class or document language.

In this paper, we aim to develop an application-
independent spotting approach that is recognition and seg-
mentation free. As spotting is a subclass of CBIR, the
successful use of EA in optimizing CBIR systems motivated
us to use EA in optimizing the proposed approach’s perfor-
mances by further improving spotting precision.

III. THE PROPOSED APPROACH

The proposed approach operates in two stages: preliminary
spotting and spotting optimization. Fig 1 shows an overview
of the proposed approach and Algorithm 1 summarizes
the first stage. First, the query and document image are
subjected to a Preprocessing step that is charged of noise
reduction and connected components extraction (for the ease
of description, we will refer to connected components simply
as components).

Then, features are extracted from components and repre-
sented in feature vectors.

Afterwards, the feature vectors corresponding to the query
components and the document image component are matched
and the similarity scores are stored in a similarity matrix.
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Algorithm 1 Preliminary spotting
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Preprocessing ( I, Ipoc )
Feature Extraction ( {C?}iSM, {C'JDOC}]-SN )
Matching ( {HZQ}ISM7 {ﬁfoc}jSN )

Voting ( {C}i<ar, {CPOCYj<n, Sun )
Candidate Filtering ( Iy )

Next, similarity matrix is used to vote for locations of
candidate occurrences of the query in the document image.

Then, groups of document image connected components
are formed around each voting point.

Finally, a GA is used to optimize each spotting result by
removing residuals in partially incorrect matches.

A. Preliminary spotting

Algorithm 1 summarizes the preliminary spotting steps.
Throughout this section, each step will be explained in detail.

1) Preprocessing: Document images are usually prone
to noise due to the quality and age of the document and
imperfection of scanning devices. Therefore, a preprocessing
step for noise reduction and input normalization is needed.
For this purpose, we use our previously reported Adaptive
Thinning Framework (ATF) [37][38]. ATF produces 1-pixel
width representation of images, and it is robust against noise
compared to conventional thinning algorithms.

After preprocessing, components are extracted from the
image. The output of this step is the components of the
query I and document image Ipoc, respectively {C’LQ Vi<
and {CP9°};cn, where M and N are the number of
components of Ig and Ipoc.

2) Feature extraction: The inputs of this step are the
components of the query and document image, respectively
{Ci*}i<ar and {CP9%Y <.

For each component, a feature vector is generated using a
shape descriptor, as shape is the only information available
after the Preprocessing step.

In this work, we use the feature extraction mechanism
described in the Contour Points Distribution Histogram
(CPDH) shape descriptor [39]. For each component C of
the query and the document image, a feature vector is
extracted as follows: The distribution of shape points in
the shape enclosing circle is calculated in polar coordinates.
Then, the point distribution is represented in a 2-dimensional
histogram of norms and angles.

Due to the use of the enclosing circle, CPDH is scale-
invariant, and rotation-invariance can be achieved by using
shifted matching. In addition, the feature extraction stage of
CPDH is computationally efficient.

The output of this step are the feature vector sets
{ ?}iSM and { ?OC}jSN, corresponding to {CiQ}igM
and {OjDOC}jSN. l

3) Matching: This step performs matching of { ﬁ?}ig M
and {HPOC};cny and stores the similarity scores in a
similarity matrix Syr,n. Each cell S(i, j) is calculated using

the Histogram Intersection measure between H,* and H JD o
as follows:

K—1L-1

S@,j) =Y > min(H, Hj}) 1)

k=0 1=0
where K and L are the norm and angle dimensions of the
CPDH feature vector. S(, j) takes real values in the interval
[0,1]. Large values express similarity between components,
and small values express dissimilarity.

At this stage, S holds the similarity scores between the
components of the query and all the components of the
document image. For the sake of saving computations, a
pruning step can be envisaged by thresholding S to keep
only significant similarity scores. However, such a pruning
method is not sufficient as most shape descriptor are prone
to false positive. Therefore, before applying this method, we
apply another pruning mechanism.

Our mechanism uses the hypothesis assuming that if a
document image component CJD OC is visually similar to a
query component C’Z-Q , it should be nearly similar or dissim-
ilar to the remaining components of the query {CkQ Yrtis in
the same way as CZQ .

We implement this hypothesis as follows:

1) The query auto-correlation matrix, S]QM - 1s calculated
by matching the query’s components ag,ainst each others
using the Histogram Intersection measure (Eq. 1). S%
is symmetric with 1-values on the diagonal.

2) If a document image component C'29% is found to be
similar to a query component C,icg , that is S(4,j) > «a,
where « is a similarity threshold, the Euclidean distance
D(io,jo) between {SQ (’i, iO)}iSM and {S<i7j0>}i§M
is calculated as follows:

L M
D(io, o) = 7 D (8%(ii0) — S, 4o)* ()
=1

When D(ig, jo) > 60, where 6 is a dissimilarity thresh-
old, it means that er;goc does not keep a similarity
pattern to {C}; in the same way as C’fg does. In
such case, szoc is discarded.

The output of this step is similarity matrix S after pruning
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Fig. 2. TIllustration of the component centroid c¢;, the query centroid cg,
and c¢;cg. The circles in purple highlight the components’ centroids.

of false positive and small similarity scores.

4) Voting: The aim of this step is to estimate locations of
candidate occurrences of the query in the document image
using similarity matrix S and the query components relative
locations.

The candidate locations are determined by generating a
voting image Iy, which is a grayscale image that has the
same dimensions of the document image, and where bright
spots show locations of candidate occurrences of the query.
Iy is produced by calculating a voting matrix Mat® corre-
sponding to each query component C’iQ and then merging the
matrices. Below, we detail the method of calculating M att.

M at® has the same dimensions as the document image and
holds the votes corresponding to a query component C’iQ In
Mat*, 1-valued cells show candidate locations voted for by
similar {CP9“};<y, and 0-valued cells show absence of
voting. A voting operation is determined using the following
information:

e The centroid ¢; of CDOC

o The displacement Vector cico i¢g connecting the centroid
¢; of CQ and the centroid cg of the query (Fig. 2).

« The similarity score S(i, j) of matching C* and cpee.

Next the voting vector ?J, originating from c;, parallel to
clcQ and having the norm calculated as follows:

V| = |G| x 7 3)

where ~ is a scale normalization factor calculated usin
the radius of the enclosing circles of C{? and CPOC. éj
points to the voting point, that is the center of the candidate
occurrence.

Then, the cells of Mat? located in a circular region around
the voting point are made 1-valued. The voting is made
in a circular region in order to account for components
displacement, and the radius r of the circular region is
calculated as follows:

r=19xyx8(i,j) x & 4)

where 7 is the radius of the query’s enclosing circle, and
4 is a parameter to control the size of the voting region. Fig.
3 illustrates a voting operation in Mat® superposed on the
document image.

After generating a voting matrix Mat® corresponding to
each query component C’iQ , the matrix Mat"**" holding the
average of values of votes {Mat'(z,y)}i<ns is calculated.
Then, the entries of Mat™**™ are mapped into grayscale
intensities and used to produce the voting image Iy .

ke A
- 3
‘z/x +§mx x{ Somy

{ﬂiw QTD;EDV‘S {mx} }S -‘{V;g
?Q':f“f m’ﬁlﬁa\} o

Fig. 3. The voters are C’DOC (the symbol ’2’ on the left), CD OC (the
symbol "2’ on the right), dnd CD OC (the symbol 2’ on the center) Their

N
voting vectors are Vi, Vi, and Vi. The voting vectors differ in norms to
adapt for the size change. The circles in purple highlight the components’
centroids.

Fig. 4. The voting image Iy, (superimposed on the document image for
the sake of illustration). Bright spots show regions of high voting scores.

Fig. 4 shows an example of the voting image Iy, super-
posed on the document image. Iy, is the output of this step.

5) Candidate filtering: The voting image Iy, has been
produced using votes from groups of components CP°¢.
In this step, voting groups are identified, extracted from the
document image, and classified as relevant or irrelevant.

First, the centers of the voting regions {c}/ }x<r, where
K is the total number of voting regions, are extracted from
Iy by applying Distance Transform [40] and an intensity
maxima detection algorithm.

Next, a voting group G, is formed around each voting cen-
ter by finding the components C’JDOC which voting vectors
(Eq. 3) point to a location inside the voting circular region
which center is ¢}/ and radius is calculated as in Eq. 4.

At this stage, K voting groups are extracted from the
document image. A preliminary filtering of irrelevant groups
is done by evaluating the scale consistency of the components
of each group; The idea is that a relevant voting group should
have components that hold nearly equal scale factor v with
their corresponding query components. This is insured by
calculating the scale factor variance o (7). If o(7y) is large, it
means that the voting group is formed of components having
inconsistent scales.

The output of this step is the detected voting groups after
scale-consistency filtering.
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Fig. 5. Preliminary spotting result with 2 voting groups (Image’s height
reduced because of the space limit). Voting Group G2 on the right contains

95,99

3 residuals which are the letters ’t”, ”h”, and ”’s”.

B. Spotting optimization using Genetic Algorithms

Genetic Algorithms (GA) are optimization algorithms that
model genetic evolution [41]. In a population of candidate
solutions, the characteristics of each individual are expressed
using chromosomes, and genetic operators such as crossover
and mutation are used to evolve the population towards an
optimal solution. A Fitness function is used to estimate the
distance of an individual from the optimal solution.

Basically, chromosomes are encoded in binary strings.
During the population evolution, chromosomes that fit best,
i.e. calculate the best values of the fitness function, are
selected to give offspring by using crossover. Mutation is
used in order to insure wide exploration of the solution space
and prevent local optima.

In the following, we go through our GA modelization in
details. We use basic GA as described above. Other variants
of GA have been introduced for particular purposes such
as GA using real-valued representations [42], multi-areas
Genetic Algorithms [43], Genetic Programming [44], etc.

1) GA modelization: The purpose of using GA in our
approach is to optimize the spotting result by removing
residuals (Fig. 5) which might exist in the output of the
preliminary spotting stage (Sec. II-A).

For each voting group Gy formed by Nj components
{CPOC} <N,, a GA operates in parallel on a population
P to enhance the spotting result. The GA operates as fol-
lows: Initially, P contains a fixed number of chromosomes
{Ohfj}ugu py| initialized with random values (Sec. III-B.2).
Then, a fitness f(ChF) is calculated for each chromosome
(Sec. III-B.3). Next, best fit chromosomes are selected and
crossover is used to produce their offspring (Sec. III-B.4).
In addition to crossover, mutation is used to insure wide
exploration of the solution space (Sec. III-B.5).

The evolution terminates automatically when population
P* reaches a stable state. The stability is estimated by cal-
culating the fitness variance of the population chromosomes.
The best fit chromosome is then the output of the algorithm.

2) Population: For each voting group G, corresponds a
population P* that contains chromosomes {Chk}, < pr .
A chromosome ChE has Ny genes b% . where v < Nj. The
gene b¥  activates or deactivates a corresponding component
C, of voting group Gy. Fig. 6 shows an example of a

chromosome.

3) Fitness function: The fitness function f(Ch¥) is equal
to the similarity score obtained by comparing the image con-

E_om™ 1
H B N

Fig. 6. Illustration of a chromosome generated from G2 (Fig. 5). Colored
boxes refer to active genes and empty boxes refer to inactive genes. In this
illustration, the order of components is assumed to be from left to right.

structed from the chromosome Ch% and the query image I Q
using a shape descriptor. We use Support Region Descriptor
(SRD) [12] for this purpose:

F(ChY) = Ssrp(Ions, 1Q) ©)

where the similarity measure Ssgp € [0, 1] expresses visual
similarity in case of large values, and dissimilarity in case
of small values. SRD extracts a 2-dimensional histogram for
each image, and uses the Histogram Intersection measure to
express the similarity between two images.

4) Crossover: In each iteration of the algorithm, the
chromosomes are sorted in decreasing fitness. Then, the %
least fit chromosomes are replaced by the offspring of the
% fittest chromosomes. Genes of the offspring are produced
using a voting procedure involving 3 parents; Each new gene
bolfspring (indexes modified for simplicity) is determined as
follows:

boffspring _ active,
v . .
inactive,

if Z?:l gb(b{})(went(l)) >9

otherwise
where gb(bﬁarent(l)) is a mapping function that returns 1 if
the gene of parent [ is active, and 0 if it is inactive.

5) Mutation: It has been demonstrated that an initial large
mutation rate that decreases exponentially as a function of the
number of algorithm iterations improves convergence speed
and accuracy [41]. Based on this finding, we implement
mutation as described in Algorithm 2: For each iteration,
a parameter p(t) corresponding to iteration ¢ is calculated
to control the mutation probability. Initially, p(0) = 100.
A constant 3 is used to adjust the decreasing speed of p.
Then, a random number 0 < rand < 100 is generated. If

rand < p(t), then a gene bf, is selected and mutated.

Algorithm 2 Mutation procedure
p(0) < plt—1)— B x 10
rand = generateRandom(min = 0, maz = 100)
if rand < p(t) then
vo = generateRandom(min = 1, max = Ny,)

bﬁ’uo = bﬁ’l}o
end if

IV. EXPERIMENTAL RESULTS

In this section, we present our preliminary experimental
results. We aimed to evaluate the approach’s performance
when spotting handwritten queries in document images with
challenging quality, and the effectiveness of the GA in
optimizing the spotting.
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Fig. 7. Thinned queries used in the experiment.

TABLE I
VALUES OF Precision AND Recall CORRESPONDING TO 3 QUERIES, PRIOR
TO USING GA OPTIMIZATION.

Query Precision | Recall
Query 1 62.9% 63.8%
Query 2 | 63.9% 83.94%
Query 3 | 67.8% | 73.54%

Evaluation procedure

We prepared an image dataset by converting pages of the
journal Annales de I'insée (Numéro 40, Oct-Dec 1980) [45]
into document images in 200 x 200 dpi. The dataset contains
104 images that include text and mathematical calculations.
The image resolution was 1110 x 1162.

Throughout the experiment, the parameters were set em-
pirically as follows: The similarity threshold o = 0.35, the
dissimilarity threshold # = 0.03, and the voting region size
parameter § = 0.35. The size of the GA population is fixed
according to the number of components in the voting group
G}, as follows: || P¥|| = 3 x Ny, and the mutation probability
parameter 5 = 1.

The evaluation was done using 3 queries that were scanned
in 300 x 300 dpi and thinned using ATF (Fig. 7). Statistical
analysis of the results was done by calculating Precision and
Recall as follows:

Number of Relevant Pixels x 100
Number of Retrieved Pizxels

Number of Relevant Pixels x 100
Number of Total Relevant Pizels

where Number of Total Relevant Pizels is known
from the ground truth, Number of Relevant Pizels and
Number of Retrieved Pizels are calculated after the
spotting.

Precision expresses the ability of the approach to find
relevant occurrences, while Recall expresses the ability to
find all correct results.

(6)

Precision =

Recall =

)

Results and discussion

Table I shows the values of Precision and Recall for the
3 queries in Fig. 7, prior to using GA optimization. The low
values of Precision are the caused by residuals. The values
of Recall are affected by the complexity of the query.

Fig. 8 shows the effect of using the GA optimization on the
values of Precision and Recall calculated for the 3 queries.
From the early iterations, Precision improved significantly
and Recall decreased then started to improve again. The

= Precision Recall

0 5 10 15 20

Iteration

Fig. 8. Curves of Precision and Recall per algorithm iteration.
algorithm reached an optimal stage after 8 iterations, where
Precision = 80.4% and Recall = 70.0%.

The pruning step using the query auto-correlation matrix
removes around 50% of the document image content in
average. Instead of direct comparison between components,
the advantage of this pruning method lies in comparing
between patterns of similarity and dissimilarity between a
document image component and a set of query components.
By doing so, it attenuates the effect of handwriting and
standard font variations.

The preliminary results indicate promising performances
of the modular spotting approach and effectiveness of us-
ing GA to optimize the algorithm precision. The modular
spotting approach is effective in removing most of irrelevant
patterns from the document image. Then, the GA improves
significantly the algorithm precision without compromising
its recall. Fig. 9 illustrates the results of steps of our approach
on an image from the dataset.

Our preliminary results are based on the choice of parame-
ters «, 6, and §. Currently, the parameters are set empirically.
In our future work, we aim to make the parameters’ setting
automatic and adaptive to the query and document image.

V. CONCLUSION AND FUTURE WORK

We reported our ongoing research on a modular approach
for spotting queries in document images, and its optimization
using GA. The modular approach finds candidate occurrences
of a query in a document image by removing irrelevant pixels
using normalization, feature matching, pruning, and voting.
Then, optimization of the spotting result is done using GA
in order to remove residuals.

Preliminary experimental results show promising perfor-
mances and possibility of further improvement. Comparing
to existing methods, the proposed approach is application-
independent and segmentation-free. In addition, it involves
EA in spotting which is, to the best of our knowledge, a first
attempt in this issue.

Our next direction is to make the algorithm’s parameters
adjusting automatic and adaptive to the query and document
image. We also intend to carry large scale experiments in
order to evaluate the GA effectiveness and the algorithm’s
performance compared with other methods.
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Fig. 9. Illustration of steps of our spotting approach (suppressed pixels from the original image are kept in bright gray color for convenience of illustration):
(a) Original document image. The query occurrence is highlighted in green. (b) Image after pruning. Around 15% of the pixels have been pruned. (c)
Result of preliminary spotting illustrated by a blue box. (d) Result of spotting optimization using GA illustrated by a blue box. 86.7% of the residuals
have been removed.
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