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Abstract—In this paper, a differential evolution algorithm 
based on fitness Euclidean-distance ratio which was proposed 
to maintain multiple peaks in the multimodal optimization 
problems was modified  to solve the complex single objective 
real parameter optimization problems. With the fitness 
Euclidean-distance ratio technique, the diversity of the 
population was kept to enhance the exploration ability. And in 
order to improve the exploitation ability, the Quasi-Newton 
method was combined. The performance of the proposed 
method on the set of benchmark functions provided by 
CEC2014 competition on single objective real-parameter 
numerical optimization was reported. 

Keywords—real-parameter optimization; differential 
evolution, fitness Euclidean-distance ratio, memetic optimization   

I. INTRODUCTION 
Optimization problems exist in our normal life and 

engineering areas. These optimization problems can be 
classified into various categories. According the number of 
the objectives, there are single objective optimization 
problems and multi-objective optimization problems [1], [2]. 
For multi-objective optimization problems, usually we have 
two or more conflict objectives to be optimized at the same 
time. According to the existence of equality or inequality 
constraints, we can classify them into optimization problems 
with or without constraints [3], [4]. According to the state of 
the environments, there are stationary optimization 
problems and dynamic optimization problems [2], [5].  
According to the form the required optimal solutions, we 
can divide them into real parameter optimization problems 
and discrete optimization problems [6]. Focusing on solving 
these different types of optimization problems, various 
optimization algorithms were proposed. While among so 
many categories of optimization algorithms, research on the 
single objective optimization algorithms influences the 
development of these optimization branches mentioned 
above.  In recent years, various kinds of novel optimization 
algorithms have been proposed to solve real-parameter 
optimization problems.  For the sake of making the 
comparison different optimization function become easier 
and fairly. A novel CEC’14 test suite   which includes 30 

black-box benchmark functions is provided [7].   

 Differential evolution (DE) is a simple yet effective 
global optimization technique which was proposed by Storn 
and Price in 1995 [8]. As the other evolutionary algorithms, 
differential evolution searches good solutions in the 
provided search ranges based on the historical search 
experiences without knowing the explicit equations of the 
objective optimization.  DEs present good performance in 
solving global optimization problems in terms of 
convergence speed, accuracy, and robustness. Various 
modified DEs were proposed to further improve the 
performance of DEs on complex optimization problems 
[9][10]. In [11], a differential evolution algorithm based on 
fitness Euclidean-distance ratio (FERDE) was proposed to 
solve multimodal optimization problems of which the prime 
target is to find multiple global and local optima of a 
problem in one single run. Through comparing with some 
state-of-the-art multimodal optimization approaches, 
FERDE present(s) good performance on complex 
multimodal benchmark functions. Considering the good 
diversity of the FERDE, it is a promising method for normal 
complex single objective function, but the local search 
ability of it needs to be improved. Memetic method is a 
good choice [12][13]. In order to improve exploitation 
ability of the original FERDE, the Quasi-Newton method is 
employed periodically with the currently found good 
solutions as the start points. We call this improved FERDE 
as Memetic FERDE (MFERDE). The MERDE was tested 
on the 10-D and 30-D test functions provided in CEC2014 
competition on single objective real-parameter numerical 
optimization. 

The rest of this paper is organized as follows. Section II 
gives a brief overview of the original FERDE. Section III 
introduces the proposed MFERDE in detail. The 
experimental setup and experimental results are presented 
and discussed in Section IV. Finally, the paper is concluded 
in Section V. 

II. DIFFERENTIAL EVOLUTION BASED ON FITNESS 
EUCLIDEAN-DISTANCE RATIO 

A. Differential Evolution 
As the other evolutionary algorithms, DE is also a 

population based searching method with a randomly 
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initialization.  After the random initialization, the new 
offspring are constructed using mutation and recombination 
operators. Then with the selection operator, the next 
generations are selected. While different from traditional 
EAs, DE generates mutant vectors by using differences of 
randomly sampled pairs of individual vectors from the 
population. The following are five commonly used mutation 
strategies [14]: 

 “DE/best/1”    

1 2* (1, ) ( )p best r rv x F rand D x x= + ⋅ −                               
(1) 

 “DE/rand/1”    

1 2 3* (1, ) ( )p r r rv x F rand D x x= + ⋅ −                           
(2) 

 “DE/current-to-best/2” 

1 2* (1, ) ( )p p best p r rv x F rand D x x x x= + ⋅ − + −           
(3) 

 “DE/best/2”  

1 2 3 4* (1, ) ( ) * (1, ) ( )p best r r r rv x F rand D x x F rand D x x= + ⋅ − + ⋅ −
    

(4) 

 “DE/rand/2”   

1 2 3 4 5* (1, ) ( ) * (1, ) ( )p r r r r rv x F rand D x x F rand D x x= + ⋅ − + ⋅ −
     

(5) 

Here r1 to r5 are mutually different integers generated 
between 1 and NP (population size) based on some criteria. 
F is the scale factor used to scale differential vectors.  xbest is 
the solution with the best fitness value in the current 
population. 

Then the offspring up is generated by applying the 
crossover operation to the generated mutant vector and its 
corresponding parent vector: 

,
,

,

p d d
p d

p d

v if rand CR
u

x otherwise
≤⎧⎪= ⎨

⎪⎩
                   (6) 

CR is a user-specified constant in the range of [0, 1] and is 
used to control the crossover rate. A detailed study about the 
effects of NP, CR and F on the performance of DE algorithm 
is presented in [9].  

B. Fitness Euclidean-distance Ratio 
Fitness Euclidean-distance ratio (FER) was first introduced 

by Li [15] to solve multi-modal optimization problems. By 
observing the FER calculation method has some problems 
for the best individual in the neighborhood, a modified FER 
calculation equation was proposed in [11] : 

( , )

( ) ( )j w
j i

j i

f p f p
FER

p p
−

=
−

                         (7) 

Here pj and pi are the personal best of the jth and ith 
individual respectively. f(pj) and f(pi) are the fitness values 
of  pj and pi. Here fitness values are employed. If the 
problem is a minimization problem, the negative values of 
the cost function can be assigned as the fitness values. pw is 
the worst-fit individual in the current population.  

C. Differential Evolution Based on Fitness Euclidean-
distance Ratio 

In order to keep the diversity of the population, in FERDE 
xr1 to xr5 and xbest  which are used to generate the mutant 
vector  are selected randomly according to the FER values. 
The individuals with higher FER values will have a higher 
chance to be selected. The selection probability Pj is 
calculated as following: 

( , ) ( , )
1

/ , 1, 2,...,
NP

j j i j i
j

P FER FER j N
=

= =∑                        (8) 

And in order to avoid to chose the current individual xi and 
the individuals are too far from the current individual, FER 
is recalculated as below: 

1( , )

( , )

10 if =  or 
NP

j i j i
jj i

j i

j i p p p p
NPFER

FER otherwise
=

⎧ − >= −⎪= ⎨
⎪
⎩

∑
      (9) 

The flowchart of xbest and xri selection strategy is presented 
in Fig. 1. 
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=
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Fig. 1. xbest and xri selection strategy 

III. MEMETIC FERDE 

A. Modified Fitness Euclidean-distance Ratio 
In the previous work, the individual with a high 

fitness value will be assigned a higher selection probability 
even it is far from the current individual pj. For example, if 
we have four individuals of which the fitness values are 100, 
300, 300, and 1000 respectively. The Euclidean distances 
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between them and the current individual are 2, 2, 3, and 5 
respectively. f(pw) is equal to 0. By using (7) and (8), we can 
get the selection probabilities P for these four individuals 
are 0.1, 0.2, 0.3, and 0.4 respectively. The individual which 
has the largest fitness value and the largest distance has the 
largest probability to be chosen.  But our aim is to choose 
the best individual in the neighborhood. Thus in order to 
overcome this defect, a modified FER calculation method is 
proposed in this paper.  

In the new method, the differences of fitness values 
of the individuals and the worst fitness values in the current 
population are normalized to the range [0.1, 1].  The same 
operation is executed on the Euclidean distances. We denote 
N(x) as the normalization operator.  Then (7) is modified to: 

( , )

( ( ) ( ))
( )

j w
j i

j i

N f p f p
FER

N p p
−

=
−

                         (10) 

Then for same example, the selection probabilities P 
for these four individuals become 0.1739, 0.5217, 0.1304, 
and 0.1739 respectively. The third individual which has a 
good fitness value and is near to the current individual will 
have a higher chance to be selected. And at the same time, 
even the bad solutions also have a chance to be selected. In 
this way, the diversity of is increased.   

Different from the multimodal optimization 
problems, only one global best solution needs to be obtained 
in one run for the global optimization problems. Thus (9) is 
modified as following in the new proposed MFERDE: 

( , )
( , )

0 if =  
j i

j i

j i
FER

FER otherwise
⎧⎪= ⎨
⎪⎩

                    (11) 

B. Local Search Strategy 
In the original FERDE, in order to maintain all the optima 

in one run, the fitness value of an offspring is compared 
with that of the nearest individual in the current population 
and the fitter one will be kept for following generation. In 
this way the population is discouraged to converge to a 
single optimum. While for the global optimization problems, 
in order to speed up the convergence, a local search strategy 
which was used in [16] is incorporated in MFERDE: 

1) Every L generations, the neighborhood best individuals 
based on FER values of five randomly chosen individuals 
are refined using the Quasi-Newton method. Here L is a user 
defined constant value.  

2) In the end of the search, the best solution achieved so 
far is refined using Quasi-Newton method. 

C. Re-initialization Strategy 
Since in the MERDE, the nearest individual other 

than the current individual is replaced if the new generated 
solution is better, some bad solutions which is far from the 
population is difficult to be replaced and become dead 
points. Though the diversity is kept in this way, but dead 
points far from the global region do not help the search 
much. In MERDE, the individuals who do not improve for 
R generations will be re-initialized using “DE/rand/2” 
strategy with r1 to r5 randomly generated between 1 and NP.  

D. Bounds handling mechanism 
To restrain the search in the predefined search range 

[xl, xu], the new generated solutions are modified as 
following before their fitness values are calculated: 

, ,

, , ,

, ,

( , ) if         
if 

( , ) if         

d d p d d d p d d

p d p d d p d d

d p d d d d p d d

xl rem xl u xu xl u xl
u u xl u xu

xu rem u xu xu xl u xu

⎧ + − − <
⎪= ≤ ≤⎨
⎪ − − − >⎩   

(12) 

E. Memetic FERDE 
The flowchart of MFERDE is given in Fig. 2.  

IV. EXPERIMENTAL RESULTS 

A. Benchmark Function 
CEC2014 test suite includes thirty functions with different 

properties. We can classify them into four groups:  

 Group A: Unimodal functions (F1-F3) 

 Group B: Simple multi-modal functions (F4-F16) 

 Group C: Hybrid functions (F17-F22) 

 Group D: Composition functions (F23-F30) 

For the unimodal function, there is only one optimum for 
each function. While for the simple multi-modal function, 
there is one global optimum and many local optima. For the 
hybrid function, the variables are randomly divided into 
some subcomponents and then different basic functions are 
used for different subcomponents. In this way, the different 
subcomponents of the variables may have different 
properties. For the composition function, each is composed 
using several different basic sub-functions which make the 
composition function have different properties at the 
different ranges. Especially for F29 and F30, since the basic 
sub-functions are hybrid functions, except that they have 
different properties for different areas, the different 
subcomponents of the variables also have different 
properties. 

The global optima of all thirty functions are shifted to a 
predefined location. Except F8 and F10, all functions are 
rotated. Different rotation matrixes are employed for 
different subcomponents in hybrid functions. And each 
basic sub-function in the composition functions is also has a 
separate rotation matrix.  

B. Experimental Settings 
The performance of MFERDE on 10-D and 30-D 

benchmark functions is tested. Strategy “DE/rand/1” is 
adopted. According to [7], the max fitness evaluation times 
(Max_FES) is set at 100,000 for 10-D, 300,000 for 30-D 
and 500,000 for 50-D.  For each function, the MFERDE is 
run 51 times. The error value which is smaller than 10-8 is 
treated as 0. The PC configuration and parameters setting 
are listed below: 
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Fig. 2. Flowchart of MFERDE 

 PC Configuration: 

System: Windows XP SP3; CPU: 2.93GHz 

RAM: 3.46 GB; Language: Matlab R2008a 

Algorithm: MERDE 

 Parameters Setting: 

1) Parameters to be adjusted: 

F, CR, NP, L, L_FES, FL_FES 

2) Actual parameter values used: 

The population size NP is set 60, 100 and 150 for 10-D, 
30-D and 50-D respectively;  

F=0.9, CR=0.1, L=100, L_FES=50*D, FL_FES=100*D. 

C. Experimental Results 
The best, worst, median, mean, and standard 

variance values of function error values achieved within the 
Max_FEs for the 51 runs are presented in Table I, II and III. 
The convergence curve of the median run for all the thirty 
functions for 10-D, 30-D and 50-D are given in Fig. 3-Fig. 
17. 
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Fig. 3. Convergence curves for F1-F3 of 10-D 

TABLE I.  RESULTS FOR 10D 

F Best Worst Median Mean Std 

1 3.46e-04 5.36e+01 2.03e-02 1.58 7.61 
2 2.57e-07 6.57e-04 1.97e-05 6.31e-05 1.12e-04 
3 4.04e-07 5.85e-03 9.41e-04 1.35e-03 1.22e-03 
4 0 0 0 0 0 
5 7.72 2.00e+01 2.00e+01 1.90e+01 2.71 
6 2.74e-01 1.71 8.91e-01 8.93e-01 2.81e-01 
7 0 8.37e-02 1.72e-02 1.83e-02 1.51e-02 
8 0 0 0 0 0 
9 2.98 8.95 5.97 5.58 1.74 

10 0 1.25e-01 6.25e-02 3.67e-02 3.98e-02 
11 3.75e-01 2.77e+02 3.52e+01 7.55e+01 7.63e+01
12 1.86e-02 3.11e-01 1.02e-01 1.17e-01 6.93e-02 
13 2.62e-02 2.03e-01 1.16e-01 1.17e-01 4.43e-02 
14 4.33e-02 1.66e-01 9.18e-02 9.37e-02 2.73e-02 
15 3.45e-01 1.22 6.43e-01 6.72e-01 2.18e-01 
16 3.87e-01 2.57 1.54 1.53 4.63e-01 
17 4.44e-01 4.22e+01 3.41 7.93 9.59 
18 1.06 6.34 2.40 2.72 1.29 
19 1.85e-01 1.02 4.72e-01 5.10e-01 1.76e-01 
20 2.39e-01 3.25 1.72 1.70 7.50e-01 
21 7.86e-03 1.43e+02 6.61e-01 8.54 2.66e+01
22 3.58e-02 2.16e+01 2.57 3.24 3.96 
23 3.29e+02 3.29e+02 3.29e+02 3.29e+02 2.68e-11 
24 1.10e+02 1.20e+02 1.14e+02 1.15e+02 2.45 
25 1.15e+02 1.55e+02 1.36e+02 1.36e+02 8.34 
26 1.00e+02 1.00e+02 1.00e+02 1.00e+02 4.18e-02 
27 3.21 3.28e+02 7.86 2.87e+01 7.60e+01
28 3.46e+02 3.80e+02 3.69e+02 3.66e+02 7.37 
29 2.38e+02 4.62e+02 3.07e+02 3.17e+02 5.48e+01
30 2.84e+02 6.46e+02 5.31e+02 5.34e+02 6.06e+01
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Fig. 4. Convergence curves for F4-F9 of 10-D 
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Fig. 5. Convergence curves for F10-F16 of 10-D 

 

TABLE III.  RESULTS FOR 50D 

F Best Worst Median Mean Std 

1 6.13e-01 4.86e+03 1.98e+01 3.39e+02 8.57e+02
2 6.92e-05 4.34e-03 5.22e-04 8.39e-04 8.53e-04 
3 4.76e-03 4.62e-02 9.20e-03 1.19e-02 8.48e-03 
4 0 3.99 0 7.98e-02 5.58e-01 
5 2.00e+01 2.00e+01 2.00e+01 2.00e+01 2.21e-05 
6 4.00e+01 5.16e+01 4.62e+01 4.62e+01 2.67 
7 0.00 0.00 0.00 0.00 0.00 
8 1.59e+01 4.18e+01 2.79e+01 2.82e+01 5.77 
9 9.35e+01 1.95e+02 1.45e+02 1.42e+02 2.48e+01

10 1.10e+01 8.83e+02 2.41e+02 3.25e+02 2.48e+02
11 4.54e+03 7.41e+03 5.79e+03 5.80e+03 7.11e+02
12 5.09e-01 1.64 8.78e-01 8.96e-01 2.56e-01 
13 2.57e-01 5.15e-01 3.83e-01 3.80e-01 6.22e-02 
14 1.59e-01 2.65e-01 2.34e-01 2.26e-01 2.14e-02 
15 7.24 1.54e+01 9.97 1.06e+01 2.07 
16 1.86e+01 2.19e+01 2.08e+01 2.09e+01 5.94e-01 
17 1.28e+03 5.30e+03 2.47e+03 2.59e+03 7.99e+02
18 4.65e+01 1.32e+02 7.54e+01 7.92e+01 1.94e+01
19 2.68e+01 4.59e+01 3.34e+01 3.40e+01 4.56 
20 4.03e+01 2.12e+02 1.12e+02 1.13e+02 3.51e+01
21 9.95e+02 1.03e+04 2.00e+03 2.60e+03 1.69e+03
22 2.63e+02 9.86e+02 6.60e+02 6.58e+02 1.64e+02
23 3.37e+02 3.37e+02 3.37e+02 3.37e+02 1.07e-07 
24 2.56e+02 2.65e+02 2.64e+02 2.62e+02 3.37 
25 2.00e+02 2.00e+02 2.00e+02 2.00e+02 4.49e-02 
26 1.00e+02 1.00e+02 1.00e+02 1.00e+02 1.04e-01 
27 1.17e+03 1.48e+03 1.35e+03 1.35e+03 7.16e+01
28 1.00e+03 1.21e+03 1.12e+03 1.12e+03 4.67e+01
29 1.52e+03 2.55e+03 2.02e+03 2.00e+03 2.35e+02
30 1.41e+03 3.65e+03 2.00e+03 2.16e+03 5.24e+02

TABLE II.  RESULTS FOR 30D 

F Best Worst Median Mean Std 

1 2.82e-02 2.48e+03 2.69e+02 5.41e+02 6.40e+02
2 1.09e-06 1.33e-02 1.23e-03 2.39e-03 3.24e-03 
3 1.04e-05 3.43e-03 1.02e-03 1.13e-03 7.36e-04 
4 0 3.99 0 6.25e-01 1.46 
5 2.00e+01 2.00e+01 2.00e+01 2.00e+01 7.17e-05 
6 1.42e+01 2.21e+01 1.82e+01 1.82e+01 1.72 
7 0 0 0 0 0 
8 0 0 0 0 0 
9 3.48e+01 8.16e+01 5.57e+01 5.50e+01 1.04e+01

10 8.33e-02 7.50 3.33e-01 1.29 1.61 
11 1.41e+03 3.74e+03 2.75e+03 2.72e+03 4.69e+02
12 2.14e-01 9.38e-01 5.54e-01 5.64e-01 1.74e-01 
13 1.91e-01 3.81e-01 2.85e-01 2.84e-01 4.41e-02 
14 1.07e-01 2.69e-01 2.15e-01 2.14e-01 2.69e-02 
15 2.25 6.07 3.96 4.14 7.77e-01 
16 1.00e+01 1.20e+01 1.13e+01 1.12e+01 4.58e-01 
17 4.60e+02 1.92e+03 1.13e+03 1.16e+03 3.73e+02
18 1.22e+01 3.64e+01 2.17e+01 2.24e+01 6.47 
19 5.25 9.14 7.75 7.74 7.32e-01 
20 7.72 5.22e+01 2.63e+01 2.80e+01 1.06e+01
21 5.60e+01 1.01e+03 5.72e+02 5.99e+02 2.15e+02
22 2.15e+01 2.89e+02 1.43e+02 1.15e+02 7.29e+01
23 3.14e+02 3.14e+02 3.14e+02 3.14e+02 3.74e-09 
24 2.23e+02 2.26e+02 2.25e+02 2.25e+02 5.57e-01 
25 2.00e+02 2.00e+02 2.00e+02 2.00e+02 2.83e-02 
26 1.00e+02 1.00e+02 1.00e+02 1.00e+02 7.61e-02 
27 3.46e+02 4.48e+02 3.79e+02 3.84e+02 2.32e+01
28 7.53e+02 8.54e+02 8.03e+02 8.05e+02 2.49e+01
29 9.35e+02 1.42e+03 1.18e+03 1.19e+03 1.06e+02
30 6.27e+02 1.82e+03 1.02e+03 1.07e+03 2.90e+02
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Fig. 6. Convergence curves for F17-F22 of 10-D 
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Fig. 7. Convergence curves for F23-F30 of 10-D 
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Fig. 8. Convergence curves for F1-F3 of 30-D 
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Fig. 9. Convergence curves for F4-F9 of 30-D 
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Fig. 10. Convergence curves for F10-F16 of 30-D 
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Fig. 11. Convergence curves for F17-F22 of 30-D 
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Fig. 12. Convergence curves for F23-F30 of 30-D 
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Fig. 13. Convergence curves for F1-F3 of 50-D 
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Fig. 14. Convergence curves for F4-F9 of 50-D 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

10
-2

10
0

10
2

10
4

10
6

10
8

Fitness Evaluations

E
rr

or
 V

al
ue

 

 
F10
F11

F12

F13
F14

F15
F16

 
Fig. 15. Convergence curves for F10-F16 of 50-D 
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Fig. 16. Convergence curves for F17-F22 of 50-D 
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Fig. 17. Convergence curves for F23-F30 of 50-D 

 

From the results, we can observe that for F4, 
Rosenbrock’s function, which is a multimodal function but 
for which the global optimum can be found only when the 
algorithm has good local search ability because there is a 
narrow valley leading from the local optimum to the global 
optimum, MERDE presents a good performance for 10-D. 
While for 30-D and 50-D, the performance is not very stable. 
Sometimes the algorithm fails But for F1- F3, the unimodal 
functions, because of the diversity of the population, there is 

still improvement space for MFERDE. For F5, Ackley’s 
function, MERDE’s performance is not satisfactory because 
the basin of the global optimum is too small comparing the 
flat areas of the whole search space. The niching behavior of 
MERDE does not enhance the searching and slows down 
the convergence speed.  

Comparing the results on F8 and F9, shifted 
Rastrigin’s function and shifted and rotated Rastrigin’s 
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function, MERDE gives a better performance on un-rotated 
one. It is because we set a small CR value which makes the 
algorithm have a chance to locate the global optimum one 
dimension by one dimension. Comparing the results on F10 
and F11, shifted Schwefel’s function and shifted and rotated 
Schwefel’s function, the same phenomenon is observed.   

For the more complex functions such as hybrid 
functions and composition functions, it is observed the 
convergence speed is fast in the initial stage and the best 
solution obtained by MERDE stop improving at about 10% 
of the Max_FES for most functions of these two groups.  

The algorithm’s computational complexity is 
calculated as required in [7] on 10, 30 dimensions, to show 
the complexity’s relationship with increasing dimensions. 
The results are presented in Table IV.  

TABLE IV. COMPUTATIONAL COMPLEXITY 

 T0 T1 2T  ( 2T -T1)/T0 

10-D 
7.81e-02 

1.81 406.12 5.18e+003 
30-D 2.33 472.23 6.02e+003 
50-D 3.30 635.01 8.09e+003 

V. CONCLUSION 
In this paper, a memetic FERDE was proposed to solve 

single objective global optimization problems. A modified 
fitness Euclidean-distance ratio was introduced based on the 
observation of the defects of the previous FER calculation. 
A local search method was combined with the algorithm to 
improve its local search ability. With the re-initialization 
strategy, the novel constructed algorithm, MFERDE, was 
tested on a set of benchmark functions proposed in 
CEC2014 and the results are analyzed. For the comparison 
of MFERDE with other algorithms, please refer to other 
articles in this competition.  
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